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Abstract :

We use POD and EPOD (extended POD) analysis to extract the main features of the flow over a thick flat plate
simulated with a LES. Our goal is to better understand the coupling between the velocity field and the surface
pressure field. We find that POD modes based on the full velocity and energy fields contain both flapping and
shedding frequencies. Pressure modes are found to be uniform in the spanwise direction and the most intense
variations take place at the mean reattachment point. Velocity modes educed from the pressure modes with EPOD
are seen to correspond to eddies shed by the recirculation bubble.

Résuḿe :

On consid̀ere l’écoulement au-dessus d’une plaque planeépaisse. Nous utilisons la simulation aux grandes
échelles et l’analyse POD/EPOD pour comprendre le couplageentre le champ de vitesse et le champ de pres-
sionà la paroi. Les modes POD extraits de la vitesse contiennent des fŕequences correspondant aux phénom̀enes
de flapping et de shedding. Les modes de pression sont uniformes dans la direction transverse et les variations
les plus intenses sont observées au point de réattachement. Les modes de vitesse construitsà partir des modes de
pression avec l’approche EPOD correspondentà des tourbillons associésà la bulle de recirculation.

Mots-clefs :
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1 Introduction

Aerodynamics of vehicles are characterized by the physics of massivelyseparated flows. Kiya and Sasaki
[1] showed that the flow in the separation zone is governed by two mechanisms: the shedding of large-
scale vortices and a low-frequency unsteadiness called ”flapping”. The connection between these two
mechanisms is still not clear. Another connection that needs to be elucidated isthe relationship between
the velocity dynamics and the pressure fluctuations. Understanding this coupling represents a challenge
for the control of acoustic disturbances. The present paper builds onthe results obtained by Tenaud et al.
[2] for the LES of the flow over a thick flat plate. We apply POD analysis andEPOD (extended POD)
analysis to their numerical data in order to determine the salient features of thepressure and velocity
field.

2 The numerical method

We consider the flow over a flat thick plate of thicknessH and lengthL. The total dimensions of the
plate in the simulation areLx, Lz = (25, 17)H. The portion of the domain used for POD analysis,
which excludes the downstream part of the platex > 20H, is represented in figure 1. The height
of the numerical domain is5H. The Reynolds number based on the constant velocity imposed at the
upstream boundary -located at a distance10H from the leading edge of the plate and the plate thickness
isR = 7500.

The equations of motion are those for a compressible flow. We consider air with a constant specific
heat ratioγ = 1.4. The Prandtl number is taken to bePr = 0.73. The equations are solved using a



Figure 1: Isosurface of zero streamwise velocity- the arrow indicates theflow direction.

LES approach. Results reported here were obtained with a dynamic viscosity model [3]. A high-order
coupled scheme in time and space was implemented in the parallel code CHORUS. More details can be
found in [2].

3 POD analysis

3.1 The POD technique

POD is a statistical technique [4] which extracts the most energetic motions of theflow. Any physical
quantityq(x, t) (which can be the velocity field, density, or any combination thereof) can bewritten as

q(x, t) = Σn≥1(λ
n)1/2an(t)φn

q
(x) (1)

where

• the spatial modeφn
q

is the n-th eigenvector of the eigenproblem

∫
< q(x, t)q(x′, t) > φn

q
(x′)dx′ = λnφn

q
(x) (2)

where< q(x, t)q(x′, t) > is the time-averaged spatial autocorrelation tensor of the quantityq. By
construction the eigenvectorsφ

q
constitute an orthonormal family.

• λn represents the energy of the n-th mode, withλ1 ≥ λ2 ≥ . . .

• the temporal coefficientan(t) represents the amplitude of the n-th mode and is also normalized to
be 1. By construction the coefficients are uncorrelated with each other.

If the autocorrelation tensor is constructed from N selected snapshots ofthe flow at instantstk, it can
be shown [5] that

φn
q
(x) = ΣN

k=1(λ
n)1/2an(tk)q(x, tk) (3)

This formulation constitutes the basis of the method of snapshots, which allows the numerical computa-
tion of the spatial modes.

POD analysis was applied to the full fieldq = (ρ, u, e) over the entire numerical domain as well
as to a restriction of the domain below the plate. The nondimensional variables used were the same as
the ones in the code (no renormalization or relative rescaling between the different physical quantities
was applied). Since the flow is nearly incompressible, the decomposition is essentially equivalent to
performing that of the velocity field, so that no rescaling is needed. In anycase, it has been shown in the



case of thermal convection [6] that rescaling had very little influence on POD results. We also performed
POD analysis of the surface pressure field on the bottom surface. In both cases the method of snapshots
was used with 320 fields with a time separation of 0.08 time units. The full flow was included in the
analysis and its time-average was found to be identical with the first POD mode.The POD energyλ1

associated with the mean flow is higher than the total fluctuating energy by a factor of 106.

3.2 Full-field POD

As shown in [2] a quasi-2D vortex can be distinguished in the recirculation bubble for the mean flow.
The height of the vortex is about0.5H, whereH is the height of the plate and its length is about2.5H -
the length of the bubble was about3.38H. The recirculation time associated with the vortex was found
to be about20 − 25H/U0 whereU0 is the free-stream velocity. Figure 2 a) shows the higher-order
eigenvaluesn ≥ 2 when the POD was applied to the full field (over the entire domain). No significant
differences were observed when the domain was restricted to the volume below the plate. The relatively
slow convergence of the spectrum illustrates the complexity of the flow.

The temporal coefficients of the spatial modes were computed and their Fourier transform is repre-
sented in figure 3. As can be expected higher-order modes are associated with higher frequencies. Figure
3 a) shows that the 50 first modes of the full field are characterized by lowfrequenciesfH/U0 ≤ 0.2.

Figure 3 b) indicates that four peaks can be clearly identified in the total spectrum - one at the
frequency off1H/U0 = 0.04 − 0.05, another at a frequency off2H/U0 = 0.12 , still another at the
frequency off3H/U0 = 0.24, and a distant peak at the frequency off4H/U0 = 1.28. The highest
frequency peak matches the Kelvin-Helmholtz frequency of the mixing layer,and is associated with
modes 68 and 69. Figure 4 confirms that this frequency corresponds to mixing layer modes (which is
particularly clear for mode 69).

We believe the two lowest frequencies to be associated with the recirculation bubble (the third fre-
quencyf3H/U0 = 0.24 is simply likely to be a harmonic off2H/U0 = 0.12). The lowest frequency
f1H/U0 = 0.04− 0.05 can be seen to correspond to the flapping frequency which is associatedwith the
growth and shrinkage of the bubble ([7]). If this frequency is renormalized with the recirculation length,
we find an adimensional frequency offLR/U0 = 0.12 which matches results in the literature ([1] ). We
note that this frequency corresponds to the circulation time scale associatedwith the main vortex inside
the recirculation bubble.

The other frequency does not match Kiya et al.’s results if we normalize it with our recirculation
length. However it matches their value if the frequency is rescaled with the thickness of the plate. It
is generally agreed that the vortex shedding process corresponds to aKarman instability [8] in which
the vortices interact with the wall, which creates by reflection a row of aligned vortices (not staggered,
unlike a classical vortex street) of opposite sign [9]. The frequency should therefore scale with the
vertical distance between the vortex and the wall, which depends on the bubble height, while the flapping
frequency is associated with the recirculation time scale within the bubble, and therefore depends on the
recirculation length.

All modesn ≤ 10 contain both the shedding and the flapping frequencies - it was not possible
to separate both contributions in any of the modes (which could be done usingFourier transform or
equivalently DMD decomposition). This coupling supports the idea of a singlephysical origin for the
two different frequencies observed. Although both flapping and shedding can be viewed as primarily
two-dimensional processes, the structure of the flow is strongly three-dimensional, as illustrated in figure
5 by a horizontal section of the most energetic fluctuating mode. A characteristic spanwise scale of
Ly/3 ∼ 1.3H can be identified beyond the reattachment point.
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Figure 2: a) POD spectrum of the full field b) POD spectrum of the wall pressure.
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Figure 3: The frequency is adimensionalized with the plate thickness a) Spectral density of the pressure
POD coefficientsanp . The arrow indicates the location of the Kelvin-Helmholtz frequency b) Spectral

density of the POD energyΣN+1
n=2 λ

n|ân(f)|2.
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Figure 4: Modes associated with the frequencyfH/U0 = 1.2 a) cross-sectiony = 0 of streamwise
velocityφn

u
for n=68 b) spectral density ofa68 c) cross-sectiony = 0 of streamwise velocityφn

u
for n=69

d) spectral density ofa69.
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Figure 5: Horizontal view of the second velocity POD mode atz = 0.4H.



3.3 Surface pressure POD

POD analysis was also applied to the surface pressure along the plate. Thepressure spectrum is shown
in figure 2 b). As could be expected, since the domain is limited to a plane and onlyone scalar is
considered, the convergence of the spectrum is faster. The first two modes are nearly equal, which
suggests the presence of a spatio-temporal symmetry. The spectral content of the POD pressure modes
can be seen to be very similar to that of the full field counterparts. Higher-order modes are associated
with higher frequencies, with a significant low-frequency contribution observed in the first 100 modes
of the field (figure 6a)). In the first POD pressure modes, two main frequencies could be identified
which correspond to the flapping and shedding frequencies observedfor the POD velocity modes, as is
shown in figure 6 b). For the first ten modes, a peak is present atfH/U0 = 0.05, and a second one
at fH/U0 = 0.13, with a significant content in the range[0.13, 0.17]. The Kelvin-Helmholtz frequency
does not appear in the pressure spectrum. Figure 7 shows the first four fluctuating POD pressure modes.
It is clear that the two most energetic fluctuating modes are mostly invariant in thespanwise direction,
as was argued by Peter Jordan (private communication). The idea that thewall pressure fluctuations
constitute the signature of vortices is supported by application of the extended POD. The extended POD
velocity modes based on the pressure were computed, using the technique first put forth by Boŕee [10].
If the n-th pressure modeΦn

p can be written as

Φn
p (x, y) =

∑
anp (t

m)p(x, y, tm) (4)

, wherep(x, y, tm) is the pressure field at the instanttm, the corresponding extended velocity mode can
be obtained from

Φn
u(p)(x, y, z) =

∑
anp (t

m)u(x, y, z, tm). (5)

Since the pressure is constant in the spanwise direction (at least for the highest two fluctuating
modes), it makes sense to look at the spanwise average of the extended velocity modes, which are rep-
resented in figure 8. The first two fluctuating modes consist of a strong vortex centered above the
reattachment point and convected outside the recirculation bubble. This is infull agreement with the
observations of Tung [11]. The next two modes consist of two same-signvortices located on either side
of the mean reattachment point at a distancex = 2H andx = 4.2H from the edge of the plate. A
counter-rotating vortex can be observed between these vortices.

The corresponding spanwise average of the POD velocity modes is represented for comparison in
figures 9 with the same scale. One vortex is observed for the first fluctuating mode atx = 8H from the
edge of the plate. The second mode contains a pair of unequal counter-rotating vortices with centers at
a distancex = 6H andx = 8H from the edge of the plate. Respectively three and two vortices can be
identified for fluctuating modes 3 and 4.

The vortical motions associated with the velocity POD modes are less intense thanthe ones associ-
ated with the pressure-educed structures.

4 Conclusion

POD analysis of the flow along a flat thick plate shows that the most energetic motions consist of large-
scale vortices shed behind the recirculation bubble. The spanwise extentof these vortices is of order
H and their separation is about2H, whereH is the plate thickness. The motions are characterized by
two frequenciesfH/U0 = 0.04 andfH/U0 = 0.12, which are associated with the flapping of the
recirculation bubble, and the shedding process. POD analysis of the surface pressure shows that the
pressure modes are quasi-invariant in the spanwise direction. The vortical motions associated with the
pressure modes are obtained by EPOD and are found to be most intense in the reattachment region.
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Figure 6: The frequency is adimensionalized with the plate thickness a) Spectral density of the pressure
POD coefficientsanp b) Spectral density of the POD energyΣN+1
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Figure 7: Pressure POD mode a)n = 2 b)n = 3 c)n = 4 d)n = 5.
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Figure 8: Pressure-educed spanwise-averaged velocity mode a)n = 2 b)n = 3 c)n = 4 d)n = 5.

a)
x

z

2 4 6 8 10
0

2

4

6

8

b)
x

z

2 4 6 8 10
0

2

4

6

8

c)
x

z

2 4 6 8 10
0

2

4

6

8

d)
x

z

2 4 6 8 10
0

2

4

6

8

Figure 9: Spanwise-averaged full POD velocity mode a)n = 2 b)n = 3 c)n = 4 d)n = 5
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