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Application of the Bubble-Check algorithm to  The EMS intrinsic message: For each received symbal, the intrisic

Non-Binary LLR computation in QAM coded message is composed eof,, couples, each one containing a Log-
schemes Likelihood Ratio, L;, and its associated Gfj( symbol, a;, i.e.
(Li,ai)ien,... n,, WhereLy < Lo <...< Ly, . In the following, index
L. Conde-Canencia and E. Boutillon k is omitted ¢ = yx). EachL; is defined as:
g 2 ) 2007
This Letter considers the generation of intrinsic LLR megssain non- L;=In ( Plyla) ) = 4*(Clai), yk) 2d (C(a), yk) 1)
binary coded schemes associated to QAM modulation. We shatv t P(ylas) 20

intrinsic LLR message generation corresponds to the same &f \where ¢ is the GF§) symbol associated to the nearest pointytan
computation than the one performed at the elementary chedesn (he QAM constellation, i.e. the one that maximiz&§y|a;) for ic

ir?uEﬁt;”g'fa?nm:”m'fnli”:/;Sgébgga;ystﬁsgﬁrggz“;?e@éi'er'oﬁggg‘gg?hg (1,...,nm). The Euclidean distance between two points in the signal
: prop space is represented Hy).

Bubble-Check algorithm for the LLR calculation to benefiorfr two

advantages: low-complexity hardware architecture andrgnghe same . . .
hardware at the demapping and the decoding step. Demapper: The function of the demapper is to generate the intrinsic
message for each received sympgl For the sake of simplicity, let? =

d?(a;,y) ands? = d*(a,y). Moreover,d; = d7; + d7, ands® = 67 + 63,
Sg we decompose th&/-QAM into two 2™/2-ary PAMs for distance
calculation. Then, we can write:

Introduction: Non-binary (NB) coded schemes can be naturally associat
to high-order modulation for high data rate, leading to lemoer high-
spectral-efficiency communication systems. Compared marpi coded

schemes, the use of NB codes improves the performance ottiuelihg d? — 62 = (d? — §%) + (de — 55) 2
algorithms [1] [2] as the intrinsic likelihoods of the reeed symbols _ ' ———

(which are the inputs to the decoder) are uncorrelated framsymbol 202L; v V()

to another. Recent work on QAM binary soft demapping incli&e Finally, the objectif is to select the,, smallest distances (sorted in

Figure 1 presents the schematics of the considered digiiatreasing order) and their associated symhagjsn order to generate the
communication chain. Information data are encoded by a N&@er intrinsic EMS message fay.

and then mapped to a symbol in the QAM constellation. Note te

order of the NB codeg, corresponds to the number of signals in therinding the minimum distances with the Bubble-Check algorithm: In [10],
modulation, M (i.e. M =gq). After the channel, the modulated noisythe authors presented a low-complexity algorithm for eting then,,
symbols are demapped to generate the intrinsic message.thattthis  minimum values in the set defined &$i) + V (5), (i, ) € [1, nm]2. This
Letter focusses on the demapper block and considers theagiemeof the  set is represented as a matfi, whereTs, = U (i) + V (j). The elements
intrinsic likelihood messages. Even if our approach may dmesiclered in U =[U(1),U(2),...,U(nm)] andV =[V(1),V(2),...,V(n.x)] are
for any NB coded modulation scheme that needs the sortindeafents  sorted in increasing order. Then, we can directly apply thbtBe-Check
in the likelihood vector, we essentially focus on NB-LDPGidExtended algorithm to generate the intrinsic message, as illustria&igure 2.
Min-Sum (EMS) [4] decoding algorithm's

(U(i), K[(p))iel.“n,,,

- QAM
chJQUItr?:Ie ™ en?oE::ier [ modulator . HBUbili?CSir‘]eCK " (Li’ai)iel«.«"m
(mapper) (V(])fng(p))jel,.,nm
Y
o channel Fig. 2 Application of the Bubble-Check circuit to generate the LLR intrinsic
Intrinsic EMS message
message
NB v QAM
sink 4 EMS |« demodulator [<—
decoder (demapper) Example for M = g =64 and n,, = 8: Let us consider the case of a 64-
QAM associated to a GF(64)-LDPC code with a Gray mapping as in
Fig. 1. Digital communication chain the IEEE.802.11 standard (Fig. 4). L6tbe [-7, -5, -1,-3,7,5,1, 3],

then 7r;(p) = G[|p/8]] and mg(p) = Glp mod 8]. This way C(as2) =
(G(6), G(4)) = (+1,+7) or C(azz) = (G(4), G(0)) = (+7, —7).
NB coded modulation: Let X = (z1,z2,...,2zy) be the codeword Let us now illustrate the demapping with the example thar¢oeived
generated by the NB encoder, wherg is an element of GRj, i.e. N0iSy signal isy = (5.3, —3.2). Then,C(a) = (+5, —3) ands? =0.37 +
ok =ap,p=0,...,q— 1. LetC be the mapping of the set Gfj¢o the set 0.22. Let us focus first on the | axis. The calculation of the soxallies
of points of the constellation (each point represents a fiatioa signal): " U(é) can be performed with a state machine (Figure 3 and Table 1) to
C':ap € GFlg) = (w1 (p), 7 (P))p=0.1.2.....¢—1 € M-QAM. obtain:
In other words, the2™-ary QAM (where m is even) is decomposed Ui — £(0, 45), (2.8, +7). (5.2, +3), (18.4, +1), . .. 3
into two independent™/2-ary Pulse Amplitude Modulations (PAMs). U@, mr(p) =10, +5), (28, +7), (52, +3), (184, +1),.. } - ()
For eacha,, the I coordinate corresponds to the in-phase aidsrt Q
coordinate, in-quadrature axis).
The received noisy codewordd consists of N NB symbols
independently affected by noise. Each symbol is repredebtey, = -7 -5 -3 -1
C(z) +wi, k€{1,2,..., N}, wyg is the realization of a complex Additive
White Gaussian Noise (AWGN) of variane&.

2+9,

The EMSdecoding algorithm: The EMS algorithm was proposed for NB- 2-9,

LDPC low-complexity decoding in [4] [6] as a generalizatiofithe Min-

Sum algorithm used for binary LDPC codes ([7], [8] and [98. principle Fig. 3. Sequential distance computation on the | axis

is the truncation of the vector messages fr@mo n.,, values @, << q).

The complexity/performance trade-off can be adjusted withvalue of The same procedure for the Q axis generates:

then,, parameter. This characteristic makes the EMS decodettectinie .

easily adaptable to both implementation and performannosteaints. V), me®) ={(0,-3), (3.2, -5), (4.8, -1), (14.4,=7),...}  (4)
Finally, Table 2 illustrates the generation of the EMS sitrimessage

(Li;ai)ie(,...,n.n) through the Bubble-Check circuit (Fig. 2). hox, =8

the intrinsic message {9, a43), (2.8, ass), (3.2, a41), (4.8, a42),

(5.2,a59), (6,as3), (7.6,as4), (8.4,as7) which corresponds to the,,

closest signals tg.

! the Min-Max [5] decoding algorithm would also fit in our study
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Table 1: Distance computation on the | axis

OA
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Table 2: Application of the Bubble-Check algorithm T a y 100011
V), 7 ()] _0.75) @8.+7) L) 52,+3) (18.4,+1) Cl57 a41 a33
0.3 (T1=0,a13) (T2 =28, a35) (L3 =52 asy) 184 o +.50 (@) @ (@}
G (3zigaay GeZbgussy pTSben 29 010001 | 110001 111001 101001 100001
(14.4,-7) 14.4 17.2 19.6 32.8

Results: Fig. 5 presents the simulation results obtained for ulparse
protograph-based NB-LDPC on GF(64) associated to a 64-Q#&M Big.
4 for frame sizes ofV = 192 symbols (1152 bits) anty = 384 (2304 bits)
with a code rate of 1/2 over the AWGN channel. The BP curveespond
to the Belief Propagation decoding, simulated on floatingtpaith 100
decoding iterations (see [11]). The EMS curves considerBkkS NB-
LDPC decoder described in [12] with,,, =12, 20 decoding iterations,
6-bit quantization? and the intrinsic LLR generation presented in this
Letter. A performance gap of about 0.4 dB is observed betvileerBP
and the EMS curves, which confirms the interest of our appraadoth
performance and low-complexity implementation aspects.

Conclusion: This Letter focusses on low-complexity intrinsic LLR
generation for high-order NB coded QAM designs. The oriliipeemains
in the use of the Bubble-Check algorithm for the computatbrthe
intrinsic message. The simulation results show the intefethis work in
terms of perfomance. The FPGA implementation of the NB-LOENIS
decoder and the Bubble-Check architecture design comesider[12] are
the proof of the implementation feasibility of both the QAMrdodulator
and decoder (Fig. 1).
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Fig. 4 Zoom on the 64-QAM constellation and the n.,, closest points to y for
the EMSintrinsic message generation
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