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LINEAR CONIC OPTIMIZATION
FOR INVERSE OPTIMAL CONTROL∗

EDOUARD PAUWELS1, DIDIER HENRION2,3,4, JEAN-BERNARD LASSERRE2,3

Abstract. We address the inverse problem of Lagrangian identification based on trajectories in
the context of nonlinear optimal control. We propose a general formulation of the inverse problem
based on occupation measures and complementarity in linear programming. The use of occupation
measures in this context offers several advantages from the theoretical, numerical and statistical
points of view. We propose an approximation procedure for which strong theoretical guarantees are
available. Finally, the relevance of the method is illustrated on academic examples.

1. Introduction. In the context of nonlinear optimal control, we are interested
in the inverse problem of Lagrangian identification from given trajectories. This iden-
tification should be carried out such that solving the direct optimal control problem
with the identified Lagrangian would allow to recover the given trajectories.

Inverse problems of calculus of variations are old topics that have attracted a
renewal of interest in the context of optimal control, especially in humanoid robotics
[4]. Relevant aspects of the problem are not well understood and many issues still
need to be addressed to propose a tool that could be used in experimental settings.
The work presented here constitutes a step in this direction. A preliminary conference
version [34] originally introduced our optimization framework as a tool to solve the
inverse problem numerically. The current paper extends this work in many ways.
In particular, by using the (quite general) concept of occupation measures we can
propose a broad definition of inverse optimality and we also rigorously justify most
of the approximations behind the numerical results reported in [34]. Many aspects
of this work parallel the results of [27] about direct optimal control with polynomial
data.

1.1. Motivation. The principle of optimality (or stationarity) is very important
as a conceptual tool to describe laws of phenomenon are observed in nature (e.g.
Fermat’s principle in optics, Lagrangian dynamics in mechanics). Beyond physics,
similar tools and arguments are used to describe and model the behaviour of living
systems in biology [40] or decision making agents in economics [24]. Of more important
interest to us is the application of the optimality principle to model the motion of living
organisms [42]. In our technological context, this constitutes a hot topic. Promising
expectations for these types of model include:

• The conceptual understanding of general laws that govern decision taking
processes related to living organism motion, including human motion [4].

• The ability to use these general laws to reproduce and synthetise motion
behaviours for new tasks with unknown space configuration.

In this context, the principle of optimality only constitutes one possible conceptual
tool to understand motion. There is a debate regarding its validity [15] or its direct
applicability in robotics applications [28]. These illustrate the fact that this idea
constitutes an active subject of research, with a strong connextion with applications.
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System description: f,X,U

Direct control:

Input:
Lagangian l

Conic duality:
Data: l
Unknown: µ, v

Output:
Optimal
measure µ

Inverse control:

Input:
Controled trajectories viewed
as occupation measure µ

Conic duality:
Data: µ
Unknown: l, v

Output:
Lagrangian l

Figure 1.1. Direct optimal and inverse optimal control flow chart. System description is given
by the dynamics f , the state constraint set X and control constraint set U which are all assumed to
be fixed. We emphasize that the Lagrangian and the occupation measure have symmetric roles for
the direct and inverse problems. We also note that the output of the inverse problem is a Lagrangian.
Solving the direct optimal control problem for new initial conditions is an important question but
remains secondary regarding inverse optimality which is the focus of this work.

In many situations however, the cost related to the motion of a system is unknown
or does not correspond to direct intuition. In these cases, as clearly emphasized in
[42]: “It would be very useful to have a general data analysis procedure that infers the
cost function given experimental data and a biomechanical model”. Our contribution
is to investigate the mathematical meaning of “inferring cost function from data” and
we propose a numerical method to address problems of this type based on inverse
optimality. We emphasize that this paper is “only” concerned with this question.
In particular we do not address the issue of interpreting the inferred cost function
or solving direct problems for new unseen conditions. We solely focus on the task of
inferring a cost function from data. This constitutes a nontrivial shift in term of point
of view compared to usual questions arising when dealing with direct optimal control
problems. We hope to convince the reader that there are crucial differences between
inverse and direct optimal control and that it is worth investigating the former within
an appropriate context with somewhat different questions in mind.

The backbone of the proposed approach and its relation with the direct problem
of optimal control is presented in Figure 1.1. It is important to understand the
symmetric role of the Lagrangian and the occupation measure representing the input
trajectories. As a matter of fact, since the input of the inverse problem is a set
of trajectories (supposedly optimal for a certain Lagrangian), many aspects of the
existence of minimizers that are crucial in direct optimal control, are not relevant
for inverse problems since the “optimal” trajectories are given. For example, there is
no need to recompute optimal trajectories for direct problems with initial conditions
already considered in the input data since by inverse optimality, the input trajectories
are optimal with respect to the identified Lagrangian.

1.2. Context. Since its introduction by Kalman [23], the inverse problem of
optimal control has been studied in linear settings [3, 22, 16, 33] leading to many
nonlinear variations [41, 32, 10, 14]. In these works the input data of the problem
is a characteristic of a class of trajectories often given in the form of a control law.
This contrasts with the setting we propose to study, for which the input is a set of
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trajectories which could come from physical experiments. This motivates the work
of [11] and [2] about well-posedness of the inverse problem, both in the context of
unicycle dynamics in robotics and strictly convex positive Lagrangians.

On the other hand, to treat the inverse problem several authors have proposed
numerical methods based on the ability to solve the direct problem [31], also in the
context of Markov decision process [1, 39] or based on a discretized version of the
direct problem [38, 25].

Our approach is different and based on occupation measures, an abstract and
quite general tool to handle trajectories (and their weak limits) of feasible solutions of
classical control problems. Formulating the (direct) control problem on appropriate
spaces of measures amounts to relaxing the original problem. In most applications,
both relaxed and original problems have same optimal value [46, 45, 17]. However
the relaxed formulation has the crucial advantage that compactness holds in a cer-
tain weak sense: As a matter of fact, many optimization problems over appropriate
spaces of measures attain their optimum, whereas most optimization problems over
smaller functional spaces (e.g. continuous functions, or Lebesgue integrable func-
tions) typically have no optimal solution. At last but not least, for control problems
with polynomial data, the relaxed problem can be formulated as an optimization
problem on moments of occupation measures. By combining this with relatively re-
cent advances in real algebraic geometry [37] and in numerical optimization [26] one
may thus provide a systematic numerical scheme to approximate effectively relaxed
solutions of optimal control problems [27].

1.3. Contribution. We choose the setting of free terminal time optimal control
which is consistent with many physical experiments that one can think of. But the
same approach with ad hoc modifications is also valid in the fixed terminal time
setting.

• In our opinion, occupation measures are the perfect abstract tool to formally
express the fact that we consider a (possibly uncountably infinite) superposition of
trajectories as input data of the inverse control problem. We then propose a general
formulation of the inverse problem based on occupation measures and complementar-
ity in linear programming. A relaxation of the well known Hamilton-Jacobi-Bellman
(HJB) sufficient optimality condition appears in our formulation as for the usual di-
rect optimal control problem [21]. This formulation is shown to be consistent with
what is commonly expected regarding inverse optimality.

It is worth noting that when using the HJB optimality conditions, the situation is
completely symmetric for the direct and inverse control problems. In both cases the
HJB optimality conditions are used to certify the global optimality of trajectories. But
in the former the Lagrangian is known and HJB provide conditions on the optimal
state-control trajectories (to be determined) whereas in the latter the “optimal” state-
control trajectories are known and HJB provide conditions on the Lagrangian (to be
determined) for the given trajectories to be optimal. (In both cases the optimal value
function is considered as an auxiliary “variable”.)

• Furthermore, this framework allows to further characterize the space of solutions
associated with a given inverse optimal control problem. This viewpoint is different
from what has been proposed in previous (theoretical and numerical) contributions to
this problem [31, 38, 11, 2] which, implicitly or explicitly, involve strong (and, in our
opinion, overly restrictive) constraints on the class of functions in which the candidate
Lagrangians are searched.

• The weak formulation of direct optimal control problems via occupation mea-
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sures is elegant and powerful but also involves difficult technical questions regarding
potential gaps between classical and generalized control problems. Using inverse op-
timality, we justify a posteriori that this discussion can be partially mitigated for the
inverse problem. This striking difference between direct and inverse problems is due
to the symmetric roles of the Lagrangian and occupation measure and the fact that
the occupation measure is given and fixed for the inverse problem.
• Remarkably, despite the abstract setting of occupation measures, the proposed

formulation is amenable to explicit numerical approximations via a hierarchy of semi-
definite programs1. Indeed in the context of polynomial dynamics and semi-algebraic
constraints, both the optimal value function and Lagrangian used in the (relaxed)
HJB optimality conditions can be approximated with polynomials. We show that
such a reinforcement is coherent in the sense that no polynomial solution to the
inverse problem is lost.
• Finally, in usual experimental settings one does not have access to complete

trajectories. Instead one is rather given finitely many data points sampled from
trajectories. But results from probability applied to our occupation measures allow to
formalize the fact that we only work with “samples”. In addition, in this framework
one may use empirical processes and statistical learning theory [44, 9] to provide
bounds on the error made when working with samples instead of original trajectories.

Organization of the paper.. In Section 2 we provide the context and background
on optimal control and occupation measures. In Section 3, we present our characteri-
zation of solutions to the inverse optimal control problem and illustrate how it allows
to further discuss about the set of solutions and links with the direct optimal control
problem. Numerical approximations via polynomials and statistical approximations
via finite samples are provided and discussed in Section 4. The resulting numerical
scheme (with proven strong theoretical guarantees) can be implemented with off-the-
shelf software on a standard computer. Finally, Section 5 describes numerical results
on academic examples.

2. Preliminaries.

2.1. Notations. If A is a compact subset of a finite-dimensional Euclidean
space, let C(A) resp. C1(A) denote the set of continuous resp. continuously dif-
ferentiable functions from A to R. Let M(A) denote the space of Borel measures on
A, the topological dual of C(A) with duality bracket denoted by 〈., .〉, i.e. 〈µ, f〉 =∫
A
f(x)dµ(x) is the integration on A of a function f ∈ C(A) with respect to a measure

µ ∈M(A). LetM+(A) resp. C+(A) denote the cone of non-negative Borel measures
resp. non-negative continuous functions on A. The support of a measure µ ∈M+(A)
is denoted by sptµ. An element µ ∈M+(A) such that 〈µ, 1〉 = 1 is called a probabil-
ity measure. Let δx denote the Dirac measure concentrated on x and let I(e) denote
the indicator function of an event e, equal to 1 if e is true, and 0 otherwise.

Let X ⊆ RdX denote the state space and U ⊆ RdU denote the control space
which are supposed to be compact subsets of Euclidean spaces. System dynamics are
given by a continuously differentiable vector field f ∈ C1(X × U)dX . Terminal state
constraints are modeled by a set XT ⊂ X which is also given. Let Bn denote the
unit ball of the Euclidean norm in Rn, and let ∂S denote the boundary of set S in
the Euclidean space. Let R[z] denote the set of multivariate polynomials with real

1 A semi-definite program is a finite-dimensional linear optimization problem over the cone of
non-negative quadratic forms for which powerful primal-dual interior-point algorithms are available
[43].
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coefficients with variables z and let Rk[z] denote the set of such polynomials with
degree at most k. For a polynomial p ∈ Rk[z], we denote by ‖p‖1 the sum of the
absolute values of the coefficients of p when expanded in the monomial basis.

2.2. Context: free terminal time optimal control. We consider direct op-
timal control problems of the form:

v0(z) := inf
u,T

∫ T

0

l0(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t)),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) = z, x(T ) ∈ XT ,
T ∈ [0, TM ]

(ocp0)

with Lagrangian l0 ∈ C(X × U) and free final time T with a given upper bound TM
which ensures that the value function v0 is bounded below. Dynamics f are given, as
well as the sets X, U and XT ⊂ X. We assume that a set X0 ⊂ X is given such that
the following assumption is satisfied:

Assumption 1. For all initial conditions z ∈ X0, problem (ocp0) is feasible.

2.3. Occupation measures. In this section we describe how to construct an
occupation measure from a feasible trajectory of (ocp0) and then from a set of such
trajectories. The content of this section was already described in the litterature (see
for example [27, 19, 18]) and we include these notions here for completeness. Let
z ∈ X0 be an initial point. We use Assumption 1 to fix a trajectory starting from
z. That is, a terminal time Tz ∈ R+, a measurable control uz : [0, Tz] → U and an
absolutely continuous trajectory xz : [0, Tz]→ X such that

ẋz(t) = f(xz(t), uz(t)),
xz(0) = z, xz(Tz) ∈ XT .

(2.1)

The occupation measure of the corresponding trajectory is denoted by µz and is
defined by

µz(A×B) :=

∫ Tz

0

I(xz(t) ∈ A, uz(t) ∈ B)dt (2.2)

for every Borel sets A ⊂ X and B ⊂ U . We now turn to the construction of occu-
pation measure and terminal measure of a set of trajectories by taking a measurable
combination of occupation measures of single trajectories. Consider a probability
measure µ0 ∈ M+(X0) and an upper bound on terminal time TM . Thanks to As-
sumption 1, for each z ∈ spt µ0, we fix a terminal time Tz ∈ [0, TM ], a measurable
control uz : [0, Tz]→ U and an absolutely continuous trajectory xz : [0, Tz]→ X such
that (2.1) holds. That is, for each z ∈ spt µ0, we have an occupation measure µz as
described in (2.2). The occupation measure µ ∈ M+(X × U) and terminal measure
µT ∈ M+(XT ) of the set of trajectories {xz(t)}z∈spt µ0,t∈[0,Tz ] are then defined by
tacking a convex combination of each µz according to µ0 (see also [18, Chapter 5] and
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[19, Section 3]). We obtain the following definition:

µ(A×B) :=

∫
X0

µz(A,B)µ0(dz),

=

∫
X0

(∫ Tz

0

I(xz(t) ∈ A, uz(t) ∈ B)dt

)
µ0(dz),

µT (A) :=

∫
X0

I(xz(Tz) ∈ A) µ0(dz),

(2.3)

for every Borel sets A ⊂ X and B ⊂ U . With the previous definition,

〈µ, l〉 =

∫
X0

(∫ Tz

0

l(xz(t), uz(t))dt

)
µ0(dz), ∀l ∈ C(X × U).

In particular

µ(X × U) = 〈µ, 1〉 =

∫
X0

Tz µ0(dz).

Furthermore for every v ∈ C1(X),

〈µ, grad v · f〉 =

∫
X0

(∫ Tz

0

grad v(xz(t)) · f(xz(t), uz(t)) dt

)
µ0(dz)

=

∫
X0

(v(xz(Tz))− v(xz(0)))µ0(dz)

= 〈µT , v〉 − 〈µ0, v〉 ,

(2.4)

where “grad” denotes the gradient vector of first order derivatives of v, and the “dot”
denotes the inner product between vectors. Equation (2.4) is known as Liouville’s
equation and is also written as

divfµ+ µT = µ0, (2.5)

where the divergence is to be interpreted in the weak sense and a change of sign
comes from integration by part. As we have seen, occupation and terminal measures
as defined in (2.3) satisfy the Liouville equation (2.5). This motivate the following
broader definition.

Definition 2.1. A general occupation measure is a measure that satisfies Liou-
ville’s equation (2.5), for some terminal measure µT ∈ M+(XT ), in the weak sense
described in (2.4).

We have seen in this section how to construct an occupation measure from a set of
feasible trajectories of (ocp). However the set of all occupation measures is in general
much bigger than the set of measures arising in this way.

2.4. Input of the inverse optimal control problem. For inverse optimal
control, we suppose that the trajectories are given. Moreover, the Liouville equation
and positivity constraints are sufficient to develop all the aspects of our analysis of
inverse optimality.

Therefore, independently of how it is constructed, the input data of our inverse
control problem is a general occupation measure as given by Definition 2.1.
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This restriction is made without loss of generality regarding classical trajectories be-
cause, from the construction in (2.3), we consider an input set that contains all of
them. All the results will in particular apply to situations when the occupation mea-
sure is a superposition of classical trajectories as described in (2.3). The results will
also hold if this is not the case and the input measure involves generalized control. Fi-
nally and most importantly, this construction allows to formally treat cases for which
we are given a possibly uncountably infinite number of trajectories as input data and
is therefore much more general than considering one or a few classical trajectories.

2.5. Direct optimal control. Using the formalism of occupation measures,
given a continuous Lagrangian l, an initial measure µ0 and a maximal terminal time
TM , we consider direct optimal control problems of the form

p∗(µ0) := inf
µ,µT

〈µ, l〉
s.t. divfµ+ µT = µ0,

〈µ, 1〉 ≤ TM ,
µ ∈M+(X × U),
µT ∈M+(XT ).

(ocp)

Definition 2.2 (OCP). OCP(l, µ0, TM ) is the set of measures (µ, µT ) solving
problem (ocp).

Note that by Lemma 2.3 and Assumption 1, set OCP(l, µ0, T ) is not empty. The
link between problems (ocp0) and (ocp) is far from trivial. . It is possible to construct
problems for which measures considered in problem (ocp) do not arise in this way
which may introduce spurious minimizers which are far from classical trajectories of
problem (ocp0), see for example [19, Appendix C]. These problems are usually overly
constrained and not physically relevant, and in most practical settings, we have

p∗(δz) = v0(z) ∀ z ∈ spt µ0,

which we could see as an assumption on the inverse problem data. In this constrained
setting, sufficient conditions for this property to hold are those that ensure the ap-
plicability of the Filippov-Ważewski Theorem, see [13] and the discussion around [17,
Assumption I], [19, Assumption 2], [20, Assumption 1]. Under such sufficient condi-
tions, it can be shown using [46, Theorem 2.3] that the equality holds. However, as we
argued in the introduction, the link between (ocp0) and (ocp) is much less problematic
when considering inverse optimality. The main reason is that we consider that the
input of the inverse problem is a measure, which is therefore given and fixed. It could
arise as in (2.3) but not necessarily (see Figure 1.1). We would like to emphasize the
following:

• if the input occupation measure does not satisfy (2.3), then it does not make
sense to consider (ocp0) as a basis for inverse optimality since the input of
the problem itself is more general than the classical controls considered in
(ocp0). In this case, it is more relevant to focus on (ocp) only.

• if the input occupation satisfy (2.3), then, the analysis is still valid. In this
case, since the input of the inverse problem involves classical controls, the
question of the link between (ocp0) and (ocp) is a real issue for direct optimal
control. But in the context of inverse optimality, a partial answer is given a
posteriori by Corollary 3.3. It is shown that, even in this case, considering
(ocp) as a basis for inverse optimality does not allow to identify Lagrangians
for which there is a gap between (ocp0) and (ocp) for all considered initial
conditions in spt µ0, except for a µ0-negligible subset.
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For these reasons we adopt the following convention

All our analysis refers to direct control problems of the form of (ocp).

and the link with (ocp0) (when it makes sense) will be a posteriori justified by
Corollary 3.3: The corresponding conic dual can be written as

d∗(µ0) := sup
v,w
〈µ0, v〉 − wTM

s.t. l + w + grad v · f ∈ C+(X × U)
−v ∈ C+(XT ),
w ≥ 0,
v ∈ C1(X), w ∈ R.

(hjb)

The first two constraints l + w + grad v · f ∈ C+(X × U) and −v ∈ C+(XT ) of (hjb)
are relaxations of the well-known Hamilton-Jacobi-Bellman (HJB) sufficient condition
of optimality [5, 6]. Conic duality provides the following link between the problems
(ocp) and (hjb).

Lemma 2.3. The infimum in (ocp) is attained and there exists a maximizing
sequence in (hjb). In addition, for any feasible primal pair (µ, µT ) and any sequence of
dual variables vk ∈ C1(X) and wk ∈ R, k ∈ N, the following assertions are equivalent

• (µ, µT ) is optimal for (ocp) and (vk, wk)k∈N is a maximizing sequence for
(hjb);

• strong duality:

〈µ0, vk〉 − wkTM −→
k→∞

〈µ, l〉 ; (2.6)

• complementarity:

wk(〈µ, 1〉 − TM ) −→
k→∞

0,

〈µ, l + wk + grad vk · f〉 −→
k→∞

0,

〈µT , vk〉 −→
k→∞

0.

(2.7)

Proof. We only sketch the proof here, for more details see [27]. Observe that (ocp)
is feasible thanks to Assumption 1 and (hjb) is feasible with w = max(−minX×U l, 0)
and v = 0. Moreover, the cone {(divfµ+ µT , 〈µ, 1〉 , 〈µ, l0〉) : µ ∈M+(X × U), µT ∈
M+(XT )} is closed for the weak topology σ(M+(X) × R2, C+(X) × R2) (by using
Banach-Alaoglu’s Theorem). Therefore there is no duality gap between (ocp) and
(hjb) and the optimum is attained in the primal, see e.g. [7, Theorem IV.7.2]. Con-
dition (2.6) is just a reformulation of strong duality in this context. Equivalence with
(2.7) follows by noticing that for any primal feasible pair (µ, µT ) and dual feasible
pair (v, w),

〈µ, l〉 = 〈µ, l〉 − 〈divfµ+ µT − µ0, v〉
≥ 〈µ, l〉 − 〈divfµ+ µT − µ0, v〉+ w(〈µ, 1〉 − TM )
= 〈µ, l + w + grad v · f〉 − 〈µT , v〉+ 〈µ0, v〉 − wTM
≥ 〈µ0, v〉 − wTM .

Remark 1. If the Lagrangian l is strictly positive on X × U , then Lemma 2.3
holds without the constraint 〈µ, 1〉 ≤ TM and without the dual variable w.
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3. Inverse optimal control. Given a “set” of trajectories and model con-
straints, the inverse problem of optimal control consists of finding a Lagrangian for
which the trajectories are optimal. Thanks to the framework exposed in the previ-
ous section, it is now easy to define what is a solution to the inverse optimal control
problem.
• Firstly, the “set” of trajectories will be represented by measures satisfying Li-

ouville equation (2.5) which are part of the data of the inverse problem.
• Secondly, a Lagrangian l solution to the inverse problem is a continuous function

such that (µ, µT ) ∈ OCP(l, µ0, T ) for some T such that OCP(l, µ0, T ) is feasible.
In this section, we propose a rigorous definition of inverse optimality and prove

an equivalence result between direct and inverse optimality. To do so, we use Lemma
2.3 which ensures that OCP(l, µ0, T ) is non empty as long as T ≤ TM . Furthermore,
it provides a certificate of (sub)optimality.

3.1. What is a solution to the inverse optimal control problem?. We
can now formally define what is meant by a solution to the inverse optimal control
problem:

Definition 3.1 (IOCP and IOCPε). For ε > 0, given measures µ ∈M+(C×U)
and µT ∈ M+(XT ) such that divfµ + µT ∈ M+(X0), denote by IOCPε(µ, µT ) the
set of ε-optimal solutions to the inverse optimal control problem, namely the set of
functions l ∈ C(X × U) such that there exists a function v ∈ C1(X) satisfying

〈µ, l + grad v · f〉 ≤ ε,
l + grad v · f + ε ∈ C+(X × U),

〈µT , v〉 ≥ −ε,
−v ∈ C+(XT ).

Then the set IOCP(µ, µT ) of solutions to the inverse optimal control is defined by:

IOCP(µ, µT ) := {l ∈ C(X × U) : l ∈ IOCPε(µ, µT ) ∀ε > 0 }.

Intuitively, Definition 3.1 states that we can find differentiable suboptimality cer-
tificate for any arbitrary precision (see in Remark 2). In addition, the positivity
constraint on l + grad v · f + ε ensures that these certificates provide lower bounds
on the value of the direct problem (ocp0) for arbitrary initial conditions, even not
in spt µ0. The main motivation behind this definition of inverse optimality is the
following:

Theorem 3.2. Given µ ∈M+(C×U) and µT ∈M+(XT ), the set IOCP(µ, µT )
is a convex cone, closed for the supremum norm. Moreover, the following two asser-
tions are equivalent:

• l ∈ IOCP(µ, µT ), divfµ+ µT = µ0 ∈M+(X0);
• ∃T > 〈µ, 1〉, (µ, µT ) ∈ OCP(l, µ0, T ).

Proof. Convexity follows from convexity of the constraints of Definition 3.1. There
exists a constant K such that for any pair (l0, v0) that satisfies constraints of Definition
3.1 for a certain ε > 0, then it holds for any Lagrangian l that 〈µ, l + grad v0 · f〉 ≤
ε + K‖l − l0‖∞ and l + grad v0 · f ≥ −ε−K‖l − l0‖∞ on X × U , which is sufficient
to prove closedness.

For the first implication, suppose that l ∈ IOCP(µ, µT ) and divfµ + µT = µ0.
Then for any T > 〈µ, 1〉, the pair (µ, µT ) is feasible for OCP(l, µ0, T ). Lemma 2.3
holds and the definition of IOCP(µ, µT ) allows to construct a dual sequence that is
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feasible for OCP(l, µ0, T ) and that satisfies the complementarity condition with the
pair (µ, µT ).

We now turn to the last implication. Suppose that (µ, µT ) ∈ OCP(l, µ0, T )
and 〈µ, 1〉 < T . In particular, (µ, µT ) is feasible for OCP(l, µ0, T ) and Lemma
2.3 holds. Consider the dual maximizing sequence (vk, wk)k∈N given by Lemma
2.3. Complementarity ensures that limk→∞ wk = 0. Furthermore, it holds that
limk→∞ 〈µ, l + grad vk · f〉 = 0, l+ grad vk · f≥−wk on X ×U , limk→∞ 〈µT , vk〉 = 0
and vk ≤ 0 on XT which shows that l ∈ IOCP(µ, µT ).

Remark 2. Another motivation behind Definition 3.1 of inverse optimality is the
following. Suppose that l ∈ IOCPε(µ, µT ), then for any T ≥ 〈µ, 1〉, (µ, µT ) is close to
optimal for the problem OCP(l, µ0, T ). Indeed, suppose that (µ̃, µ̃T ) ∈ OCP(l, µ0, T ).
Then there exists v such that

〈µ, l + grad v · f〉 = 〈µ, l〉+ 〈µT − µ0, v〉 ≤ ε
〈µ̃, l + grad v · f〉 = 〈µ̃, l〉+ 〈µ̃T − µ0, v〉 ≥ −Tε,

and −〈µT , v〉 ≤ ε as well as 〈µ̃T , v〉 ≤ ε. In addition, 〈µ, l〉 ≤ 〈µ0, v〉 + 2ε and
〈µ̃, l〉 ≥ 〈µ0, v〉 − Tε. Therefore 〈µ, l〉 ≥ 〈µ̃, l〉 ≥ 〈µ, l〉 − (T + 2)ε.

Remark 3. At first sight the introduction of T in Theorem 3.2 may look artificial
whereas in fact it carries important information. The second part in the equivalence
states that (µ, µT ) is a solution to some direct problem and does not saturate one of
the constraints. This allows to avoid direct problems for which, for any value of T ,
any solution would saturate the constraint on the mass of the occupation measure; for
example this happens in direct problems with free terminal time tending to infinity.
Such problems should be avoided since then an occupation measure with finite mass
cannot be optimal. Given a Lagrangian l, there is no guarantee that there exists a
triplet (µ, µT , T ) which satisfies the second point of Theorem 3.2. However, checking
that a Lagrangian l meets our criterion for inverse optimality ensures that this is the
case.

An interesting corollary is that if the input of the optimal control is given by
classical trajectories, then inverse optimality ensures that the value of (ocp0) is at-
tained by classical trajectories for almost all the initial values considered. This leaves
aside many of the technical issues when working with classical trajectories for direct
optimal control.

Corollary 3.3. If l ∈ IOCP(µ, µT ) and (µ, µ0, µT ) is a superposition of classical
trajectories as defined in equation 2.3 in Section 2.3, then µ0-a.a. (almost all) of these
trajectories must be optimal for the corresponding direct problem. In particular, v0(z)
given by (ocp0) is attained and there is no relaxation gap between (ocp0) with initial
condition z and (ocp) with initial measure δz for µ0-a.a. initial conditions z in sptµ0.

As a consequence, the focus on (ocp) instead of (ocp0) in Section 2.5 is a posteriori
justified by Corollary 3.3. The question of absence of such a gap for initial conditions
z 6∈ spt µ0 cannot be treated by this approach. This question is much less relevant
for inverse optimality since it does not involve initial conditions that are related to
input data of the inverse problem.

3.2. Applications to inverse optimality. We claim that Definition 3.1 is a
powerful tool to analyze inverse optimality in the context of optimal control. To go
beyond Theorem 3.2, we next describe results and comments that stem from Definition
3.1 of inverse optimality.
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3.2.1. How big is the space of solutions to the inverse problem?. The-
orem 3.2 justifies the idea that if trajectories realize the minimum of some optimal
control process then the corresponding Lagrangian meets our criterion. This require-
ment is necessary for any “inverse problem” (and not only for inverse optimal con-
trol). However in general there could be many candidate solutions as illustrated in
this section. In what follows, we assume that the triplet (µ, µ0, µT ) satisfies Liouville’s
equation (2.5).

Conserved values.. Suppose that there exists a function g ∈ C(X × U) such that
g(x, u) = 0 for all (u, x) ∈ sptµ. Then g2 ∈ IOCP(µ, µT ). In practical examples there
might be many such conserved values. For instance this is the case when x or u or
both remain on a manifold or when there exists a continuous mapping x→ u(x).

Total variations.. Consider any function g ∈ C1(X). All Lagrangians of the form
l = grad g · f belong to IOCP(µ, µT ), independently of (µ, µ0, µT ).

Convex conic combinations and uniform limits of solutions.. As stated in Theo-
rem 3.2, the set of solutions to the inverse problem is a convex cone, closed for the
supremum norm. For example, let g ∈ C1(X) and consider a Lagrangian l ∈ C(X×U).
Then OCP(l, µ0, T ) = OCP(l + grad g · f, µ0, T ) for every T > 0 and therefore both
Lagrangians l and l + grad g · f are solutions to the inverse optimal control problem.

All the above examples illustrate that many solutions to the inverse problem may
exist. Although these solutions are valid from a theoretical point of view, they do not
correspond to what is commonly expected from a solution. Indeed, they do not arise
from an optimal physical process that would have generated trajectories, but rather
from mathematical artifacts.

3.2.2. How does the direct problem affect the space of solutions to the
inverse problem?. Intuitively, the more information is contained in (µ, µT , µ0), the
smaller is the space of solutions to the inverse problem. We next discuss two factors
that impact the size of IOCP(µ, µT ).

Direct problem constraints.. Denote by K1 (resp. K2) the feasible set of problem
(ocp) and by IOCP1(µ, µT ) (resp. IOCP2(µ, µT )) the set of solutions to the inverse
problem (as described in Definition 3.1) when the state, control and dynamical con-
straints are given by (X1, U1, f1) (resp. (X2, U2, f2)).

If K1 ⊂ K2 then IOCP2(µ, µT ) ⊂ IOCP1(µ, µT ). In other words, there is a kind
of duality between the space of feasible solutions for the direct problem and the space
of solutions to the inverse problem. An extreme instance is when the feasible space of
the direct problem is a singleton (f does not depend on the control u), in which case
any Lagrangian is a solution to the inverse problem.

Range of the occupation measure.. Suppose that (µ, µ0, µT ) = (µ1, µ1
0, µ

1
T ) +

(µ2, µ2
0, µ

2
T ) where divfµ1 + µ1

T = µ1
0 and divfµ2 + µ2

T = µ2
0. Then IOCP(µ, µT ) ⊂

IOCP(µ1, µ1
T ). As a consequence, maximizing the support of the initial measure µ0

reduces the space of solutions to the inverse problem. When the occupation measure
µ is a superposition of trajectories as detailed in Section 2.3, the larger is the “space”
occupied by trajectories, the smaller is the space of potential solutions to the inverse
problem.

3.2.3. A toy example of quantitative well-definedness analysis. To il-
lustrate the proposed framework we consider a simple uni-dimensional example. We
emphasize that his example is very simple in the sense that the direct problem is easy.
However, inspecting the solution of the inverse problem leads to non trivial behaviors.
Let X = [−1, 1] with XT = {0} and let f(x, u) = u with U = [−1, 1]. Consider the
family of Lagrangians F = {lα : u 7→ 1 + α

2 u
2, α ≥ 0}. Suppose that we are given
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a triplet (µ, µ0, µT ) which consists of a superposition of trajectories as described in
Section 2.3. We wish to find a candidate Lagrangian in the family F . Then we have
the following alternatives.

1 F ∩ IOCP(µ, µT ) = ∅.
2 F ∩ IOCP(µ, µT ) = F .
3 F ∩ IOCP(µ, µT ) is a singleton, {lα}, α > 2.
4 F ∩ IOCP(µ, µT ) = {lα, 0 ≤ α ≤ 2} .

We should comment on case 1 latter. If the support of µ is empty, which means that
µ0 = µT = δx, then we are in case 2. Assume now that the support of µ is non-empty
and we are not in case 1. Then there exists α ≥ 0 such that lα ∈ IOCP(µ, µT ).
Consider a sequence of decreasing positive numbers εk → 0 and the corresponding
certificates functions vk that allow to verify that lα ∈ IOCPεk(µ, µT ). Since µT = δ0,
we may assume (up to an addition) that vk(0) = 0 which simplifies the problem. In
addition, one must have 1 + α

2 u
2 + v′k(x)u → 0, µ almost every where (recall that

the support of µ is non empty and this concerns a non empty subset of X and U).

Furthermore, for any x, one must have 1 + α
2 u

2 + v′k(x)u + εk =
(√

α
2 u+ v′(x)√

2α

)2
+

1 + εk − v′(x)2

2α ≥ 0, for u ∈ [−1, 1].

• Suppose that α > 2. Then for any k, |v′k(x)| ≤ 1 + α
2 + εk. Since εk goes to

0 and α > 2, for k sufficiently large, has
|v′k(x)|
α ≤ 1. Taking u = −v

′
k(x)
α gives

1+ α
2 u

2 +v′k(x)u+ εk ≥ 1+ εk− v′(x)2

2α ≥ 0. It must hold µ almost everywhere

that 1 + εk − v′(x)2

2α → 0 and |u| =
√

2
α .

• Suppose that 0 ≤ α ≤ 2. It must hold µ almost every where that v′k(x)u →
−1 − α

2 u
2. This implies that u 6= 0 and |v′(x)| → 1+α

2 u
2

|u| , µ almost every

where. It can be verified that for α ≤ 2, this is a strictly decreasing function
of |u| for |u| ≤ 1. Therefore, it holds that lim inf |v′k(x)| ≥ 1 + α

2 , µ almost
every where. Since we have |v′k(x)| ≤ 1+ α

2 +εk, it holds that |v′k(x)| → 1+ α
2

and therefore |u| = 1, µ almost everywhere. In this case, it is easy to construct
alternative sequences ṽk = 2+α̃

2+α̃vk for 0 ≤ α̃ ≤ 2 to show that lα̃ is also a
member of IOCP(µ, µT ).

To conclude, we are in case 1 when the trajectories that generate µ are not optimal
with respect to any Lagrangian in F , in particular when |u| is not µ almost everywhere
constant. If this is not the case and µ is not degenerate, we have a unique solution or
a set of solutions depending on µ and its relation with the constraint on u.

4. Practical inverse control. As discussed in Section 3.2.1, the space of solu-
tions to the inverse problem can be very large. Many of these solutions are of little
interest for practitioners because they lack some physical meaning. However, from
a formal point of view “valid” solutions exist and ideally they should be the only
solutions of a practical inverse optimal control problem to be defined.

One may invoke some heuristics to reduce the space of solutions and to enforce
prior knowledge in the treatment of the inverse problem. This is commonly achieved
by imposing constraints on the candidate Lagrangian solution. Such heuristics include
:

• restricting the dependence on certain variables;
• shape conditions (e.g., convexity);
• conic constraints such as positivity;
• parametric constraints (e.g., considering a finite dimensional family of candi-
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date Lagrangians);
• constraints relating the dependence between the candidate Lagrangian and

the corresponding value function.
Notice that Definition 3.1 refers to the large class of continuous Lagrangians with

conic constraints. From a theoretical perspective, this allows to characterize inverse
optimality in full generality. However this is not amenable to numerical computation
yet and so we also describe tractable numerical approximations in the context of
inverse optimality.

Finally, according to Definition 3.1, the input of the inverse problem is an occu-
pation measure. Again, this is a convenient tool for theoretical purposes but in most
practical cases such an occupation measure is not available. In fact, roughly speaking,
only some realizations of an experiment are available and these realizations form a
data set which is an approximation of an hypothetical occupation measure. There-
fore in practice the input of the inverse problem is only an approximation of an ideal
input, and correctness of this approximation is justified under certain experimental
assumptions at the end of this section.

4.1. Normalization. The trivial Lagrangian is solution to the inverse problem
independently of the input occupation measures. As we have seen in Section 3.2.1,
total variations share the same property. Even though these are solutions to the
inverse problem, it is important to avoid them in practice because they do not depend
on the input occupation measure and therefore carry no information about it. As
illustrated in Example 3.2.3, one way to avoid these spurious solutions is to consider
only very restricted families of Lagrangians that cannot contain such solutions. This
might be quite restrictive in practice and therefore we provide an alternative. We
need the following assumption:

Assumption 2 (Finite time controllability). There exists T > 0 and a compact
set X̃ ⊂ X with smooth boundary and µ0(X̃) > 0, such that for any x1, x2 ∈ X̃,
there exists s ∈ [0, T ], a bounded function u : [0, s]→ U and an absolutely continuous
trajectory x : [0, s] → X such that x(0) = x1, x(s) = x2 and ẋ(t) = f(x(t), u(t)) for
all t ∈ [0, s].

Under assumption 2 we have the following result.
Proposition 4.1. If in Definition 3.1 one includes the normalization∣∣∣∣1− ∫

X̃×U
l + grad v · f

∣∣∣∣ = ε

then 0 6∈ IOCP(µ, µT ).
Proof. This is due to the following contradiction. Suppose that 0 ∈ IOCP(µ, µT ).

Choose a decreasing sequence εk → 0 as k → ∞, and construct a sequence vk of
differentiable functions that satisfy conditions of Definition 3.1 for the chosen εk. Then
〈µ0, vk〉 = 〈µT , vk〉 − 〈µ, grad vk · f〉 = O(εk). Because of Assumption 1, vk(x0) ≤
TM εk for every x0 ∈ X0. Therefore, by integration, max(

∫
X̃
vkµ0,

∫
X\X̃ vkµ0) ≤

O(εk). Furthermore,
∫
X̃
vkµ0 +

∫
X\X̃ vkµ0 = 〈µ0, vk〉 = O(εk). Finally,

max

(∫
X̃

vkµ0,−
∫
X̃

vkµ0

)
≤ O(εk)

and limk→∞
∫
X̃
vk = 0.

In addition, by Assumption 2, we also have |vk(x1) − vk(x2)| ≤ Tεk for every
x1, x2 ∈ X̃. Since µ0(X̃) > 0, this implies that vk → 0 uniformly on X̃, as k → ∞.
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In addition,
∫
X̃×U grad vk · f → 1 as k →∞. Next, with the polynomial vector field

x 7→ g(x) =

∫
U

f(x, u)du,

Stokes’ Theorem yields∫
X̃

div(vk(x)g(x)) =

∫
X̃

div(g(x))vk(x) + grad vk(x) · g(x)

=

∫
X̃

div(g(x))vk(x) +

∫
X̃×U

grad vk(x) · f(x, u)

=

∫
∂X̃

vk(x)g(x) · ~n(x)

where ~n(x) is the outward pointing normal to the boundary at x. Because of the
uniform convergence of vk → 0 on X̃ as k → ∞, and boundedness of g and div g on
X, the left-hand side converges to 1 while the right-hand side converges to 0, which
is a contradiction.

Remark 4. The conditions on X̃ may be relaxed. Indeed, the only important
point is to be able to apply Stokes’s Theorem. In particular, the set X̃ could be a
box or an open set whose boundary does not have too many non-smooth points, see
e.g. [47, Theorem III.14A].

Remark 5. The normalization given in Proposition 4.1 obviously ensures that
Lagrangians in the form of a total variation are excluded. Assumption 2 may look
very strong regarding the result of Proposition 4.1. However the next example shows
that it cannot be excluded.

Example 1. Consider the direct control problem with X = U = [0, 1], XT = {1},
TM = 1 and f(x, u) = u. These data are obviously not compatible with Assumption
2. Choose µ0(dx) = dx and l0(x, u) = 1 so that the couple µ(dx, du) := xdxδ1(du)
and µT (dx) := δ1(dx), solves the problem

p∗(µ0) := inf
µ,µT

〈µ, 1〉
s.t. divfµ+ µT = µ0,

〈µ, 1〉 ≤ TM ,
µ ∈M+(X × U),
µT ∈M+(XT ).

(4.1)

Indeed, for any differentiable v, 〈divfµ, v〉 =
∫ 1

T
−v′fµ(dx) =

∫ 1

T
vdx − v(1) =

〈µ0, v〉 − 〈µT , v〉 . Furthermore, the function x 7→ v∗(x) := 1− x ensures that (µ, µT )
is an optimal solution. Indeed 〈µ, 1〉 = 〈µ0, v

∗〉 . Consider a sequence of differentiable
functions (vk), k ∈ N, such that vk(x) = 0 for x ≥ 1

k and vk(x) = −(kx− 1)2 other-

wise. For X̃ = [0, 1], we have 0 ≤ 〈µ, v′kf〉 =
∫ 1
k

T
kx − k2x2dx = 1

6k → 0, v′kf ≥ 0,
〈µT , vk〉 = 0, vk(1) = 0,

∫
X̃×U v

′
kf = vk(1)− vk(0) = 1. Therefore even if we enforce

the normalization
∫
X̃×U l + v′f = 1, we cannot prevent the trivial Lagrangian l = 0

from being an optimal solution to the inverse problem.
Remark 6. Regarding Proposition 4.1, one could argue that simple linear con-

straints such as l(0) = 1 or conic constraints such as l > 0 would be sufficient to avoid
the trivial Lagrangian. However, this does not allow to avoid total variations which
are equivalent to the trivial Lagrangian in terms of solutions to the direct problem.
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Denote by NIOCP the subset of IOCP with the normalization constraint of Propo-
sition 4.1 added to the constraints of Definition 3.1. One important feature of this
normalization is that it can be thought of as a way to intersect the cone of solutions
to the inverse problem with an affine subspace. Therefore NIOCP is still closed and
convex. Furthermore, if we restrict the set of candidate Lagrangians to be finite-
dimensional, one may look for minimum norm-like solutions which will prove to be
useful in numerical experiments. Indeed, NIOCP being closed and convex and all
norms being equivalent in finite dimensions, optimization problems over NIOCP, if
bounded, have an optimal solution. Finally, as 0 6∈ NIOCP, one may minimize any
norm-like function to enforce specific prior structure and avoid the trivial Lagrangian.

4.2. Polynomial approximation. Until now, all the results that we have pre-
sented involve continuous and differentiable functions, in full generality. However, for
practical computation one has to approximate such functions and of course, polyno-
mials are obvious natural candidates. But in our context they are also of particular
interest for mainly three reasons:

• for fixed degree, polynomials belong to finite-dimensional spaces and are
therefore amenable to computation;

• when varying the degree, the class of polynomials is rich enough to approxi-
mate a wide class of functions;

• Positivity Certificates from real algebraic geometry allow to express positivity
constraints in a computationally tractable way.

From now on, we make the following assumption:
Assumption 3. f is a polynomial and X, XT and U are basic semi-algebraic

sets. As proposed in Definition 3.1, checking that a polynomial is a solution of the
inverse problem involves the construction of a sequence of continuously differentiable
functions. These functions can also be approximated by polynomials. In this section
we describe some tools required for such an approximation and we also prove the
correctness of the approximations.

Let g1, . . . , gm ∈ R[z] be polynomials in the variable z ∈ Rn and consider the
basic semi-algebraic set

G = {z ∈ Rn : gi(z) ≥ 0, i = 1, . . . ,m}.

Let g0 = 1 and let Σ2 ⊂ R[z] denotes the set of sums-of-squares (SOS) polynomials,
i.e., p ∈ Σ2 if it can be written as a sum of squares of other polynomials.

Definition 4.2. Let Qk(G) denote the convex cone of polynomials that can be
written as

p =

m∑
i=0

sigi, si ∈ Σ2, i = 0, 1, . . . ,m,

where the degree of sigi, i = 0, 1, . . .m, is at most 2k. If p ∈ Qk(G) we say that p has
a Putinar positivity certificate. It is immediate to check that any element of Qk(G)
is non-negative on G. A remarkable property of such certificates is that a partial
converse is true.

Proposition 4.3 ([37]). Suppose that the polynomial super-level set {x : gi(x) ≥
0} is compact for some i = 1, . . . ,m. If p > 0 on G then there exists k ≥ 0 such that
p ∈ Qk(G).

Furthermore and importantly from a computational viewpoint, checking whether
p ∈ Σ2 reduces to checking whether a set of LMIs [26] involving the coefficients of p
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has a solution. Therefore a more precise definition of inverse optimality in the context
of polynomial Lagrangians is as follows (compare with Definition 3.1).

Definition 4.4 (polyIOCP and polyIOCPε,k). For ε > 0, given measures µ ∈
M+(C × U) and µT ∈ M+(XT ) such that div fµ + µT = µ0 ∈ M+(X0), denote by
polyIOCPε,k(µ, µT ) the set of polynomials l ∈ R[x, u]2k (i.e., of degree at most 2k)
such that:

〈µ, l + grad v · f〉 ≤ ε,
l + grad v · f + ε ∈ Qk(X × U),

〈µT , v〉 ≥ −ε,
−v ∈ Qk(XT ),

for some polynomial v ∈ R[x]2k.
Denote also by polyIOCP(µ, µT ) the set of polynomial solutions to the inverse

optimal control problem: That is, l ∈ polyIOCP(µ, µT ) if for any ε > 0 there exists
k(ε) such that l ∈ polyIOCPε,k(ε).

In other words, polyIOCPε,k(µ, µT ) is the set of polynomial ε-solutions with de-
gree bound 2k, to the inverse optimal control problem. The advantage of the previous
definition, is that, provided that one has the possibility to compute the linear func-
tionals µ ∈ R[x, u]∗ and µT ∈ R[x]∗, checking whether l ∈ polyIOCPε,k(µ, µT ) for
k and ε given reduces to solving a convex LMI problem [26]. Furthermore, under
a compactness assumption, in the asymptotic regime this definition is equivalent to
Definition 3.1.

Proposition 4.5 (Correctness of polynomial approximation). Suppose that one
of the polynomials defining the basic semi-algebraic set X (resp. U) has a compact
super-level set. Then

polyIOCP(µ, µT ) = IOCP(µ, µT ) ∩ R[x, u].

Proof. The direct inclusion is trivial. For the reverse inclusion, suppose that
l ∈ IOCP(µ, µT )∩R[x, u]. Fix ε > 0, and take for v a certificate that l ∈ IOCP ε

3
(µ, µT )

as given by Definition 3.1. Since we consider compact sets in finite dimensional spaces,
both v and its gradient grad v can be simultaneously approximated uniformly by a
polynomial up to an arbitrary precision. Therefore as f is bounded on X × U , there
exists a polynomial vk of degree k such that supX |v−vk| ≤ ε

3 and supX×U |gradv ·f−
gradvk ·f | ≤ ε

3 . Hence l+gradvk ·f+ε ≥ ε
3 > 0 on X×U and ε

3 −vk ≥
ε
3 > 0 on XT .

Using Proposition 4.3, there exists k1 and k2 such that l+gradvk ·f+ε ∈ Qk1(X×U)
and ε

3 − vk ∈ Qk2(XT ). Then l ∈ polyIOCPε,k(µ, µT ) whenever k ≥ max(k, k1, k2)
and finally, l ∈ polyIOCP(µ, µT ) because ε was arbitrary (fixed).

All properties of Lagrangians in Definition 3.1 hold for the Lagrangians in Def-
inition 4.4. For example, as stated in Remark 2, if l ∈ polyIOCPε,k(µ, µT ), then
(µ, µT ) is close to optimal for OCP(l, µ0, T ). In particular, if we the moments of µ
and µT are available then the latter property can be checked numerically by solving
a semi-definite program.

4.3. Integral discretization. For practical numerical computation in the con-
text of Definition 4.4, we still must be able to integrate polynomials with respect to µ
and µT . This is easy provided that we know the moments of µ and µT . However, exact
computation of such moments cane be complicated in practice, especially when µ is a
superposition of trajectories. Usually, data sets from experiments consist of samples
of trajectories which can be seen as realizations of a random sampling process.
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In this section we first describe how the framework of occupation measures can
formally describe the process of sampling trajectories and we justify the replacement of
measures (µ, µT ) by their empirical counterparts when considering empirical samples
as input data for inverse control problems. In the context of polynomial certificates
in Definition 4.4, this amounts to replacing the moments of the measures (µ, µT ) by
their empirical counterparts. Consider the probability measure µ0 on X0 and the
measures (µ, µT ) in equations (2.1) and (2.3). One way to interpret these measures
is to consider the following random process:

• choose z ∈ spt µ0 randomly,
• choose t randomly uniformly on [0, Tz],
• output ξ = (xz(t), uz(t)).

This defines a generative process for the random variable ξ. If the probability for an
initial condition z to belong to a Borel set A ⊂ X0 is given by

P[z ∈ A]

=p0(A) :=

∫
A
Tzµ0(dz)∫

X0
Tzµ0(dz)

,

then the probability for a trajectory ξ to belong to a Borel hyperrectangle (A,B) ⊂
X × U is given by

P[ξ ∈ A×B]

=pµ(A×B) :=

∫
X0

(∫ Tz

0

I(xz(t) ∈ A)I(uz(t) ∈ B)dt

)
µ0(dz) =

µ(A×B)

µ(X × U)
.

A statistical model for points (xi, ui), i = 1, . . . , n, that are samples of trajectories, is
to assume that we repeat the previous process n times, independently. In this case,
we say that the database D = {(xi, ui)}ni=1 is made of independent realizations of a
random variable with underlying distribution pµ. The process which generates the
database being random, we write

{ξi}ni=1
i.i.d.∼ pµ.

to stress that all ξi are independent and identically distributed (i.i.d.) according to
pµ (they are independent copies of the same random variable). Similarly, µT can be
seen as the probability distribution describing the following random process:

• choose z ∈ spt µ0 randomly according to p0,
• output xz(Tz).

We now define what is an approximate solution to the inverse problem when the only
information available about µ is a realization, D = {(xi, ui)}ni=1, of a random process,

{ξi}ni=1
i.i.d.∼ pµ.

Definition 4.6 (Sampled-IOCPε,k). For ε > 0 and D = {(xi, ui)}ni=1, let
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Sampled− IOCPε,k be the set of polynomials l ∈ R[x, u]2k such that :

1

n

n∑
i=1

l(xi, ui) + grad v(xi) · f(xi, ui) ≤ ε,

l + grad v · f ∈ Qk(X × U),

− v ∈ Qk(XT ),

v + ε ∈ Qk(XT ),∫
X̃×U

l + grad v · f = 1.

for some polynomial v ∈ R[x]2k. In other words, Sampled− IOCPε,k is the set of
polynomial ε-optimal solutions (with degree bound k) of the sampled inverse optimal
control problem.,

One has replaced µ by its empirical counterpart, added the normalization of
Proposition 4.1 and simplified other conditions; see also Remark 7.

Importantly, membership in Sampled− IOCPε,k(D) can be tested by semi-definite
programming.

Using arguments from empirical processes and learning theory, one can quantify
the price to pay for this discretization. Of course since we assume that the pro-
cess that generates the data include some randomness, such a quantification holds
probabilitically.

Proposition 4.7. Suppose that D = {(xi, ui)}ni=1 is a realization of the random

process {ξi}ni=1
iid∼ pµ. Then there exist constants K1(X,U, k), K2(X,U, k) that only

depend on (X,U), and k ∈ N, such that for any l ∈ Sampled− IOCPε,k(D) and any
0 < δ < 1:

l ∈ polyIOCPε′(n),k(µ, µT ) with probability 1− δ,

where

ε′(n) = ε+
1√
n

(
K1(X,U, k) +K2(X,U, k)

√
ln

2

δ

)
,

and where the randomness comes from the realization of D.
Proof. Apply Lemma A.1 of Appendix A to the polynomial l + grad v · f to get

a bound on 〈pµ, l + grad v · f〉.
Remark 7. The conditions detailed in Definition 4.6 ensure that v ≤ 0 on

XT and 〈µT , v〉 ≥ −ε, for any terminal measure. This is done in order to avoid to
deal with the terminal measure µT but other alternatives are possible. For example,
when XT is a single point or a simple algebraic set one may enforce (as we do in
Section 5) v = 0 on XT instead. Another possibility is to replace µT by its empirical
counterpart. However in this case we need to provide a lower bound or add constraints
on v to obtain finite sample bounds as described in Proposition 4.7. Proposition 4.7
mixes arguments from measure theory and conic optimization with arguments from
empirical process and statistical learning theory. The implication of this result is that
for a fixed degree, provided that the sample size is big enough, with high probability
we do not loose much by approximating µ by an empirical sample.
•We would like to emphasize here that it is necessary to restrict the complexity of

the class of functions in which the candidate Lagrangian is searched. Indeed otherwise
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for instance, for any fixed sample, the polynomial (x, u) 7→
∏n
i=1 ||x− xi||2||u− ui||2

belongs to Sampled− IOCP0,4n(D), but this clearly does not give much insight on the
original control problem! The degree of the polynomial candidates is one among many
possible measures of complexity. Furthermore, although the constants are likely to be
sub-optimal, they give a sense of how fast the degree of the polynomial approximation
may grow with respect to the sample size in order to maintain accurate approximations
of µ.

5. Numerical illustrations. Building on results of Section 4, we next provide
illustrative numerical simulations. In order to fit in the framework of the previous
section, we consider examples where f is a polynomial and X, U and XT are basic
semi-algebraic sets. In addition, the input data of the inverse problem is given by
a finite database: D = {(xi, ui)}i=1,...,n. In the sequel, the candidate Lagrangians
satisfy Definition 4.6.

To compute such Lagrangians, the main idea is to solve an optimization problem
with fixed k ∈ N, where:

• l ∈ R[x, u]2k, v ∈ R[x]2k and ε > 0 are the decision variables,
• ε is the criterion to minimize,
• Sampled− IOCPε,k(D) is the projection on (l, ε) of the set of feasible solutions

(l, ε, v).
In addition, we also include a sparsity inducing term in the criterion that will prove
to be useful in numerical experiments.

5.1. Numerical experiments.

5.1.1. Problem formulation. We consider the following optimization problem:

inf
l,v,ε

ε+ λ||l||1
s.t. 1

n

∑n
i=1 l(xi, ui) + grad v(xi) · f(xi, ui) ≤ ε,

l + grad v · f ∈ Qk(X × U),
v = 0 on XT ,∫
X̃×U l + grad v · f = 1.

(iocp)

where l ∈ R[x, u]2k, v ∈ R[x]2k, ε is a real, λ > 0 (fixed) is a given regularization
parameter, and ||.||1 denotes the `1 norm of a polynomial, i.e. the sum of absolute
values of its coefficients when expanded in the monomial basis. The first constraints
come from Definition 4.6 and the last affine constraint is meant to avoid the trivial
solution; see Proposition 4.1. The `1 norm is not differentiable around sparse vectors
(with entries equal to zero) and has the sparsity promoting role to bias solutions of
the problem towards polynomial Lagrangian solutions with few nonzero coefficients.
This regularization affects problem well-posedness and will prove to be essential in

numerical experiments.

5.1.2. Numerical implementation. Linear constraints are easily expressed in
term of polynomial coefficients. A classical lifting allows to express the `1 norm as a
linear program: for x ∈ Rn, ||x||1 = mins

∑n
i=1 si subject to si ≥ xi and si ≥ −xi,

for all i. The Putinar positivity certificates can be expressed as LMIs [26] whose size
depends on the degree bound k. We use the SOS module of the YALMIP toolbox [29]
to manipulate and express polynomial constraints at a high level in MATLAB. The size
of the corresponding LMI grows as

(
n+k
k

)
where n is the number of variables and k

the degree bound in Putinar certificates. Thus it is reasonable to consider relatively
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Figure 5.1. Solution for the one dimensional minimum exit time problem, effect of the regu-
larization parameter λ. See Section 5.2 for problem details and comments. The first column is the
distribution of the error ε. It represents the value of l(x, u)+gradv ·f(x, u) as a function of x where
u = sign x is the optimal control. The second column is a representation of the value function v
and the third column is a representation of its derivative for solutions of problem (iocp) with and
without regularization. We take 100 points on the segment. Lagrangian l and value function v are
both polynomials of degree 16.

small problems. As shown in the numerical results section, we could handle problems
with 5 variables and degree 10 with a reasonable amount of time and memory. To
handle larger size problems, specific heuristics and techniques beyond the scope of
this paper must be implemented.

5.1.3. General setting. We consider several direct problems of the same form
as (ocp0). That is, we give ourselves compact basic semi-algebraic sets X, U , XT , the
dynamics f , and a Lagrangian l0. We take known examples for which the (direct)
optimal control law can be computed and try to vary their degree of difficulty. Given
these optimal state-control trajectories, we generate randomly n data points D =
{(xi, ui)}i=1...n according to the random process described in Section 4.6. For a given
value of λ and k, we compute a solution l of problem (iocp). Then we measure how l
is close to l0 by computing the following quantity (in the monomial basis):

min
α

||l0 − αl||2
||l0||2

=

(
1− 〈l0, l〉2

||l0||22||l||22

) 1
2

. (5.1)

We also report the value of ε in program (iocp). A larger value of ε means less reliable
numerical certificates; see Remark 2.

5.2. Illustration on a one-dimensional example. First consider the eikonal
problem of minimum exit time from the unit ball in the one-dimensional case. The
data of the problem are

X = U = B1, XT = ∂X, l0 = 1, f = u.

The optimal law for this problem is u = signx and the value function is v0(x) = 1−|x|.
We sample 100 points uniformly in X and solve problem (iocp). We compare the
choices λ = 0 (no regularization) and λ = 1. Results are presented in Figure 5.1

20



A A' B C

1e−04

1e−02

1e+00

1e
−

06

1e
−

03

1e
+

00

1e
−

06

1e
−

03

1e
+

00

1e
−

06

1e
−

03

1e
+

00

1e
−

06

1e
−

03

1e
+

00

lambda

er
ro

r

Error

est

eps

Figure 5.2. Error versus regularization parameter λ. Problems details are given in the main
text. Estimation error (est) is given in (5.1). Epsilon error (eps) is the value of ε in program (iocp).
Trajectory sample size: 20 for A, A’ and B, 50 for C. Degrees of l and v are 4 and 10 respectively.

which displays the distribution of the error ε, the estimated value function v as well
as its first derivative. Despite the simplicity of the problem, it is quite representative
of the difficulties that arise in the context of inverse optimality. The first difficulty is
the size of the set of solutions to the inverse problem:

• given any symmetric differentiable concave function v vanishing on {−1, 1},
the pair (l = |v′|, v) solves problem (iocp) with ε = 0;

• any positive polynomial on X × U vanishing if |u| = 1 solves problem (iocp)
with ε = 0;

• any Lagrangian of the form v′(x)u solves problem (iocp) with ε = 0;
• any convex combination of solutions of the types mentioned above also solves

problem (iocp).

Even though formally accurate, these solutions form a relatively large set and do not
carry any physical meaning. In the absence of any additional form of prior knowledge,
it is impossible to discriminate between these solutions and the one that we wish to
recover, namely l0. This is illustrated in Figure 5.1 where the red line (λ = 0) displays
an example of value function v obtained with a very low value of ε. This is a very good
certificate that our database D is close to optimal for the corresponding Lagrangian
l. However, the estimated Lagrangian is far from the original one, namely l0 = 1.
Moreover, the shape of the value function is quite uncommon. This motivates the
use of prior knowledge to bias the solutions of problem (iocp) toward a certain set of
solutions. We use the `1 norm which tends to promote Lagrangians with few non-zero
coefficients.

When λ = 1, the sparsity inducing effect of `1-norm regularization allows to
recover the true Lagrangian (l0 = 1) which is indeed sparse. The solution of problem
(iocp) involves a polynomial function v which should in principle be close to the true
value function v0(x) = 1 − |x|. The v function displayed in Figure 1 is close to v0.
However, v0 is not smooth around the origin and therefore its derivative is harder to
approximate by polynomials around this point. Hence the value of the error is higher
around the origin.
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5.3. Illustration on more complex problems. These simulations are taken
from [34]. We consider the following free terminal time direct problems:

Minimum exit time in dimension 2:.

X = U = B2, XT = ∂X, l0 = 1, f = u. (5.2)

The optimal law is u = x
||x||2 and the value function is v0(x) = 1− ||x||2.

Minimum exit norm in dimension 2:.

X = U = B2, XT = ∂X, l0 = ||x||22 + ||u||22, f = u. (5.3)

The optimal law is u = x and the value function is v0(x) = 1− ||x||22.
Minimum time Brockett integrator:.

X = 3B3, U = B2, l0 = 1, f = (u1, u2, u1x2 − u2x1). (5.4)

Recall that the Brockett integrator of nonlinear systems control is also known (up to a
change of coordinates) as the unicycle or Dubins system, one of the simplest instance
of a non-holonomic system in robotics, see e.g. [12] for the connection. The optimal
law and value function are described in [36]. Complementary details are found in
Appendix B of [35].

Data generation:. We consider the following settings:
A problem (5.2) with samples from B2;

A’ problem (5.2) with samples from B2 \ 1
2B2;

B problem (5.3) with samples from B2;
C problem (5.4) with samples from B3 \

(
1
2B2 × R

)
.

In all cases we fix the degree of l to 4 and that of v to 10.
Results:. The results for the four problems are presented in Figure 5.2. For all

problems, l is of degree 4. Therefore, l is to be found in a space of dimension 70 for
problems A, A’ and 126 for problem D. When the estimation error is close to 1, we
estimate a Lagrangian l that is orthogonal to l0 (in the monomial basis), and when
it is close to 0, they are colinear. We also display the ε value of (iocp). We consider
that the estimation is reasonable, when both estimation error and ε values are low.
• For all problems we are able to recover the true Lagrangian with good accuracy

for some value of the regularization parameter λ. In the absence of regularization,
we do not recover the true Lagrangian at all. This highlights the important role
of `1 regularization which allows to bias the estimation toward sparse polynomials.
The choice of λ in practical settings is subject to heuristics: numerical simulations or
cross-validation which consists in keeping a portion of the input data as a validation
set.
• For all four problems, when the estimation error is minimal, the value of ε

is reasonably low, depending on how the value function can be approximated by a
polynomial. For example, A’ shows lower ε value because we avoid sampling database
points close to the non-differentiable point of the true value function. In example
D, the value function is known to be harder to approximate by polynomials and the
value of ε is a bit larger. The estimation accuracy is still very reasonable.

6. Conclusion. The main contribution of this paper is to propose a general
framework to analyze the inverse problem of optimal control. The analysis is based
on the weak formulation of direct optimal control problems using occupation mea-
sures, relaxed Hamilton-Jacobi-Bellman optimality conditions, and duality of infinite-
dimensional linear programs. The proposed formulation is powerful enough to ensure
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that there is no gap between solutions of the direct and inverse problem (Theorem
3.2). To the best of our knowledge this is the first result of this kind. In addition, in
principle the proposed methodology is applicable to practical problems where we only
have access to sample trajectories. We have also proposed numerical and statistical
approximation procedures from which solid theoretical guaranties can be obtained.
Finally we have illustrated our results on relatively simple (but not trivial) numerical
examples of modest size.

One of the most striking aspects of the inverse problem is its set of valid solutions.
Indeed, even for the simplest problems it is difficult to discriminate between physi-
cally meaningful Lagrangians and spurious mathematical solutions. For this reason,
formulating the inverse problem as a well-posed problem (in particular with a unique
solution) requires the introduction of strong prior knowledge – sometimes arguably
too restrictive – about the nature of the Lagrangian to be recovered; see for example
[2]. However the proposed formulation based on relaxed HJB-optimality conditions,
allows to get intuitions about characteristics that affect well-posedness of the problem.

This work is to be seen as a first step toward a theoretical and practical framework
for the resolution of inverse problems in a variety of contexts. Further aspects of
the problem have to be investigated within this realm. First, we only deal with
deterministic trajectories. For practical purposes it is essential to consider the effect of
experimental noise, both from theoretical and practical perspectives, and to determine
to which extent and how the problem can be solved in this more difficult context.
Second, we have proposed a numerical scheme to approximate solutions and show
that it is effective on academic examples of modest size. Experimental validation of
such approximations should be carried out on real world examples of larger size. This
involves a lot of data processing and fine tuning for each specific example. In this
perspective, humanoid robotics provides an active and attractive field of application
[4, 31].
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work was carried out during Edouard Pauwels’ postdoctoral stay at LAAS-CNRS. The
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Appendix A. Proof of Proposition 4.7. We develop uniform finite sample
bounds that hold with high probability for arbitrary probability distribution in the
context of polynomial functions. These are in particular useful to derive bounds for
the random process described by occupation measures as exposed in Section 4.3. The
techniques used have become fairly standard in empirical process theory and statistical
learning theory, see for example [9] for a nice introduction.

In what follows, we consider a compact set Z ⊂ Rp with non empty interior. For
a polynomial z ∈ Rp 7→ q ∈ Rd[z] of degree d, c(q) denotes its coefficients in the
monomial basis (of size

(
p+d
d

)
). Similarly for a point z ∈ Z, v(z) denotes the

(
p+d
d

)
dimensional vector representing the evaluation of the corresponding monomials at z
such that q(z) = c(q) · v(z) with the dot denoting the inner product. We consider
the following set of polynomials Kd(Z) = {q ∈ Rd[z], q ≥ 0 on Z,

∫
Z̃
q = 1} where

Z̃ is a closed subset of Z with nonempty interior. We fix an arbitrary probability
distribution P on Z. We denote by ` the linear functional on the space C(Z) such
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that

〈`, f〉 =

∫
Z

f(z)P (dx).

Similarly for a sample of size n, Sn = {z1, . . . , zn} ∈ Zn, drawn iid from P , we denote
by `n the linear functional on the space C(Z) such that

〈`n, f〉 =
1

n

n∑
i=1

f(zi)

for any function f continuous on Z.
Lemma A.1. For any 0 ≤ δ ≤ 1 and any q ∈ Kd(Z), it holds with probability

1− δ that

〈`, q〉 ≤ 〈`n, q〉+ 2
Md
c (Z)Md

v (Z)√
n

+Md
∞(Z)

√
1

2n
ln

2

δ
,

where

Md
∞(Z) = sup

p∈Kd(Z), z∈Z
p(z),

Md
c (Z) = sup

p∈Kd(Z)

||c(p)||,

Md
v (Z) = sup

z∈Z
||v(z)||2

are finite quantities that only depend on X and d.
Proof. The proof combines standard arguments from statistical learning which

we describe here for completeness. In the sequel, given a probability distribution P
on Z, we use the notation

P[A] =

∫
A

P (dz1) . . . P (dzn), Ez[F ] =

∫
A

F (z1, . . . , zn)P (dz1) . . . P (dzn)

and we rely on the following concentration result:
Lemma A.2 (McDiarmid’s inequality [30]). Assume for all i = 1, . . . , n,

sup
z1,...,zn,z′i∈Z

|F (z1, . . . , zi, . . . , zn)− F (z1, . . . , z
′
i, . . . , zn)| ≤ α,

then, for all ε ≥ 0, when {zi}ni=1 is drawn iid from a probability distribution P on Z,
we have

P [|F − Ez [F ] | ≥ ε] ≤ 2 exp

(
− 2ε2

nα2

)
,

where the expectation is taken over the random sample. An equivalent formulation is
that for 0 ≤ δ ≤ 1, with probability 1− δ, it holds that

F ≤ Ez [F ] + α

√
n

2
ln

2

δ
.

We consider the following quantity

F (z1, . . . , zn) := sup
p∈Kd(Z)

〈`− `n, p〉 .
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Observe that Kd(Z) is a subset of a finite dimensional space and that for p ∈ Kd(Z),

we have ||p||Z̃1 =
∫
Z̃
|p| = 1. Since all norms are equivalent, Kd(Z) is bounded in

any given norm on polynomials, in particular, the supremum norm. Therefore, the
quantity

Md
∞(Z) := sup

p∈Kd(Z)

||p||Z̃∞ := sup
p∈Kd(Z),z∈Z

p(z)

is finite. We have that for all i, and any z1, . . . , zn, z
′
i and any p ∈ Kd(Z)

|F (z1, . . . , zi, . . . , zn)− F (z1, . . . , z
′
i, . . . , zn)| ≤ sup

p∈Kd(Z)

1

n
|p(zi)− p(z′i)| ≤

Md
∞(Z)

n
.

Therefore McDiarmid’s inequality of Lemma A.2 applies to function F with α =
Md

∞(X)
n , and, for any q ∈ Kd(Z), with probability 1− δ, it holds that

〈`− `n, q〉 ≤ sup
p∈Kd(Z)

〈`− `n, p〉 ≤ Ez

[
sup

p∈Kd(Z)

〈`− `n, p〉

]
+Md

∞(Z)

√
1

2n
ln

2

δ
.

(A.1)

The left hand side depends on the random draw of the sample {zi}ni=1, but the right
hand side is deterministic. We use a standard symmetrization argument to bound the
expectation in the right hand side. Using the definition of ` and `n, the convexity of
the supremum and Jensen’s inequality, we have that

Ez

[
sup

p∈Kd(Z)

〈`− `n, p〉

]
= Ez

[
sup

p∈Kd(Z)

Ez′ [〈`′n, p〉]− 〈`n, p〉

]
(A.2)

≤ Ez,z′
[

sup
p∈Kd(Z)

〈`′n − `n, p〉

]

= Ez,z′
[

sup
p∈Kd(Z)

1

n

n∑
i=1

p(z′i)− p(zi)

]
where the notation z′ refers to any other sample S′ = {z′i}ni=1 drawn from P and `n′

is the corresponding empirical measure. The iid assumption allows to flip zi and z′i
in the expectation. Let ξi be Rademacher variables, i.e. random variables which take
values in {−1, 1}, each with probability one half. We have

Ez,z′
[

sup
p∈Kd(Z)

1

n

n∑
i=1

p(z′i)− p(zi)

]
(A.3)

=Ez,z′,ξ

[
sup

p∈Kd(Z)

1

n

n∑
i=1

ξi(p(z
′
i)− p(zi))

]

≤Ez,z′,ξ

[
sup

p∈Kd(Z)

1

n

n∑
i=1

ξip(z
′
i) + sup

p∈Kd(Z)

1

n

n∑
i=1

−ξip(zi)

]

=2Ez,ξ

[
sup

p∈Kd(Z)

1

n

n∑
i=1

ξip(zi)

]

=2Ez,ξ

[
sup

p∈Kd(Z)

1

n
c(p) ·

n∑
i=1

ξiv(zi)

]
.
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The quantity on the right hand side is known as the Rademacher complexity of the
function class Kd(Z). Intuitively, it measures to which extent elements of a function
class correlate with random noise in a worst case scenario. The function p→ ||c(p)||2
is a norm on polynomials and since Kd(Z) is bounded, the quantity

Md
c (Z) := sup

p∈Kd(Z)

||c(p)||2

is finite. Moreover, since Z is compact, the quantity

Md
v (Z) := sup

z∈Z
||v(z)||2

is also finite and attained. We have that

sup
p∈Kd(Z)

1

n
c(p) ·

n∑
i=1

ξiv(zi) ≤
Md
c (Z)

n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ξiv(zi)

∣∣∣∣∣
∣∣∣∣∣
2

=
Md
c (Z)

n

√√√√ n∑
i=1

n∑
j=1

ξiξjv(zi) · v(zj).

Moreover, Eξ
[∑n

j=1 ξiξjv(zi) · v(zj)
]

=
∑n
i=1 v(zi)

2 (Eξ[ξiξj ] = I(i = j)). Therefore,

using Jensen’s inequality (with concavity of the square root), we obtain

Eξ

[
sup
p∈K

1

n
c(p) ·

n∑
i=1

ξiv(xi)

]
≤ Md

c (X)

n

√√√√ n∑
i=1

||v(xi)||22 ≤
Md
c (X)Md

v (X)√
n

.

Putting things together, using inequalities (A.1), (A.2), (A.3), we have that with
probability 1− δ, it holds

〈c, q〉 ≤ 〈cn, q〉+ 2
Md
c (X)Md

v (X)√
n

+Md
∞(X)

√
1

2n
ln

2

δ
.

REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. Proceedings
of the International Conference on Machine Learning, ACM, 2004.

[2] A. Ajami, J. P. Gauthier, T. Maillot and U. Serres. How humans fly. ESAIM: Control,
Optimisation and Calculus of Variations, 19(4):1030–1054, 2013.

[3] B. D. O. Anderson and J.B. Moore. Linear optimal control. Prentice-Hall, Englewood Cliffs,
NJ, 1971.

[4] G. Arechavaleta, J. P. Laumond, H. Hicheur and A. Berthoz. An optimality principle governing
human walking. IEEE Transactions on Robotics, 24(1):5–14, 2008.

[5] M. Athans and P. L. Falb. Optimal control. An introduction to the theory and its applications.
McGraw-Hill, New York,1966.

[6] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Springer, Berlin, 2008.

[7] A. Barvinok. A course in convexity. AMS, Providence, NJ, 2002.
[8] R. Beals, B. Gaveau, and P. C. Greiner. Hamilton-Jacobi theory and the heat kernel on
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