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ABSTRACT

This paper deals with foreground object segmentation in the context

of moving camera sequences. The method that we propose com-

putes a foreground object segmentation in a MAP-MRF framework

between foreground and background classes. We use region-based

models to model the foreground object and the background region

that surrounds the object. Moreover, the global background of the

sequence is also included in the classification process by using pixel-

wise color GMM. We compute the foreground segregation for each

one of the frames by using a Bayesian classification and a graph-

cut regularization between the classes, where the prior probability

maps for both, foreground and background, are included in the for-

mulation, thus using the cumulative knowledge of the object from

the segmentation obtained in the previous frames. The results pre-

sented in the paper show how the false positive and false negative

detections are reduced, meanwhile the robustness of the system is

improved thanks to the use of the prior probability maps in the clas-

sification process.

Index Terms— Object segmentation, SCGMM, moving camera

segmentation, spatial prior probability maps.

1. INTRODUCTION

Foreground segmentation in video sequences is a major challenge

in the image processing area that attracts great interest among the

scientist community, since it makes possible the detection of the ob-

jects that appear in the sequences under analysis, and allows us to

achieve a correct performance of high level applications which use

foreground segmentation as an initial step.

The main challenges to overcome when performing a fore-

ground object segmentation are, among others, camouflage situation

between the foreground object to segment and the background,

changes in the color regions due to the presence of shadow or high-

light effects or the existence of dynamic background in the scene to

segment. When we have to perform a foreground object segmen-

tation in a moving camera sequence, all these situations increase in

a special manner the complexity scenario, since there is no possi-

bility to perform an exact background learning at a pixel-wise level

(typical of the static camera setups [15, 13]), to apply well known

pixel-wise techniques for computing the background subtraction.

Moreover, moving camera scenarios present an additional complex-

ity due to the camera translation, rotation and zoom effects, which

added to the objects’ movements, can produce strong color and

shape modifications of the image regions.

The authors would like to thank the French Région Rhônes-Alpes for its
funding of this work in the context of the ReadPlay project.

1.1. Previous work

In the recent years, the researchers have followed different strategies

to achieve a correct segmentation of the foreground object regions.

Methods based on camera motion estimation compute camera mo-

tion and, after its compensation, they apply an algorithm defined for

fixed camera. [7] proposes a multi-layer homography to rectify the

frames and compute pixel-wise background subtraction.

Techniques based on the evolution of different features of the

image along the frames are being of great interest in the community

to achieve supervised and unsupervised video segmentations. [2]

estimates a dense optical flow, [16, 8] uses the agglomerative clus-

tering approach on supervoxels while [14] computes spatio-temporal

graph-cuts. A few new approaches rely on multiple per-frame figure-

ground segmentations: [9] utilizes motion saliency to detect the right

segments to track, then run successive graph cuts on clips propa-

gating from the most confident key segment. [11] proposes video

segmentation by simultaneously tracking multiple holistic figure-

ground segments, initialized from a pool of segment proposals gen-

erated from a figure-ground segmentation algorithm.

Finally, foreground segmentation proposals based on probabilis-

tic models achieve correct results when specific objects of the se-

quence have to be tracked, isolated from other regions of the video.

In these approaches, the objects to segment are characterized by us-

ing probabilistic models to classify the pixels belonging to the ob-

ject. [10] proposes a non parametric method to approximate, in

each frame, a pdf of the objects bitmap, while in [6] we used a

Bayesian classification framework between the foreground object

and the background that is surrounding it.

1.2. Proposed method

In this paper, we propose a foreground object segmentation system

for moving camera sequences that deals with the segmentation meth-

ods based on probabilistic models. The system explained in the

paper is based on the method that we proposed in [6]. We have

added strong improvements that make the segmentation more ro-

bust in front of object modifications, while avoiding the drift of the

probabilistic models along the sequence. As in [6], we use in this

method a Bayesian Maximum a Posteriori - Markov Random Field

(MAP-MRF) framework between the foreground (fg) and the back-

ground (bg) classes, where each one of the models rivals one another

to model the pixels of each one of the frames but, in this approach,

we differentiate between two types of background:

-Near Background: it is the background that is surrounding the ob-

ject inside a Region of Interest (ROI). It is necessary to model the

details of the close background to maintain the limits of the object.

-Global Background: it is based on the most relevant background
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Fig. 1. Work flow of the proposed system. Probabilistic models are represented in the images, where each one of the ellipses represents one Gaussian in the
spatial domain, and each one is colorized with the mean color that each one is modeling. Green rectangle in updating position shows the estimation of the
object’s position in frame t.

regions, according to color homogeneity, which are present in each

frame. Characterize this background is important in order to avoid

drifts of the foreground model when global background regions, not

modeled by the near background model, appear close to the object.

Moreover, in order to increase the robustness of the overall sys-

tem, we define the spatial prior probability maps for the foreground

and background classes, computed with the last segmentation results

obtained in the previous frames. In this way, we include the informa-

tion of the anterior detections in each classification step, thus avoid-

ing possible drifts of the model in the spatial domain.

Figure 1 shows the work flow of the system. As we can observe,

an input mask of the object that we want to segment is needed to

initialize the foreground and the near background models. Next, for

each frame of the sequence, three main steps are applied:

The first step is devoted to update the global background model

with the biggest color regions of the background, and to displace the

foreground and near background models to the new spatial position

of the object in order to improve the spatial modeling before the

classification. To this end, we localize the position of the t − 1
foreground segmentation in t.
In the second step, the classification among foreground and back-

ground classes is performed. The Bayesian probability between

foreground, near background and global background is computed,

for each one of the pixels, by taking into account the spatial prior

probability maps. The resultant classification is regularized with the

neighborhood information using MRF framework.

Finally, the resultant foreground object mask is used in the third step

to update the foreground and near background models, as well as to

update the prior probability maps.

The details of these processes will be explained in the following

sections. The remainder of the paper is organized as follows. Section

2 describes the probabilistic models proposed for the foreground,

near background and global background classes, and the classifica-

tion process. Section 3 explains the spatial prior probability maps

computed with the previous resultant masks. Finally, some results

and conclusions are presented in Section 4 and Section 5 respec-

tively.

2. PROBABILISTIC MODELS AND CLASSIFICATION

Since foreground and near background classes have to model spe-

cific color-spatial regions of the frames, which present spatial conti-

nuity along the sequence, analogously to [6] we use region-based

spatial-color Gaussian mixture models (SCGMM) to probabilisti-

cally model the foreground and the near background regions. On

contrast, since we want the global background to be present in each

one of the pixels of the image, we use pixel-wise GMM to charac-

terize the color regions that form this background class. The color

domain used in the formulation is denoted as c = (r, g, b), while

the spatial domain is denoted as s = (x, y). The combination of

both color and space domains are defined as the joint domain-range

representation z = (r, g, b, x, y).

2.1. Foreground and Near Background models

Since in this kind of sequences the foreground and background are

constantly moving and changing, an accurate model at a pixel level

is difficult to build and update. For this reason, we use a region based

Spatial Color Gaussian Mixture Model (SCGMM), as in [17, 6], be-

cause foreground objects and background regions are better charac-

terized by color and position. Thus, the foreground and background

pixels are represented in a five dimensional space, and the likelihood

of pixel i is then,

P (zi|l) =

Kl∑

k=1

ωkGl(zi, µk,Σk)

=

Kl∑

k=1

ωk
1

(2π)5/2|Σk|1/2
e−

1

2
(zi−µk)

TΣ−1

k
(zi−µk)

(1)

where zi ∈ R
5 is the i-th pixel value (i = 1, ..., N ), l stands for each

class: l ∈ {fg, near bg}, ωk is the mixture coefficient, µk ∈ R
5 and

Σk ∈ R
5×5 are, respectively, the mean and covariance matrix of the

k-th Gaussian distribution.

2.1.1. Initialization

The initialization and the updating processes of these models are

done according to [6]. For the initialization, a first input mask of

the object, manually defined, or obtained from a previous detection

algorithm, is used to determine the number of Gaussians that will

compound each one of the models. Hence, the histogram of the

foreground and near background regions is analyzed to determine

the color regions that appear inside the Region of Interest. Once

the number of Gaussians are defined, the initialization of parame-

ter estimation can be reached via Bayes’ development, with the EM

algorithm [4].



2.1.2. Updating

As we can observe in the work-flow of the system (Figure 1), there

exist two updates for these region-based models:

Spatial updating before the classification. With the objective

to improve the characterization of the regions before the classifica-

tion step, the t− 1 foreground and background region-based models

are spatially displaced to the estimated position of the object in the

frame t. Hence, we estimate the new position of the object by com-

puting the mean square color distance between the pixels of the t−1
mask in the new frame t. We perform the analysis inside the region

of interest, which allows us to make an exhaustive search without

increasing significantly the computation time. Since the process is

similar to a block matching algorithm, any optimization strategy can

be utilized to speed up the process.

Spatial and color updating after the classification step. Analo-

gously to [6], a complete updating process is applied by using the

segmentation mask obtained in the classification. This foreground

mask is used in order to adapt the foreground model to the new re-

gions detected. The complementary mask is used to update the near

background regions.

2.2. Global Background model

Moving camera sequences make not possible a precise background

learning of the scene since it is changing along the frames, and oc-

clusion situations are constantly present. These drawbacks produce

that new background regions appear suddenly, close to the object

to segment, before the near background could model them. These

situations can lead to false positive detections that can be rapidly

assumed to the foreground model, thus originating the drift of the

models.

With the objective to reduce the false positive detections and the

consequent drift of the models that can appear in these situations,

we improve the probabilistic modeling of the background by creat-

ing the global background model. We propose to include the most

relevant color regions of each frame in the background class, by cre-

ating one color Gaussian for each one of the Q detected regions, thus

creating a GMM in the color c = (r, g, b) domain. This GMM is ap-

plied in each one of the pixels of the image. Hence, the likelihood of

the model for the pixel i is:

P (ci|global bg) =

Q∑

q=1

ωqGglobal bg(ci, µc,q,i,Σc,q,i), (2)

where ci ∈ R
3 is the pixel’s color value, ωq is the weight assigned

to the region q. For simplicity, we impose the same weight to

each Gaussian. µc,q,i ∈ R
3 is the color mean, of the region q and

Σc,q,i ∈ R
3×3 is its covariance matrix. Gglobal bg(ci, µc,q,i,Σc,q,i)

is the Gaussian likelihood in the c = (r, g, b) domain.

Since we want this color model to be comparable with the five

dimensional domain, we extend this model to a five dimensional do-

main by including the spatial component [5].

P (zi|global bg) =

N∑

k=1

1

N

Q∑

q=1

ωqGglobal bg(zi, µz,k,q,Σz,k,q), (3)

where:

Gglobal bg(zi, µz,k,q,Σz,k,q) = δ(si − µs,k,q)P (ci|global bg), (4)

µz,k,q ∈ R
5 is the Gaussian mean for the k-th spatial Gaussian and

the q-th color Gaussian, Σz,k ∈ R
5×5 is the covariance matrix, si ∈

Fig. 2. Spatial prior probability maps for Foreground and Background
classes. The brighter the higher the prior probability value. Background
prior map is computed with the complementary resultant masks.

R
2 is the spatial pixel’s coordinate and µs,k,q ∈ R

2 is the spatial

mean of the Gaussian in the position k and modeling the color q.

Hence, we use N color GMM, (one for each pixel of the image)

each one centered (in space) at each pixel position (µs,k) with a zero

spatial variance.

The model is updated at each frame with the segmentation of

the color regions. This color segmentation can be computed with

classical segmentation methods like mean-shift [3] or pyramid seg-

mentation [12] or by analyzing the histogram of the background re-

gions. The number of Gaussians is defined according to the number

of regions that present a bigger size than a certain threshold. In our

experiments 1/3 of the overall image area is enough to model the

most relevant regions.

2.3. Bayesian Foreground/Background classification

The pixel classification is done at frame t, using a Maximum A Pos-

teriori (MAP) decision. The priors are obtained according to the

spatial prior probability maps that will be explained in next Section

3. Hence, a pixel i is assigned to the class l′ ∈ {fg, near bg, global

bg} that maximizes P (l′i|zi) ∝ P (zi|l
′

i)P (l′i).
Since we can assume that near background and global back-

ground pixels will be treated in the same way for the final segmenta-

tion mask, we combine them into the background ones according to

the following criterion:

P (bg|zi) = max(P (near bg|zi), P (global bg|zi)) (5)

Analogously to [5, 17], we consider a MRF framework in order to

take into account neighborhood information that can be solved using

standard graph-cut algorithm [1].

3. SPATIAL PRIOR PROBABILITY MAPS

In order to preserve the spatial shape of the object along the se-

quence, we propose to use the cumulative knowledge of the object

obtained from the J previous masks. Since in a normal video se-

quence there is a high degree of overlapping between consecutive

frames, and the objects to segment present a moderate degree of

change, we can take into account the history of the object segmen-

tation into the classification process. To this end, we use a LIFO

queue with the last J segmentation masks, and normalize the spatial

domain of each mask by using the centroid position in each frame

obtained in Section 2.1.2, thus allowing a correct overlapping of the

J masks. As we can observe in Figure 2, the spatial prior probabil-

ity maps present a value between (0, 1], for each one of the pixels,

according to the occupancy that each one of the J masks presents.



Fig. 3. Qualitative results. Frames belong to SegTrackv2 data base.

The spatial prior probability Pi(l) is formulated as:

Pi(l) =
1

J

J∑

j=1

Ml,i(t− j), (6)

where Pi(l) is the prior probability for pixel, l ∈ {fg, bg}, Ml,i(t−
j) ∈ {1, 0} is the i-th binary value for the mask obtained for class

l, in frame t − j and J is the total number of masks that we use for

compounding the Prior map. In our experiments, J = 10 frames

yields correct results for preserving the shape information of the ob-

ject. Also, we avoid the zero prior value by adding a low bound of

0.1.
4. RESULTS

We have evaluated our proposal by analyzing the SegTrackv2

database published in [11], and some well known sequences com-

monly used in the state of the art, which present strong difficulties

to achieve a correct foreground object segmentation due to the

presence of foreground-background similarity, slow motion effects,

occlusions or changes in the object.

The qualitative evaluation is done comparing the segmentation

results with our previous proposal [6] in some representative frames

of the sequences: worm, drift-1 and soldier. These segmentation

results are displayed in Figure 3. As we can observe in the third col-

umn, the foreground segmentation that we propose achieves a correct

segmentation results by improving the stability of the probabilistic

models and reducing the drift of the models. Hence, we avoid the

false positive detections that appear by using [6] (Second column).

Quantitative results obtained by analyzing the database Seg-

Trackv2 ([11]) are displayed in table 1. We compare our results

with the segmentation proposals presented in [6, 9, 11], which have

proved to achieve good results when segmenting complex sequences.

The metric used for the comparison is the intersection over union,

computed as: TP
TP+FN+FP

, where TP are the True positive detections,

FN are the false negatives and FP are the false positive detections.

As we can see, the method proposed in this paper (Bayes p.maps

column) improves in general the previous approach presented in

[6]. It achieves the best scores in sequences where rigid objects or

Table 1. Overall SegTrackv2 Data Base Comparison Results

metric. In bold type the results corresponding to the best intersec-

tion over union scores.
Sequence Segmentation Technique

SPT+CSI Key seg. Bayes Bayes p.maps
[11] [9] [6]

Girl 89.2 87.7 87.82 87.86

Birdfall 62.5 49.0 29.13 59.60

Cheetah-1 37.3 44.5 23.31 30.12

Cheetah-2 40.9 11.7 16.47 20.51

Parachute 93.4 96.3 94.03 93.62

Monkeydog-1 71.3 74.3 75.60 80.17
Monkeydog-2 18.9 4.9 48.02 48.29
Penguin-1 51.5 12.6 83.18 95.41
Penguin-2 76.5 11.3 80.35 89.35
Penguin-3 75.2 11.3 79.43 81.07
Penguin-4 57.8 7.7 73.80 80.62
Penguin-5 66.7 4.2 72.75 76.34
Penguin-6 50.2 8.5 82.20 77.97

Driftcar-1 74.8 63.7 47.14 85.41
Driftcar-2 60.2 30.1 33.60 72.39
Hummingbird-1 54.4 46.3 38.60 26.22

Hummingbird-2 72.3 74.0 62.42 59.20

Frog 72.3 0 73.79 74.54
Worm 82.8 84.4 0.28 53.34

Soldier 83.8 66.6 62.36 76.71

Monkey 84.8 79.0 70.67 75.06

BirdParadise 94.0 92.2 92.52 95.35
BMX-1 85.4 87.4 88.64 86.60

objects with small modifications have to be segmented, which is

the case of drift or penguin sequences. Also, our segmentation can

present high scores, when there are not strong camouflage situations

between the object and the background, as occurs in monkeydog-1

or bird of paradise sequences. In contrast, when there are strong

camouflage between foreground and background, the segmentation

can present a big number of false negative detections, which occurs

in hummingbird-1 and hummingbird-2. The results of the segmen-

tation methods proposed in [9, 11], show that the unsupervised

segmentation can achieve correct segmentation results when there is

not too much similarity between the object and background regions,

obtaining a better refinement of the regions. The binary file of our

software, as well as more qualitative and quantitative results will be

accessible in our web pages 1 2. The computational cost of our sys-

tem is 0.5 frames/second analyzing a standard sequence and using

an Intel i5 2.3GHz processor and 6 GB RAM. Since the proposed

system performs several time consuming computations at pixel-wise

level, the parallelization of the code using GPU parallel processing

will speed up the overall process.

5. CONCLUSIONS

We have proposed in this paper a novel foreground segmentation

system for moving camera sequences, based on the use of the region-

based spatial-color GMM to model the foreground object to segment

and the near background regions that surrounds the object. More-

over, a pixel-wise GMM in the color domain is utilized to model the

global background of the scene. The system is proposed in a MAP-

MRF framework between the three classes, where the prior proba-

bility for each one of the classes is computed by taking into account

the J previous segmentation masks, thus computing a spatial prior

probability maps for the foreground and the background. The re-

sults presented in this paper show that the proposed system achieves

a correct object segmentation reducing the false positives, and false

negatives detections also in those complicated scenes where camera

motion, object changes and occlusions are present.

1http://www.jaimegallego.com.es/icip2014_

bayesian_prior
2http://www.gipsa-lab.grenoble-inp.fr/~pascal.

bertolino/projects/readplay1/
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