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Abstract

Given a deterministic matrix M = (mij), we want to cluster the row i and the column j
before to predict mij , where the values of the matrix are observed sequentially. The proposed
algorithms are PAC-Bayesian procedures with new sparsity priors. Sparsity regret bounds
are stated without any assumption on the matrix. These results are based on [13] where
online clustering algorithms are suggested. Eventually, we also state minimax lower bounds
for these problems, using a classical probabilistic reduction scheme. It shows the minimax
optimality of the proposed algorithms in a worst case scenario.

1 Introduction

Bi-clustering or co-clustering is a popular method to analysis data matrices and build recom-
mender systems. In this problem, we mainly observe a random matrix, where rows correspond
to a population and columns to variables (or products). This matrix is usually sparse, i.e.
with many hidden entries (called ratings). The goal is to reconstruct the matrix by clustering
simultaneously the rows and colums of the matrix. This scenario has been applied to many
real-world problems such as text mining (see [19]), gene expression ([6]), social networks (see
[9]) or collaborative filtering (see [17]). In [18], generalization bounds in terms of KL divergence
are proposed for this problem. Assuming the existence of a probabilistic distribution p(x1, x2, y)
over the triplet of rows, colums and rating, a discriminative predictor q(y|x1, x2) is constructed
via a PAC-Bayesian approach. The matrix is supposed to have i.i.d. entries and the number of
clusters is known in advance. In this paper, we want to investigate a more challenging game in
a worst case scenario without the knownledge of the number of clusters.

To tackle this problem, we suggest a high dimensional PAC-Bayesian approach with spar-
sity priors. Sparsity priors have been introduced in Bayesian estimation by several authors
([11],[15],[16]). The principle is very often to employ heavy-tailed distributions, such as multi-
variate Laplace, quasi-Cauchy or Pareto priors. In a PAC-Bayesian framework, [7] introduced
sparsity priors in mirror averaging procedure to promote sparsity oracle inequalities. More re-
cently, sparsity priors have been used in online learning (see [8], [13]). In [13], we promote
sequential clustering algorithms with sparsity priors in the problem of online clustering of an
individual sequence (xt)

T
t=1 ∈ RdT . On each day t, the forecaster must predict the next instance

xt ∈ Rd with at most p ≥ 1 possible ”proposals” or ”strategies”. On the morning of day t, he
has access to the inputs x1, . . . , xt−1 of the previous days. Based on these instances, he must
propose a codebook of p ≥ 1 strategies ĉt = (ĉt,1, . . . , ĉt,p) ∈ Rdp. At the end of the day, he
receives xt and incurs a loss - or distortion - `(ĉt, xt), where:

`(ĉt, xt) = min
j=1,...,p

|ĉt,j − xt|22,

and | · |2 stands for the Euclidean norm in Rd. The goal of the forecaster is to control the
cumulative distortion

∑T
t=1 `(ĉt, xt), with |ĉt|0 as small as possible, where |ĉt|0 corresponds to

the number of non-zero strategies at time t, i.e.:

|c|0 := card{j = 1, . . . , p : cj 6= (0, . . . , 0)> ∈ Rd}, ∀c = (c1, . . . , cp) ∈ Rdp. (1.1)
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In such a framework, we recommend to reach sparsity regret bounds as in [13] according to:

T∑
t=1

`(ĉt, xt) ≤ inf
c∈Rdp

{
T∑
t=1

`(c, xt) + λ|c|0

}
+ rλ(T ), (1.2)

where | · |0 is defined in (1.1), rλ(T ) is a residual term and λ > 0 is a temperature parameter.
In other words, we control the regret of our sequential procedure to have not reached the
compromise between fitting the data and compress the information (i.e. the infimum which
appears in the right hand side). With a suitable calibration of λ, it gives the following result:

Theorem 1 ([13]) For any deterministic sequence (xt)
T
t=1 ∈ RdT , any R > 0, there exists a

sequential algorithm such that:

T∑
t=1

E(p̂1...,p̂t)`(ĉt, xt) ≤ inf
c∈Bp(R)

{
T∑
t=1

`(c, xt) + |c|0
√
T (3 + d) log

(
1 +

√
T
∑p

j=1 |cj |2√
6|c|0

)}
+ C
√
T ,

where for any t = 1, . . . , T , ĉt is a randomized codebook with law p̂t.

This result proposes a sparsity regret bound with rates
√
T log T . If we suppose the existence

of a minimizer c? of the RHS of Theorem 1 such that |c?|0 = s for some sparsity index s ∈ N∗,
we have, for T large enough:

T∑
t=1

E`(ĉt, xt)−
T∑
t=1

`(c?, xt) ≤ const.× s
√
T log T.

In this paper, we are mainly interested in (1) an online bi-clustering scenario and (2) minimax
results for both Theorem 1 and the bi-clustering scenario. Let us consider an individual sequence
(xt, yt), t = 1, . . . , T where T is the known horizon whereas for any t = 1, . . . , T :

• the input variable xt = (xt,1, . . . , xt,d) ∈ X1 × . . .×Xd =: X ,

• the output yt ∈ Y ⊆ [0,M ]1.

A seminal example is the construction of recommender systems. In this case, d = 2 and xt =
(xt,1, xt,2) corresponds to a couple customer×movie whereas yt is the associated rating (such as
{?, ??, ???} for instance). Note also that our analysis is not limited to the bi-clustering problem
where d = 2 above, since we can consider high dimensional d > 2 tensors as well.

Giving the individual sequence (xt, yt), t = 1, . . . , T , we want to construct a sequential
algorithm as follows. At each time t, an input xt is observed and we build a prediction ŷt. Then,
yt is given and we pay (yt − ŷt)2. This particular loss enjoys the useful property to be λ-exp-
concave, which means that ŷ 7→ e−λ(ŷ,y)2 is concave. This property allows to reach fast regret
bounds in the deterministic setting (see for instance [5]). The construction of the prediction is
based on a mixture of expert’s advices constructed thanks to online clustering. More precisely,
the algorithm described in Section 2 gives a prediction of the following form:

ŷt = E~c∼p̂tg~c(xt). (1.3)

In (1.3), the function g~c is constructed thanks to a set of d-tensor codebook c = (c1, . . . , cd) ∈∏d
j=1X

pj
j . This d-tensor codebook assigns to each component xj of x ∈ X the nearest center of

cj . The associated d-tensor Voronöı cell is denoted as V~c(x) and corresponds to the product space

1In the sequel, two cases are considered: Y = [0,M ] (online regression) and Y = {1, . . . ,M} (online classifica-
tion).
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of each Voronöı cell Vcj (xj) = {yj ∈ Xj : arg minij=1,...,pj |yj − cj,ij |2 = arg minij=1,...,pj |xj −
cj,ij |2}. In what follows (see for instance Theorem 2), we consider two different functions ~c 7→
g~c(·). The first one consists in computing the mean value of the sequence of past outputs y1,
. . ., yt−1 in cell V~c(xt). In this case, g~c(·) is written as:

gmean
~c (xt) =

∑t−1
u=1 yu1xu∈V~c(xt)

card {{x1, . . . , xt−1} ∩ V~c(xt)}
, (1.4)

where in (1.4), we can take g~c(x1) = M/2 without loss of generality. Indeed, in (1.4) (and in
(1.5) also), g~c(·) depends on the past observations (x1, y1), . . . , (xt−1, yt−1) and then on time t.
We omit this dependence for simplicity. Note that when Y = {0, . . . ,M}, we can also use the
majority vote for g~c(·), where the majority vote at time t is taken in the Voronöı cell V~c(xt) as
follows:

gvote
~c (xt) = arg max

k∈Y
card{u = 1, . . . , t− 1 : yu = k and xu ∈ V~c(xt)}. (1.5)

Equipped with these base forecasters, we want to promote in (1.3) a sparse representation.
Here, the sparsity is associated with the set of d-tensor codebooks. Given some vector of integers
m = (m1, . . . ,mp) ∈ Np, we restrict the study to the Euclidean space by considering Xj = Rmj

for any j = 1, . . . , p. Then, X = R
∑d

j=1mjpj and ~c = (c1, . . . , cd) ∈
∏d
j=1 Rmjpj . As in [13],

we wish that yt ≈ g~c?(xt), where ~c? = (c?1, . . . , c
?
d) is such that c?j has a small `0-norm for

any j = 1, . . . , d where |c?j |0 is defined in (1.1). Consequently, we are looking for d distincts
group-sparsity codebooks c1, . . . , cd. For this purpose, we will use in our algorithm a product of
d group-sparsity priors introduced in [13] in online clustering. This prior is defined in Lemma 1
below.

In a classical statistical learning context, [18] considers a random generator P with unknown
probability distribution on the set X × Y and suggest the following discriminative predictors:

h(y|x1, . . . , xd) =
∑
i1,...,id

h(y|i1, . . . , id)Πd
j=1h(ij |xj).

In this stochastic setting, the hidden variables (i1, . . . , id) represent the clustering of the input
X = (X1, . . . , Xd). Using a PAC-Bayesian analysis and bounds as in [14], generalization errors
in terms of Kullback divergence are proposed. The randomized strategy is based on a density
estimation of the law P .

In this paper, the framework is essentially different since we propose to use PAC-Bayesian
tools inspired from [13] to get sparsity regret bounds of the following form:

T∑
t=1

`(yt, ŷt) ≤ inf
~c∈Πd

j=1R
mjpj

{
T∑
t=1

(yt − g~c(xt))
2 + pen0(~c)

}
, (1.6)

where pen0(~c) is a penalty function which is proportional to the sum of the `0-norm of the
codebooks c1, . . . , cd. The infimum in the RHS of (1.6) could be seen as a compromise between
fitting the data and a sparse representation, where the sparsity is related with the number of
clusters in the product space X .

As an example, we can consider recommender systems where we want to predict the value
of the rating of a new (customer×movie) couple. In this case, representation g~c in (1.4) or (1.5)
with a sparse ~c in terms of `0-norm (1.1) means that we can propose a simple representation of
ratings with a block matrix with a few number of blocks. In this case, it is well-motivated to
perform online clustering before predicting the rating.

The rest of the paper is organized as follows. In Section 2, we give sparsity regret bounds
for the problem of bi-clustering, reached by a sequential procedure with sparsity priors. Section
3 explores minimax optimality in online clustering and online bi-clustering. Section 4 concludes
the paper whereas Section 5-6 are dedicated to the proofs of the main results.
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2 General algorithm and sparsity regret bound

Before to describe the algorithm, let us introduce some notations. We denote by C := Πd
j=1Rmjpj

the space of d-tensor codebooks, whereas a decision function at time t is denoted as g~c(·) (see
(1.4) or (1.5)). We introduce a prior π ∈ P(C), where P(C) is the set of probability measure
on C, and a temperature parameter λ > 0. We can now describe the general algorithm and its
associated PAC-Bayesian inequality.

2.1 The algorithm of bi-clustering

The principle of the algorithm is to predict yt according to a mixture of decision functions g~c,
where the mixture is updated by giving the best prediction of yt at each iteration. At the
beginning of the game, p̂1 := π. We observe x1 and predict according to ŷ1 := Ep̂1g~c(x1),
where g~c(x1) is defined above. Then, learning proceeds as the following sequence of trials
t = 1, . . . , T − 1:

• Get yt and compute:

p̂t+1(d~c) =
e−λ

∑t
u=1(yu−g~c(xu))2

Wt
dπ(~c), (2.1)

where Wt := Eπe−λ
∑t

u=1(yu−g~c(xu))2 is the normalizing constant.

• Get xt+1 and predict ŷt+1 := E~c∼p̂t+1
g~c(xt+1).

Then, we have constructed a sequence of prediction (ŷt)t=1,...,T which satisfies the following
PAC-Bayesian bound.

Proposition 1 For any deterministic sequence (xt, yt)
T
t=1, for any p ∈ Nd, any λ ≤ 1/2M2 and

any prior π ∈ P(C), the previous algorithm satisfies:

T∑
t=1

(yt − ŷt)2 ≤ inf
ρ∈P(C)

{
E~c∼ρ

T∑
t=1

(yt − g~c(xt))2 +
K(ρ, π)

λ

}
, (2.2)

where K(ρ, π) denotes the Kullback-Leibler divergence between ρ and the prior π and g~c(·) sat-
isfies (1.4) or (1.5).

The bound of Proposition 1 gives a control of the cumulative loss of the sequential procedure
described above for any choice of prior π. It allows us in the sequel to choose a particular
sparsity prior in order to state a sparsity regret bound of the form (1.6).

2.2 Sparsity regret bounds

The main motivation to introduce our prior is to promote sparsity in the following sense. In

g~c(·), we want a codebook ~c ∈ R
∑d

j=1mjpj where ~c = (c1, . . . , cd) is such that |cj |0 is small for
any j = 1, . . . , d, where:

|cj |0 = card{ij = 1, . . . , pj : cj,ij = (0, . . . , 0) ∈ Rmj}.

To deal with this issue, we propose a product of d group-sparsity priors introduced as follows:

dπS,d(~c) :=

d∏
j=1

pj∏
ij=1

aτ
(

1 +
|cj,ij |22

6τ2

)− 3+mj
2

 d~c, (2.3)
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for some constant aτ > 0. This prior consists of a product of d products of pj multivariate
Student’s distribution

√
2τTmj (3), where τ > 0 is a scaling parameter and Tmj (3) is the mj-

multivariate Student with three degrees of freedom. It can be viewed as a generalization of the
group-sparsity prior defined in [13] where d = 1. Consequently, we use the same multivariate
Student’s distribution presented in [12], defined as the ratio between a gaussian vector and the
square root of an independent χ2 distribution with 3 degrees of freedom.

It is important to stress that in (2.3), we don’t need to threshold the prior at a given
radius R > 0 such as in [13]. This is due to the presence of the square loss with bounded
outputs y ∈ Y ⊆ [0,M ]. A straightforward application of Lemma 1 in [13] to the bi-clustering
framework gives the following lemma:

Lemma 1 Let p ∈ Nd, τ > 0. Consider the prior πS,d defined in (2.3). Let ~c = (c1, . . . , cd)) ∈
R
∑d

j=1mjpj . Then, if we denote by p0,d the translated version of πS,d with mean ~c, we have:

K(p0,d, πS,d) ≤
d∑
j=1

(3 +mj)

pj∑
ij=1

log

(
1 +
|cj,ij |2√

6τ

)
≤

d∑
j=1

{
(3 +mj)|cj |0 log

(
1 +

∑pj
ij=1 |cj,ij |2√

6τ |cj |0

)}
.

The first result is a direct consequence of Proposition 1 and the introduction of the sparsity
prior (2.3).

Theorem 2 For any deterministic sequence (xt, yt)
T
t=1, consider prior πS,d defined in (2.3) with

τ = δ{
√

24Mp+T}−1 for some δ > 0, λ = 1/2M2 and functions g~c(·) satisfy (1.4) or (1.5).
Then if T is great enough, we have:

T∑
t=1

(yt − ŷt)2 ≤ inf
~c∈C


T∑
t=1

(yt − g~c(xt))2 + C
d∑
j=1

(3 +mj)|cj |0 log T

 ,

where C > 0 is a constant independent of T .

This result gives a sparsity regret bound where the penalty term is proportional to the sum of
the `0-norm of the set of codebooks ~c = (c1, . . . , cd). The algorithm performs as well as the best
compromise between fitting the data and complexity. It is important to highlight that the RHS
does not depend on the sequence (p1, . . . , pd). Then, as in [13], we can consider large values of
pj and perform model selection clustering to learn the number of clusters.

Unfortunately, this result is essentially asymptotic since it holds for large values of T . This
is due to the control of the deviation of the random variable g~c′(xt) to g~c(xt) for any t = 1, . . . , T
where c′ ∼ p0,d with p0,d defined in Lemma 1. This problem is specific to the context of bi-
clustering where the application ~c 7→ g~c(x) defined in (1.4) or (1.5) is not continuous.

This algorithm in not adaptive since it depends on unknown quantities such as time horizon
T . Adaptive choice of τ > 0 could be performed as in [13]. We can also stress that as in [8],
we can avoid the boundedness assumption Y ⊆ [0,M ]. In this case, the choice of λ > 0 in the
algorithm will depend on the sequence and an adaptive choice could be investigated. We omit
these considerations for concision here.

Proof. Let ~c ∈ R
∑d

j=1mjpj . Let ρ = p0,d defined in Lemma 1. Applying Proposition 1 with
ρ and λ ≤ 1/2M2 leads to:

T∑
t=1

(yt − ŷt)2 ≤ E~c′∼p0
T∑
t=1

(yt − g~c′(xt))2 +
K(p0,d, πS,d)

λ
. (2.4)
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To control the first term in the RHS of (2.4), we use the following decomposition:

T∑
t=1

(yt−g~c′(xt))2 =
T∑
t=1

(yt−g~c(xt))
2 +

T∑
t=1

(g~c(xt)−g~c′(xt))2 +2
T∑
t=1

(yt−g~c(xt))(g~c(xt)−g~c′(xt)).

At this stage, it is important to note that for any x ∈ X , we have by construction of g~c:

|g~c(xt)− g~c′(xt)| ≤M1∃xu∈{x1,...,xt}:f~c(xu)6=f~c′ (xu), (2.5)

where f~c :
∏

Rmj 7→
∏
{1, . . . , pj} is the nearest neighbor quantizer associated with the d-

tensor codebook ~c. Then, integrating the previous inequality, we have to control, for any v ∈
{x1, . . . , xt}, the probability P(f~c(v) 6= f~c′(v)). This is done thanks to Lemma 2-3 in Section 6
for a particular choice of δ > 0. We lead to:

T∑
t=1

(yt − ŷt)2 ≤
T∑
t=1

(yt − g~c(xt))
2 +
K(p0, πS)

λ

+ 24M

d∑
j=1

|cj |0(|cj |0 − 1)
mjτ

2

ε2δ2
T (T + 1)

12M

d∑
j=1

|cj |0(|cj |0 − 1)
mjτ

2 log T

δ2
+ 1

 .

The choice of τ, δ > 0 in Theorem 2 concludes the proof.

Theorem 2 holds for a family {g~c, ~c ∈ C} satisfying (1.4) or (1.5). An inspection of the
proof shows that a sufficient condition for the family {g~c, ~c ∈ C} is (2.5). Then, next corollary
extends the previous regret bound to a richer class of base forecasters defined as:

{gk
~c , ~c ∈ C, k ∈ {1, . . . , N}},

where for any value of k = 1, . . . , N , (2.5) holds for gk
~c . Functions gk

~c includes the previous cases
(1.4) and (1.5) but any other labelizer g~c constructed thanks to the set of past observations in
the cell associated with ~c could be considered (such as the median for instance). Interestingly,
equipped with such a family of N labelizers, we can add to the learning process the choice of
k = 1, . . . , N by considering the following prior in the algorithm described above:

πS,d,Nd(~c, k) =

d∏
j=1

pj∏
ij=1

aτ
(

1 +
|cj,ij |22

6τ2

)− 3+mj
2

 d~c× 1

N

N∑
k=1

δkdk. (2.6)

It leads to a sparsity regret bound with an extra logN term due to the number of base labelizers:

Corollary 1 For any deterministic sequence (xt, yt)
T
t=1, consider algorithm of Section 2 using

prior πS,d,N defined in (2.3) with τ = δ{
√

24Mp+T}−1 for some δ > 0, λ = 1/2M2 . Then:

T∑
t=1

(yt − ŷt)2 ≤ inf
(~c,k)∈C×{1,...,N}


T∑
t=1

(yt − gk
~c(xt))

2 + C

d∑
j=1

(3 +mj)|cj |0 log T

+ 2M2 logN.

This result improves Corollary 2 since the infimum is the RHS could involves different indexes
k. The prize to pay is an extra M2 logN term due to the introduction of the parameter k in the
algorithm. For instance, consider the case Y = [0,M ]. If N = 2 in Corollary 1 and the family
{gk
~c , ~c ∈ C, k ∈ {1, 2}}, is made of forecasters (1.4) and a median estimator, the algorithm

performs as well as the best strategy between the mean and the median.
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3 Minimax regret

In this contribution, we debate several sparsity regret bounds in online (bi-)clustering. These
bounds are stated in the worst case scenario and have shown different behaviour with respect
to time horizon T . In online clustering, sparsity regret bounds have a residual term of order√
T log T (see Theorem 1) whereas in bi-clustering, we exhibit better rates in log T . These results

are not surprising since many online learning problems give rise to similar bounds, depending
on the properties of the loss functions. However, in the setting of online clustering, it is natural
to ask if better algorithms exist, i.e. if lower regret could be proved for this problem.

In the context of prediction with expert advices, many authors have investigated the minimax
value of the game. Given a sequence (yt)

T
t=1, and associated experts advices pt := (pt,1, . . . , pt,N ),

[4] have focused on the absolute loss and proved a minimax value of order O(
√
T logN). In [10],

a unified treatment of the problem is suggested with a general class of loss functions. In this
context of prediction with a finite - and static - set of experts, the minimax regret is given by:

VT (N) := inf
(ŷt)

sup
(p1,...,pT )

sup
(yt)

{
T∑
t=1

`(ŷt, yt)− min
k=1,...,N

T∑
t=1

`(pt,k, yt)

}
,

where ` is a loss function. Asymptotic behaviours for VT (N) when T → ∞ have been stated
from logN to

√
T logN depending on particular assumptions over the loss function, such as

differentiability. Many examples are provided in [10], including the square loss, the logarithmic
loss or the absolute loss.

Very often, the proofs of the lower bounds in the deterministic setting use probabilistic
arguments. Surprisingly, by considering stochastic i.i.d. generating processes for the sequence
of outcomes, we can achieve tight bounds that match - at least asymptotically2 - to the upper
bounds. The starting point is the following inequality:

VT (N) ≥ inf
(ŷt)

EPN×TEQT

{
T∑
t=1

`(ŷt, Yt)− min
k=1,...,N

T∑
t=1

`(pt,k, yt)

}
,

where pt,k are i.i.d. from P and Y1, . . . , YT are i.i.d. from Q. The rest of the proof consists in
finding particular measures P and Q in order to maximize the lower bound. In this section,
we want to state the same kind of result in the context of online clustering. Using simple
probabilistic tools, we prove minimax results in the context of online clustering and online
bi-clustering.

3.1 Minimax regret in online clustering

In this paragraph, we want to investigate the optimality of Theorem 1. For this purpose, we
introduce in the sequel the following assumption:

Sparsity assumption H(s): Let R > 0 and T ∈ N∗. Then, there exists a sparsity index
s ∈ N∗ such that |c?T,R|0 = s, where:

c?T,R := arg min
c∈B(R)T

{∑T
t=1 `(c, xt) + |c|0

√
T log T

}
,

where B(R)T = ΠT
j=1B(R) and B(R) is the Euclidean ball of Rd.

This sparsity assumption is related with the structure of the individual sequence xt, t = 1, . . . , T .
It means that the sequence could be well-approximated by s codepoints since the infimum is
reached for a sparse codebook c?T,R. In what follows, we also introduce the set:

ωs,R :=
{

(xt)
T
t=1 such that H(s) holds

}
⊆ RdT .

2More recently, [1] has given non-asymptotic lower bounds in both statistical and online learning by using the
same probabilistic reduction scheme.
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With this notation, we have shown essentially in [13] the existence of an algorithm such that:

sup
(xt)∈ωs,R

{
T∑
t=1

`(ĉt, xt)− inf
c∈B(R)T

T∑
t=1

`(c, xt)

}
≤ const.× s

√
T log T.

Then, for any s ∈ N∗, R > 0 we could investigate a lower bound according to:

inf
(ĉt)

sup
(xt)∈ωs,R

{
T∑
t=1

`(ĉt, xt)− inf
c∈B(R)s

T∑
t=1

`(c, xt)

}
≥ const.× s

√
T log T.

Following the guiding thread presented above, we can move to a simple probabilistic setting as
follows:

inf
(ĉt)

sup
(xt)∈ωs,R

{
T∑
t=1

`(ĉt, xt)− inf
c∈B(R)s

T∑
t=1

`(c, xt)

}
≥ inf

(ĉt)
EµT

{
T∑
t=1

`(ĉt, Xt)− EνN min
k=1,...,N

T∑
t=1

`(ck, Xt)

}
,

where Xt, t = 1, . . . , T are i.i.d. with law µ and ck, k = 1, . . . , N are i.i.d. with law ν.
Unfortunately, in the inequality above, the infimum is taken over any (ĉt)

T
t=1, that is with no

restriction with respect to the `0-norm. Then, the RHS could be arbitrarely small and the lower
bound does not match with the upper bound of Theorem 1. To impose a sparsity assumption
for the sequence (ĉt), we need to introduced a penalized loss. Next theorem provides minimax
results for an augmented value VT (s) defined as:

VT (s) := inf
(ĉt)

sup
(xt)∈ωs,R

{
T∑
t=1

(
`(ĉt, xt) +

log T√
T
|ĉt|0

)
− inf

c∈B(R)s

T∑
t=1

`(c, xt)

}
. (3.1)

In (3.1), we add a penalization term for each ĉt, in terms of `0-norm. As a result, to capture
the asymptotic behaviour of VT (s), we also need to state an upper bound with a penalized loss
as in (3.1). This is done in the following theorem that combines an upper and lower bound for
the minimax regret.

Theorem 3 Let s ∈ N∗, R > 0 such that:

s ≤

3

2

(
R
√
T

14 log T

)d . (3.2)

Then:

s
√
T log T (1 + oT (1)) ≤ VT (s) ≤ s

√
T (log T )2. (3.3)

The proof of the first inequality is based on the probabilistic method described above, where we
replace the supremum over the individual sequence in VT (s) by an expectation (see Section 5-6
for details).

To prove the second inequality, we can use Proposition 1 in [13] to the penalized loss function
`α(c, x) = `(c, x) + α|c|0 with α = log T/

√
T to get:

T∑
t=1

`α(ĉt, xt) ≤ inf
ρ∈P(Rdp)

{
E~c∼ρ

T∑
t=1

`α(c, xt) +
K(ρ, π)

λ
+
λ

2
E(p̂1,...,p̂T )E~c∼ρ

T∑
t=1

[`α(c, xt)− `α(ĉt, xt)]
2

}
.

A choice of α = log T/
√
T , λ = 1/

√
T , a sparsity prior with scale parameter τ = 1/

√
T and

p =
√
T allows to get the desired upper bound.
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3.2 Minimax regret in online bi-clustering

In the context of Section 2, we want to prove the minimax optimality of Theorem 2. For this
purpose, we introduce a modified sparsity assumption related to the bi-clustering problem:

Sparsity assumption H′(s): There exists a sparsity index s ∈ N∗ such that |c?T |0 = s where:

c?T := arg inf
~c

{∑T
t=1(yt − g~c(xt))2 + |~c|0 log T

}
.

This sparsity assumption is related with the individual sequence (xt, yt), t = 1, . . . , T . Loosely
speaking, it means the sequence is made of a small number of clusters of inputs with same labels.
In what follows, we also introduce:

ω′s :=
{

(xt, yt)
T
t=1 such that H′(s) holds

}
⊆ RdT .

With this notation, we have shown in Theorem 2 the existence of a sequential algorithm (ŷt)
T
t=1

such that for any s ∈ N∗, for T great enough:

sup
(xt,yt)∈ω′s

{
T∑
t=1

(ŷt − yt)2 − inf
~c

T∑
t=1

(yt − g~c(xt))
2

}
≤ const.× s log T.

Then, for any s ∈ N∗, we will investigate the order of the minimax value:

V ′T (s) = inf
(ŷt)

sup
(xt,yt)∈ω′s

{
T∑
t=1

(ŷt − yt)2 − inf
~c

T∑
t=1

(yt − g~c(xt))
2

}
.

Following the guiding thread presented above, in this case we can move to a simple probabilistic
setting as follows:

V ′T (s) ≥ inf
(ŷt)

EµT

{
T∑
t=1

(ŷt − Yt)− EνN min
k=1,...,N

{
T∑
t=1

(Yt − g~ck(Xt)}

}
,

where (Xt, Yt), t = 1, . . . , T are i.i.d. with law µ and ~ck, k = 1, . . . , N are i.i.d. with law ν. This
inequality is at the origin of the following theorem.

Theorem 4 Suppose Y = {0, 1} and s = 2 for simplicity. Then, for T large enough:

V ′T (s) ≥ C0 log T,

where C0 > 0 is an absolute constant.

4 Conclusion

This paper studies the online bi-clustering scenario where we observe a deterministic matrix
sequentially. The goal is to predict the entries of the matrix by clustering the columns and
rows, thanks to additional feature variables. We prove sparsity regret bounds by using PAC-
Bayesian sequential algorithms with sparsity priors. These results are inspired from [13] where
the problem of online clustering is investigated. For completeness, we also propose lower bounds
for both online clustering and bi-clustering. In this problem, simple probabilistic tools allow us
to show the optimality of our algorithms.
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5 Proofs

5.1 Proof of Theorem 3

First, we introduce the event Ωs,R = {(X1, . . . , XT : |c∗T,R|0 = s}. Then, we have:

VT (s) ≥ inf
ĉt

EµT

{
T∑
t=1

`(ĉt, Xt) +
log T√
T
|ĉt|0 − EνN min

i=1,...,N

T∑
t=1

`(Ci, Xt)

}
I (Ωs,R) ,

where νN ∈ P(RdsM ) is the law of an i.i.d. sample (C1, . . . , CN ) of candidates codebooks such
that for any k, |Ck|0 = s and |Ck|2 ≤ R ν-a.s. whereas µT ∈ P(RdT ) is the law of the i.i.d.
sample (X1, . . . , XT ). Now, we have to choose the two measures (ν, µ) in order to maximize the
RHS.

First of all, since (X1, . . . , XT ) are i.i.d. and by definition of Ωs,R, we can write:

inf
ĉt

EµT

{
T∑
t=1

`(ĉt, Xt) +
log T√
T
|ĉt|0

}
I (Ωs,R) ≥ inf

ĉ
Eµ⊗T

{
T∑
t=1

`(ĉ, Xt) +
√
T log T |c|0

}
I (Ωs,R)

≥ Eµ⊗T

{
T∑
t=1

`(c∗T , Xt) + s
√
T log T

}
I (Ωs,R)

≥ Eµ⊗T

{
T∑
t=1

`(c∗T , Xt)

}(
1− I

(
ΩC
s

))
+ s
√
T log TP(Ωs,R)

≥ Eµ⊗T

{
T∑
t=1

`(c∗T , Xt)

}
− T∆2P(ΩC

s,R) + s
√
T log TP(Ωs,R)

≥ TEµ`(c∗µ, X)− T | sup
c?T ,X

`(c?T , X)|∞P(ΩC
s,R) + s

√
T log TP(Ωs,R),

where ∆ > 0 is related with the choice of µ (see Lemma 4 in Section 6). Then, by choosing ∆2

according to Lemma 5, we arrive at:

inf
ĉt

EµT

{
T∑
t=1

`(ĉt, Xt) +
log T√
T
|ĉt|0

}
I (Ωs,R) ≥ TEµ`(c∗µ, X)− TεT∆2 + s

√
T log T (1− εT ),

where εT > 0 appears in Lemma 5. Moreover, with Lemma 7, we have for some constant αN > 0:

EµTEνN min
i=1,...,N

T∑
t=1

`(Ci, Xt) ≤ αN
√

logN

√
T∆2

2
+ TEνEµ`(C,X). (5.1)

The choice of ν in Lemma 7 leads to Eµ`(c∗µ, X) = EνEµ`(C,X) and by choosing N large enough,
one has eventually for a constant a′ > 0:

VT (s) ≥ s
√
T log T

(
1− εT

[
1− T

sΦ−1
T (1− εT )

]
+ a′

log T
√

logN

sΦ−1
T (1− εT )

)
, (5.2)

where Φ−1
T (·) is defined in Lemma 7. Furthermore, the choice of εT = 1/T gathering with a

simple normal approximation of the binomial distribution B(T, 1/2), for T large enough, leads
to:

Φ−1
T (1− εT ) ≤ T

2
+

√
T

4

√
2 log T ≤ T.

Then, we have in (5.2):

VT (s) ≥ s
√
T log T

(
1− 1

T

[
1− 1

s
+ a′

log T
√

logN

s

])
,

which gives the desired result.
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5.2 Proof of Theorem 4

We restrict ourselve the d = 1 for simplicity. By written Ω′s = {(X1, Y1, . . . , XT , YT ) : |c?T |0 = s},
where c?T is defined in H′(s), we have:

V ′T (s) ≥ inf
ŷt

EµT

{
T∑
t=1

(ŷt − Yt)2 − EνN min
k=1,...,N

T∑
t=1

(Yt − g~ck(Xt))
2

}
I
(
Ω′s
)
,

where ν is the law of an i.i.d. sample (~c1, . . . ,~cN ) of candidates d-tensor codebooks such that
for any k, |~ck|0 = s ν-a.s. whereas µ is the law of the i.i.d. sample (X1, Y1), . . . , (XT , YT ). Now,
we have to choose the two measures (ν, µ) in order to maximize the RHS.

First of all, since (Xt, Yt) are i.i.d.:

inf
ŷt

EµT

{
T∑
t=1

(ŷt − Yt)2

}
I
(
Ω′s
)
≥ T

(
min
y

EY (Y − y)2 − P(|c?T |0 > s)

)
.

A good choice of µ, ν will ensure P(|c?T |0 > s) ≤ c(log T )/T in Lemma 10 below. To control the
second term, we use a martingale version of the central limit theorem (see Lemma 9) to get, for
some contsant alphaN > 0:

EµTEνN min
k=1,...,N

T∑
t=1

(Yt − g~ck(Xt))
2 ≤ αN

√
TsT

√
logN + EµTEνN

T∑
t=1

E
[
(Yt − g~c(Xt))

2|Ft−1

]
,

where s2
T =

∑T
t=1 Var(Yt − g~ck(Xt))

2 and Ft−1 = σ({(Xu, Yu), u = 1, . . . , t − 1}). Then, we
obtain:

V ′T (s) ≥ T min
y

EY (Y − y)2 − EµTEνN
T∑
t=1

E
[
(Yt − g~c(Xt))

2|Ft−1

]
+ αNsT

√
logN − log T.

Now, the choice of µ, ν in Lemma 8 gives:

EµTEνN
T∑
t=1

E
[
(Yt − g~c(Xt))

2|Ft−1

]
= T min

y
EY (Y − y)2 +

T∑
t=1

E(ε− g~ck(Xt))
2,

where ε > 0 is such that Yt is a Bernoulli variable with parameter ε > 0. The precise value of ε
will be chosen in the sequel. We hence get:

V ′T (s) ≥ −
T∑
t=1

E(ε− g~c(Xt))
2 + αNsT

√
logN − log T.

Last step is to compute the order of sT and
∑T

t=1 E(ε− g~c(Xt))
2. This is done is Lemma 8 and

a choice of ε = log T 2/T leads to:

V ′T (s) ≥ −
T∑
t=1

at + αNsT
√

logN − log T ≥ log T,

where:

at ∼
ε

t
+

1

t
and sT =

√√√√ T∑
t=1

ε+
ε

t
.
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6 Appendix

6.1 Auxiliary lemmas for Theorem 2

The proof of Theorem 2 is based on the control of the following probability:

Lemma 2 For any ~c ∈ C, let ~c′ ∼ p0,d where p0,d is defined in Lemma 1. Then for any v ∈ X ,
for any δ, ε > 0, we have:

P~c′ (f~c(v) 6= f~c′(v)) ≤ 24

d∑
j=1

|cj |0(|cj |0 − 1)
mjτ

2

ε2δ2
,

provided that the following condition holds:

∀j = 1, . . . , d, ψvj ,cj,ij (ε) ≥ ε and |vj − δV (cj)| ≥ ε, (6.1)

where:

ψvj ,cj,ij (ε) =
√
d(vj , [cj,ij , cj,i′j ])

2 +
(
d(cj,ij , ∂V (cj) + ε

)2 −√d(vj , [cj,ij , cj,i′j ])
2 +

(
d(cj,ij , ∂V (cj)− ε

)2
.

Proof: Notice that, for any v ∈ X :

P~c′({f~c(v) 6= f~c′(v)}) = P
(
(∃j ∈ {1, . . . , d}, ∃(ij , i′j) ∈ {1, . . . , |cj |0}2 : πj(f~c(v)) = ij 6= i′j = πj(f~c′(v))

)
≤

d∑
j=1

∑
(ij ,i′j)

Ec′
j,i′

j

∫
B(vj ,|vj−c′j,i′

j
|)C
dp

j,ij
0 (c′j,ij )d(c′j,ij ),

where p0(dc′) = Π2
j=1Π

pj
ij=1p

j,ij
0 (dc′j,ij ) and Ec′

j,i′
j

is the expectation with respect to p
j,i′j
0 whereas

B(vj , |vj − c′j,i′j |) is the Euclidean ball in Rmj with center vj and radius |vj − c′j,i′j |. Then, we get

for any ε, δ > 0:

P~c′({f~c(v) 6= f~c′(v)}) ≤
d∑
j=1

∑
(ij ,i′j)

Ec′
j,i′

j

∫
B(vj ,|vj−c′j,i′

j
|)C
dp

j,ij
0 (c′j,ij )d(c′j,ij )1|c′j,i′

j
−cj,i′

j
|≤εδ/2 + Pc′

j,i′
j

(
|c′j,i′j − cj,i′j | >

εδ

2

)
≤

d∑
j=1

∑
(ij ,i′j)

Ec′
j,i′

j

∫
B(vj ,|vj−c′j,i′

j
|)C
dp

j,ij
0 (c′j,ij )d(c′j,ij )1|c′j,i′

j
−cj,i′

j
|≤εδ/2 + P

(
|Tmj (3)| > εδ

2τ

) .

Last step is to control the first term is the previous decomposition. Using simple geometry, we
can notice that for any ε, δ > 0, if |vj − ∂V (cj)|2 > ε, the following assertion holds:

ψvj ,cj,ij (ε)/ε ≥ δ =⇒ B(cj,ij , εδ/2) ⊆ B(vj , d(vj ,B(cj,i′j , εδ/2))),

where ψvj ,cj,ij (ε) is defined in the lemma. We then obtain, provided that ψvj ,cj,ij (ε) ≥ ε and

|vj − δV (cj)| ≥ ε:

Pc′({f~c(v) 6= f~c′(v)})) ≤
d∑
j=1

∑
(ij ,i′j)

(∫
B(cj,ij ,εδ/2)C

dp
j,ij
0 (c′j,ij )d(c′j,ij ) + P(|Tmj (3)| > εδ

2τ
)

)

= 2

d∑
j=1

|cj |0(|cj |0 − 1)P(|Tmj (3)| > εδ

2τ
)

≤ 2

d∑
j=1

|cj |0(|cj |0 − 1)
12mjτ

2

ε2δ2
,

where we use in last line a simple Markov’s inequality to |Tmj (3)|2/dj ∼ F(mj , 3).
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Lemma 3 For any ~c ∈ C, for T great enough, for any x1, . . . , xt ∈ X , let us consider ε =
1/
√

log T and:

δ = min
v∈{x1,...,xt}

min
j=1,2

d(cj,ij , ∂V (cj))√
d(vj , [cj,ij , cj,i′j ])

2 +
(
d(cj,ij , ∂V (cj)

)2 .
Then, (6.1) holds for any v ∈ {x1, . . . , xt}.

Proof of the lemma : First notice that we can suppose the set of codebooks ~c is such that
(xt)

T
t=1∩∪j∂V (cj) = ∅. Indeed, if this condition does not hold, we can slightly modify ~c to have

the desired property without changing the value of g~c(xt), for any t = 1, . . . , T . Moreover, for
T great enough, for any v ∈ X :

ψvj ,cj,ij (ε)

2ε
:=

φ(a+ ε)− φ(a− ε)
2ε

,

where φ(u) =
√
b2 + u2, a = d(cj,ij , ∂V (cj) and b = d(vj , [cj,ij , cj,i′j ]). Then, if ε := ε(T ) → 0,

for any ε′ > 0, ∃T0(ε′) ∈ N such that for any T ≥ T0(ε′):

φ′(a) =
d(cj,ij , ∂V (cj)√

d(vj , [cj,ij , cj,i′j ])
2 +

(
d(cj,ij , ∂V (cj)

)2 ≥ δ

2
+ ε′ ⇒ ψvj ,cj,ij (ε)/ε ≥ δ.

Hence, since d(cj,ij , ∂V (cj)) > 0, we can choose

δ ≤ min
v∈{x1,...,xt}

min
j=1,2

d(cj,ij , ∂V (cj))√
d(vj , [cj,ij , cj,i′j ])

2 +
(
d(cj,ij , ∂V (cj)

)2
provided that T large enough to have

ε′ < min
v∈{x1,...,xt}

min
j=1,2

d(cj,ij , ∂V (cj)√
d(vj , [cj,ij , cj,i′j ])

2 +
(
d(cj,ij , ∂V (cj)

)2 .
Then, by choosing ε = 1/

√
log T , (6.1) holds for any v ∈ {x1, . . . , xt}.

6.2 Auxiliary lemmas for Theorem 3-4

6.2.1 Online clustering

The proof of Theorem 3 is based on the following intermediate lemmas.

Lemma 4 Let s ∈ N∗ is divisible by 3. Let µ ∈ P(Rd) a distribution concentrated on 2m = 4s/3
points Sµ := {zi, zi + w, i = 1, . . . ,m} such that w = (2∆, 0, . . . , 0) ∈ Rd with ∆ > 0. Suppose
for any i 6= j, d(zi, zj) ≥ A∆, for some A > 0. Define µ as the uniform distribution over Sµ.
Then, if A ≥

√
2 + 1, we have:

arg min
c∈Rds

Eµ`(c, X) = {c?µ,1, . . . , c?µ,k} =:Mµ,

where k =

(
m
m/2

)
and c?µ,j is such that for m/2 values of i ∈ {1, . . . ,m}, c?µ,j has codepoints at

both zi and zi+w and for the remaining m/2 values of i, c?µ,j has a single codepoint at zi+w/2.

Proof : The proof of this claim can be found in the Appendix of [2].
Next lemma controls the probability that |c?T |0 > s with a proper choice of ∆2 in the

definition of µ.

13



Lemma 5 Let s ∈ N∗ and assume s is divisible by 3. Let µ defined in Lemma 4. Then, if we
choose:

∆2 ≤
√
T log T

Φ−1
T (1− εT )

,

where Φ−1
T (·) is the generalized inverse of ΦT : x 7→ P(B(T, 1/2) ≤ x), we have:

P(|c?T |0 > s) ≤ εT ,

where (X1, . . . , XT ) are i.i.d. with law µ and:

c?T := arg min
c∈RdT

{
T∑
t=1

`(c, Xt) +
√
T log T |c|0

}
.

Proof of the Lemma : We consider the case s = 3 for simplicity. In this case, by construction of
µ, we have |Sµ| = 4 and then |c?T |0 ≤ 4 µ−almost surely. We hence have the following assertion:

T∑
t=1

`(c?3, Xt)− `(c?4, Xt) ≤
√
T log T ⇒ |c?T |0 ≤ 3,

where c?k := arg min|c|0=k

∑T
t=1 `(c, Xt) for any k ∈ N∗. To end up the proof we have to show

the following intermediate lemma:

Lemma 6 Let c?k defined above for some k ∈ N?. Then, if A ≥ 7 in Lemma 4, almost surely,
for m/2 values of i ∈ {1, . . . ,m}, c?k has codepoints at both zi and zi +w, and for the remaining
m/2 values of i, c?k has a single codepoint at zi + w/2.

Proof of the intermediate lemma: For any codebook ~c = {c1, . . . , ck}, we consider Vi = V (zi) ∪
V (zi + w) and denote by mi the number of points in c ∩ Vi. Then we consider the following
codebook c′. For any i = 1, . . . ,m:

• if mi ≥ 2, zi, zi + w are codepoints of c′,

• if mi = 1 ∪ 0, zi + w/2 is a codepoints of c′.

Note that c′ could have more than k codepoints but suppose for a moment that c′ has excactly
k codepoints. We want to show that for T large enough, we have a.s.:

1/T
T∑
t=1

`(c′, Xt) ≤ 1/T
T∑
t=1

`(c, Xt). (6.2)

Deote ri(c) = |zi − c(zi)|22µT (zi) + |zi + w − c(zi + w)|22µT (zi + w), where µT = 1/T
∑T

t=1 δXt

is the empirical measure and c(z) is the codepoint in ~c associated with z. Then we have∑T
t=1 `(c

′, xt) = T
∑m

i=1 ri(c). We will show that for any i = 1, . . . ,m, ric
′) ≤ ri(c). If mi ≥ 2,

we have clearly ri(c
′) = 0 ≤ ri(c). If mi = 1 and c(zi) = c(zi + w), then ri(c

′) ≤ ri(c) since c′

has a codepoint at zi + w/2. If mi = 1 and c(z′) /∈ Vi for z′ ∈ {zi, zi + w}, we have:

ri(c) ≥ µT (zi)|zi − c(zi)|22 ≥ µT (zi)

(
A∆

2
−∆

)2

,

by construction of measure µ in Lemma 4. Then, since in this case ri(c
′) = µT (zi, zi + w)∆2,

we have ri(c
′) ≤ ri(c) if:

µT (zi, zi + w)∆2 ≤ µT (zi)

(
A∆

2
−∆

)2

. (6.3)
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Then, for any ε > 0, for any T > Tε, if A ≥ 2(3 + ε), (6.3) holds true.
Now if mi = 0, c(zi) and c(zi + w) are not in Vi. Then ri(c) ≥ µT (zi, zi + w) (A∆/2−∆)2

and since ri(c
′) = µT (zi, zi + w)∆2, we have ri(c

′) ≤ ri(c) for A ≥ 4. Then, we have (6.2) for
instance for A ≥ 7 by choosing ε = 1/2 above.

Now suppose |c′|0 > k′. Then we can choose k′− k couples (zi, zi +w) which are codepoints
of c′ and replace them by zi + w/2. Then if we denote by c?k this quantizer, we have clearly
|c?k|0 = k and:

1/T

T∑
t=1

`(c?, Xt) ≤ 1/T

T∑
t=1

`(c′, Xt) +

k′−k∑
i=1

µT (zi, zi + w)∆2.

Moreover, there is at least k′ − k indices where mi = 0, then we have also:

1/T

T∑
t=1

`(c′, Xt) ≤ 1/T

T∑
t=1

`(c, Xt)−
k′−k∑
i=1

µT (z′i, z
′
i + w)

([
A∆

2
−∆

]2

−∆2

)
.

Then, gathering with the previous inequality, we arrive at:

1/T
T∑
t=1

`(c?, Xt) ≤ 1/T
T∑
t=1

`(c, Xt)+
k′−k∑
i=1

µT (zi, zi+w)

([
A∆

2
−∆

]2

−∆2

)
−
k′−k∑
i=1

µT (z′i, z
′
i+w)∆2.

To control the RHS, note that for any ε > 0, there exists Tε such that for T ≥ Tε, we have
µT (zi, zi + w) ≤ 1/m+ ε and µT (z′i, z

′
i + w) ≥ 1/m− ε. Then, for T large enough, we have the

result since A ≥ 7.
Using this intermediate lemma, we hence have:

T∑
t=1

`(c?3, Xt)− `(c?4, Xt) =

T∑
t=1

`(c?3, Xt) ≤ ∆2card{t = 1, . . . , T : Xt ∈ {zi, zi + w}},

where i = 1 or i = 2. Noting that the random variable card{t = 1, . . . , T : Xt ∈ {zi, zi + w}}
has a Binomial distribution B(T, 1/2), We arrive at:

P(c?T |0 > 3) ≤ P

(
B(T, 1/2) ≥

√
T log T

∆2

)
.

The choice of ∆ in Lemma 5 concludes the proof.
Eventually, the following lemma controls the expectation of the minimum of the cumulative

loss in our probabilistic setting.

Lemma 7 Let µ ∈ P(Rd) defined in Lemma 4, ν ∈ P(Rds) the uniform law over Mµ =
{c?µ,1, . . . , c?µ,k} is defined in Lemma 4 . Then, for any ε > 0, there exists Tε ∈ N∗ such that for
any T ≥ Tε:

EµTEνN min
i=1,...,N

T∑
t=1

`(Ci, Xt) ≤ (ε− aN )
√

logN

√
T∆2

2
+ TEνEµ`(C,X),

where limN→∞ aN =
√

2.
Moreover, if:

s ≤

⌊
3

2

(
R− 2∆

A∆

)d⌋
, (6.4)

then |Ck|2 ≤ R almost surely, when Ck is the uniform law over Mµ.
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Proof of the lemma: Let us fix a sequence ci ∈ {c?µ,1, c?µ,2}, i = 1, . . . , N and consider the random
variable:

ξi,T :=

∑T
t=1 `(ci, Xt)−

∑T
t=1 Eµ`(ci, Xt)√∑T

t=1 Varµ`(ci, Xt)
.

For a fixed sequence (ci), for any t 6= t′, the random variables `(ci, Xt) and `(ci, Xt′) are
independent with bounded moment of order 2. Then, with the central limit theorem, we have
that for any i = 1, . . . , N , each ξi,T converges in law to a standard normal distribution when
T →∞. Then, applying dominated convergence theorem leads to:

lim
T→∞

Eν⊗NEµ⊗T min
i=1,...,N

ξi,T = −aN
√

logN, (6.5)

since we know that Emini=1,...,N ζi = −aN
√

logN when ζi are i.i.d. standard normal distribu-

tion. Now, note that we want a same kind of result for
∑T

t=1 `(ci, Xt) instead of the normalized
random variables ξi,T . By definition of µ∆,m and ci, i = 1, . . . , N , we have coarselly that:

∀i, ∀t, Varµ`(ci, Xt) = 1/2
(
∆2 −∆2/2

)2
+ 1/2

(
0−∆2/2

)2
= ∆4/4.

Then, ξi,T = 2(
∑T

t=1 `(ci, Xt)−
∑T

t=1 Eµ`(ci, Xt))/(
√
T∆2) and with (6.5), we have the desired

result.
To show that |Ck|2 ≤ R, we need to place m pairs of points (zi, zi + 2∆) in B(R) such that

|zi− z− j|2 ≥ A. It is well-known (see [2]) that m points could be packed in B(R− 2∆) as long
as:

m ≤
(
R− 2∆

A∆

)d
.

Then, condition (6.4) gives the result since 2s = 3m.

6.2.2 Online bi-clustering

The proof of Theorem 4 is based on the following lemmas.

Lemma 8 Let µ ∈ P(Rd × {0, 1}) such that for a generic couple (X,Y ) ∼ µ, Y is a Bernoulli
with parameter ε > 0, X ∈ {a, b, c, d} such that Y |X = x is a Bernoulli with parameter px where
(pa, pb, pc, pd) = (1−ε/4, 1−3ε/4, ε/2, ε/2). Moreover, let ν ∈ P(C) such that ν = 1/2(δ~c1 +δ~c2),
where V~c1(a) = V~c1(c), V~c1(b) = V~c1(b) whereas V~c2(a) = V~c2(b), V~c2(c) = V~c2(d). Then, if
ε := oT (1), we have:

E
T∑
t=1

(ε− g~c(Xt))
2 = (log T + Tε)(1 + oT (1)) and sT =

√
log T + Tε(1 + oT (1)).

Proof. By construction, denoting xu = P(Xu), for u ∈ {a, b, c, d}, we have xa = xb = ε/(2(1−ε))
and xc = xd = (2− 3ε)/(2(1− ε)). Then, one obtains for any t = 1, . . . , T :

E(ε− g~c(Xt))
2 = E(X,Y )t−1

1

∑
(u,v)∈Λ

xu + xv
2

(ε− Ȳ u
t−1 − Ȳ v

t−1)2,

where Λ = {(a, b), (a, c), (b, d), (c, d)}, Ȳ u
t−1 is the empirical mean at time t − 1 when Xk = u.

Moreover, if xu,v = xu + xv, εu,v = P(Y = 1|X ∈ {u, v}) and Ȳ u,v
t−1 is the empirical mean when

Xk ∈ {u, v} for k = 1, . . . , t− 1, by simple algebra, for a given (u, v) ∈ Λ:

xu + xv
2

E(X,Y )t−1
1

(ε− Ȳ u
t−1 − Ȳ v

t−1)2 =
xu + xv

2
EXt−1

1
E
[
ε2 + (Ȳ u,v

t−1)2 − 2εȲ u,v
t−1|X1, . . . , Xt−1

]
xu + xv

2
EXt−1

1
E
[
ε2 +

εu,v(1− εu,v)
card{u = 1, . . . , t− 1 : Xu ∈ {u, v}}

+ ε2u,v − 2εεu,v|X1, . . . , Xt−1

]
:= ϕ(u, v).
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Now, we use the asymptotic expansion of inverse moment of a binomial distribution stated in
[20] as follows. If Y is a Bernoulli with parameter (n, p), we have:

EY −1 =
1

np

(
1 +

1− p
np

+
(1− p)(2− p)

n2p2
+ · · ·

)
=

1

np
(1 +Onp(1)) .

Then, applying the previous expansion for Y = Ȳ u,v
t−1, and summing over (u, v) ∈ Λ, if ε = oT (1),

we obtain:

T∑
t=1

E(ε− g~c(Xt))
2 ∼

T∑
t=1

ε+
1

t
∼ εT + log T. (6.6)

By denoting Ft−1 = σ(X1, . . . , Xt−1, Y1, . . . , Yt−1), the computation of sT is decomposed as
follows:

sT =

T∑
t=1

E(X,Y )t−1
1

E
[
(Yt − g~c(Xt))

2 − E[(Yt − g~c(Xt))
2|Ft−1]

]2
=

T∑
t=1

(
E
[
(Yt − ε)2 − E[(Yt − ε)2|Ft−1]

]2
+ E

[
(ε− g~c(Xt))

2 − E
[
(ε− g~c(Xt))

2|Ft−1

]]2
+4E(Yt − ε)2(ε− g~c(Xt))

2
)
.

Then, with (6.6) and simple algebra, one gets the result.

Lemma 9 Let ξt = (Yt − g~c(Xt))
2 for any t. Then, we have:

1

sT

T∑
t=1

(ξt − E(ξt|Ft−1)) −→ N (0, 1).

The proof is based on a martingale version of central limit theorem due to [3]. We hence have
to check the Lindenberg condition for martingale:

∀δ > 0,
1

s2
T

T∑
t=1

E
[
(ξt − E(ξt|Ft−1))21|ξt|>δsT |Ft−1

]
→ 0 in proba. as T →∞.

By using Lemma 8, the boundness of ξt and a simple Markov inequality, we have:

E
[
(ξt − E(ξt|Ft−1))21|ξt|>δsT |Ft−1

]
≤ P (|ξt| > δsT |Ft−1)

≤
Var

(
(Yt − ε)2|Ft−1

)
+ Var

(
ε− g~c(Xt))

2|Ft−1

)
+ ε(1− ε)E

(
(ε− g~c(Xt))

2|Ft−1

)
s2
T δ

2

≤ ε(1 + (1/t) + ε/(t− 1)2)

s2
T δ

2
.

Then, summing over t, provided that ε ∼ (log T )2/T , we have for any δ′ > 0 with Lemma 8:

P

(
1

s2
T

T∑
t=1

E
[
(ξt − E(ξt|Ft−1))21|ξt|>δsT |Ft−1

]
> δ′

)
≤ ε(T + log T + ε)

s4
T δ

2δ′
→ 0 as T →∞.

Lemma 10 Let (Xt, Yt), t = 1, . . . , T i.i.d. with law µ defined in Lemma 8. Then, we have:

P(|c?T |0 > 2) ≤ C log T

T
.
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In the sequel, we introduce c?k = arg min|c|0=k(
∑T

t=1(Yt − gc(Xt))
2 + |c|0 log T for k = 2 and

k = 3. Then by construction of the i.i.d. sequence (Xt, Yt), t = 1, . . . , T in Lemma 8, we have:

T∑
t=1

(Yt − gc?2(Xt))
2 =

∑
t∈Sa,b

(Yt − Ȳ a,b
t−1)2 +

∑
t∈Sc,d

(Yt − Ȳ c,d
t−1)2,

where Sa,b and Sc,d denotes each t = 1, . . . , T such that Xt ∈ {a, b} (and respectively Xt ∈ {c, d})
whereas Ȳ a,b

t−1 and Ȳ c,d
t−1 are defined in the proof of Lemma 8. Moreover, we have:

T∑
t=1

(Yt − gc?3(Xt))
2 =

∑
t∈Sc,d

(Yt − Ȳ c,d
t−1)2 +

∑
t∈Sa

(Yt − Ȳ a
t−1)2 +

∑
t∈Sb

(Yt − Ȳ b
t−1)2,

where Sa and Sb denotes each t = 1, . . . , T such that Xt ∈ {a} (and respectively Xt ∈ {b})
whereas Ȳ a

t is defined in Lemma 8. Furthermore, a necessary condition to have |c?T |0 = 3 is:

T∑
t=1

(Yt − gc?2(Xt))
2 −

T∑
t=1

(Yt − gc?3(Xt))
2 ≥ log T.

Then, with the previous computations, gathering with a Markov inequality:

P (|c?T | = 3) ≤ P

 ∑
x∈{a,b}

∑
t∈Sx

(2Yt − Ȳ a,b
t−1 − Ȳ

x
t−1)(Ȳ x

t−1 − Ȳ
a,b
t−1) ≥ log T


≤ P

 ∑
x∈{a,b}

∑
t∈Sx

1Yt=1(Ȳ x
t − Ȳ

a,b
t−1) ≥ log T


≤ P

 ∑
x∈{a,b}

∑
t∈Sx

1Yt=1(Ȳ x
t − Ȳ

a,b
t−1) ≥ log T


≤

E
[∑

x∈{a,b}
∑

t∈Sx
1Yt=1(Ȳ x

t − Ȳ
a,b
t−1)

]
log T

≤
E
[∑

x∈{a,b}
∑

t∈Sx
1Yt=1(Ȳ x

t − Ȳ
a,b
t−1)

]
log T

∼ log T

T
,

where last line comes from the choice of ε ∼ (log T )2/T . A same argument shows that P(|c?T |0) =
4 is small, and then since by construction |c?T |0 ≤ 4 a.s., the proof is completed.
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