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Linear conic optimization
for inverse optimal control

Edouard Pauwels', Didier Henrion?3*, Jean-Bernard Lasserre®?

Draft of November 5, 2014

Abstract

We address the inverse problem of Lagrangian identification based on trajecto-
ries in the context of nonlinear optimal control. We propose a general formulation
of the inverse problem based on occupation measures and complementarity in linear
programming. The use of occupation measures in this context offers several advan-
tages from the theoretical, numerical and statistical points of view. We propose
an approximation procedure for which strong theoretical guarantees are available.
Finally, the relevance of the method is illustrated on academic examples.

1 Introduction

In the context of nonlinear optimal control, we are interested in the inverse problem of
Lagrangian identification from given trajectories. This identification should be carried
out such that solving the direct optimal control problem with the identified Lagrangian
would allow to recover the given trajectories.

Inverse problems of calculus of variations are old topics that have attracted a renewal of
interest in the context of optimal control, especially in humanoid robotics [4]. Relevant
aspects of the problem are not well understood and many issues still need to be addressed
to propose a tool that could be used in experimental settings. The work presented here
constitutes a step in this direction. A preliminary conference version [27] originally intro-
duced our optimization framework as a tool to solve the inverse problem numerically. The
current paper extends this work in many ways. In particular, by using the (quite general)
concept of occupation measures we can propose a broad definition of inverse optimality
and we also rigorously justify most of the approximations behind the numerical results
reported in [27]. Many aspects of this work parallel the results of [21] about direct optimal
control with polynomial data.

!Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa
3200, Israel.

2CNRS; LAAS:; 7 avenue du colonel Roche, F-31400 Toulouse; France.

3Université de Toulouse; LAAS, F-31400 Toulouse, France.

4Faculty of Electrical Engineering, Czech Technical University in Prague, Technickd 2, CZ-16626
Prague, Czech Republic



1.1 Context

Since its introduction by Kalman [I8], the inverse problem of optimal control has been
studied in linear settings [3, [I'7, 14}, 26] leading to many nonlinear variations [32], 25] 10, 13].
In these works the input data of the problem is a characteristic of a class of trajectories
often given in the form of a control law. This contrasts with the setting we propose
to study, for which the input is a set of trajectories which could come from physical
experiments. This motivates the work of [I1] and [2] about well-posedness of the inverse
problem, both in the context of unicycle dynamics in robotics and strictly convex positive
Lagrangians.

On the other hand, to treat the inverse problem several authors have proposed numerical
methods based on the ability to solve the direct problem [24], also in the context of Markov
decision process [1} [31] or based on a discretized version of the direct problem [30, 19].

Our approach is different and based on occupation measures, an abstract and quite general
tool to handle trajectories (or limiting trajectories) of feasible solutions of classical control
problems. Formulating the (direct) control problem on appropriate spaces of measures
amounts to relaxing the original problem. In most applications, both relaxed and original
problems have same optimal value [36, [35, [I5]. However the relaxed formulation has the
crucial advantage that compactness holds in a certain weak sense: As a matter of fact,
many optimization problems over appropriate spaces of measures attain their optimum,
whereas most optimization problems over smaller functional spaces (e.g. continuous func-
tions, or Lebesgue integrable functions) typically have no optimal solution. At last but
not least, for control problems with polynomial data, the relaxed problem can be formu-
lated as an optimization problem on moments of occupation measures. By combining this
with relatively recent advances in real algebraic geometry [29] and in numerical optimiza-
tion [20] one may thus provide a systematic numerical scheme to approximate effectively
relaxed solutions of optimal control problems [21].

1.2 Contribution

We choose the setting of free terminal time optimal control which is consistent with
many physical experiments that one can think of. But the same approach with ad hoc
modifications is also valid in the fixed terminal time setting.

e In our opinion, occupation measures are the perfect abstract tool to formally express
the fact that we consider a (possibly uncountably infinite) superposition of trajectories
as input data of the inverse control problem. We then propose a general formulation of
the inverse problem based on occupation measures and complementarity in linear pro-
gramming. A relaxation of the well known Hamilton-Jacobi-Bellman (HJB) sufficient
optimality condition appears in our formulation as for the usual direct optimal control
problem [I6]. This formulation is shown to be consistent with what is commonly expected
regarding inverse optimality.

It is worth noting that when using the HJB optimality conditions, the situation is com-
pletely symmetric for the direct and inverse control problems. In both cases the HJB
optimality conditions are used to certify the global optimality of trajectories. But in the



former the Lagrangian is known and HJB provide conditions on the optimal state-control
trajectories (to be determined) whereas in the latter the “optimal” state-control trajecto-
ries are known and HJB provide conditions on the Lagrangian (to be determined) for the
given trajectories to be optimal. (In both cases the optimal value function is considered
as an auxiliary “variable”.)

e Furthermore, this framework allows to further characterize the space of solutions associ-
ated with a given inverse optimal control problem. This viewpoint is different from what
has been proposed in previous (theoretical and numerical) contributions to this problem
[24, 30, 1T}, 2] which, implicitly or explicitly, involve strong (and, in our opinion, overly
restrictive) constraints on the class of functions in which the candidate Lagrangians are
searched.

e Remarkably, despite the abstract setting of occupation measures, the proposed formu-
lation is amenable to explicit numerical approximations via a hierarchy of semi-definite
programg'} Indeed in the context of polynomial dynamics and semi-algebraic constraints,
both the optimal value function and Lagrangian used in the (relaxed) HJB optimality
conditions can be approximated with polynomials. We show that such a reinforcement is
coherent in the sense that no polynomial solution to the inverse problem is lost.

e Finally, in usual experimental settings one does not have access to complete trajectories.
Instead one is rather given finitely many data points sampled from trajectories. But results
from probability applied to our occupation measures allow to formalize the fact that we
only work with “samples”. In addition, in this framework one may use empirical processes
and statistical learning theory [34], 9] to provide bounds on the error made when working
with samples instead of original trajectories.

Organization of the paper. In Section [2] we provide the context and background
on optimal control and occupation measures. In Section [3, we present our characteriza-
tion of solutions to the inverse optimal control problem and illustrate how it allows to
further discuss about the set of solutions and links with the direct optimal control prob-
lem. Numerical approximations via polynomials and statistical approximations via finite
samples are provided and discussed in Section . The resulting numerical scheme (with
proven strong theoretical guarantees) can be implemented with off-the-shelf software on a
standard computer. Finally, Section [5| describes numerical results on academic examples.

2 Preliminaries

2.1 Notations

If Ais a compact subset of a finite-dimensional Euclidean space, let C(A) resp. C'(A)
denote the set of continuous resp. continuously differentiable functions from A to R. Let
M(A) denote the space of Borel measures on A, the topological dual of C(A) with duality

1 A semi-definite program is a finite-dimensional linear optimization problem over the cone of non-
negative quadratic forms for which powerful primal-dual interior-point algorithms are available [33].



bracket denoted by (.,.), i.e. (u, f) = [, f is the integration on A of a function
f € C(A) with respect to a measure p € ./\/l( ) Let M (A) resp. C.(A) denote the
cone of non-negative Borel measures resp. non-negative continuous functions on A. The
support of a measure y € M (A) is denoted by spt p. An element p € M (A) such that
(u, 1) =1 1is called a probability measure. Let J, denote the Dirac measure concentrated
on x and let I(e) denote the indicator function of an event e, equal to 1 if e is true, and
0 otherwise.

Let X C R denote the state space and U C R% denote the control space which are
supposed to be compact subsets of Euclidean spaces. System dynamics are given by
a continuously differentiable vector field f € C'(X x U)%. Terminal state constraints
are modeled by a set Xy C X which is also given. Let B, denote the unit ball of the
Euclidean norm in R", and let 05 denote the boundary of set S in the Euclidean space.
Let R[z] denote the set of multivariate polynomials with real coefficients with variables z
and let Ry [z] denote the set of such polynomials with degree at most k. For a polynomial
p € Rg[z], we denote by [|p[|; the sum of the absolute values of the coefficients of p when
expanded in the monomial basis.

2.2 Context: free terminal time optimal control

We consider direct optimal control problems of the form:

vo(2) == anf lo(z(t),u(t))dt

o(t) = f(z(t), u(t)),

t) e X, u(t) € U, t €0,T], (0cpo)
0) =z, z(T) € Xr,

€ [0, Tu]

8 H
—~ —O

S =
= M

with Lagrangian [y € C(X x U) and free final time 7" with a given upper bound 7T, which
ensures that the value function vy is bounded below. Dynamics f are given, as well as the
sets X, U and X C X. We assume that a set Xq C X is given such that the following
assumption is satisfied:

Assumption 1 For all initial conditions z € X, problem 18 feasible.

2.3 Occupation measures

The occupation measure and terminal measure of a set of trajectories are defined as
follows. Consider a probability measure py € M, (Xg). Suppose that for each z € spt po,
there exists a terminal time 7, € [0,7)], a measurable control u,: [0,7,] — U and an
absolutely continuous trajectory x,: [0,7,] — X such that

i, (t) = f(x.(1),us(t)), (1)



The occupation measure p € M, (X x U) and terminal measure pupr € M (Xr) of the
set of trajectories {2 (t)}.cspt uo,tefo,r.] are then defined as follows:

WA X B) = /X 0 ( /0 () € AT(un(t) € B)dt> o(d2),

pr(4) = / I(a.(T) € A) po(dz),

Xo

for every Borel sets A C X and B C U. With the previous definition,

(u,1) = /X (/OT l(xz(t),uz(t))dt> 1o(dz), Ve C(X x U).

In particular
WX U) = (1) = [T, old)
0

Furthermore for every v € C*(X),

uradvf) = /X (/ grad o(z. (1) - f@:(0), (1) dt> po(d=)
- /X<“<1‘2<Tz>>—v<xz<o>>>uo<dz> (3)
= (ur,v) = (po,v)

where “grad” denotes the gradient vector of first order derivatives of v, and the “dot”
denotes the inner product between vectors. Equation is known as Liouville’s equation
and is also written as

divfp+ pr = po, (4)

where the divergence is to be interpreted in the weak sense and a change of sign comes
from integration by part. As we have seen, occupation and terminal measures as defined
in satisfy the Liouville equation . The converse is not true, not all occupation
measures that satisfy the Liouville equation (4) arise in this way. However, for inverse
optimal control, we suppose that the occupation measure is given. Moreover, the Liouville
equation and positivity constraints are sufficient to develop some theoretic aspects of
inverse optimality.

Therefore, independently of how it is constructed, the input data of our inverse control
problem is an occupation measure satisfying the Liouville equation.

All the results will in particular apply to situations when the occupation measure is
constructed as described in this section.

2.4 Direct optimal control

Using the formalism of occupation measures, given a continuous Lagrangian [, an initial
measure pg and a maximal terminal time 7;, we consider direct optimal control problems



of the form

p*(o) := inf (u, 1)
HHT

s.t. divfp+ pr = po,
(11,1 < Ty, (ocp)
pe ML (X x U),
pr € My (Xr).

Definition 1 (OCP) OCP(l, g, Tnr) is the set of measures (p, pr) solving problem (ocp]).

Note that by Lemma [1] and Assumption [1} set OCP(l, po,T) is not empty. The link
between problems (ocpg) and is far from trivial. The decision variables (p, pr) in
can be viewed as a superposition of limiting objects arising from problem (jocpg|). It
is possible to construct problems for which measures considered in problem do not
arise in this way and this may introduce spurious minimizers which are far from classical
trajectories of problem (ocpg|). These problems are usually overly constrained and not
physically relevant, and in most practical settings, we have

p*(d2) = vo(2) YV z € spt po,

which we could see as an assumption on the inverse problem data. A sufficient condition
is given in [36, Theorem 2.3]

All our analysis refers to direct control problems of the form of (ocp|). Its conic dual can
be written as
d*(po) = sup (o, v) — wlis

st. l+w+gradv- f € Co(X xU)
-V € C+(XT), <th)
w =0,
veClCHX), weR.
The first two constraints [ + w + grad v - f € C4(X x U) and —v € C(Xr) of
are relaxations of the well-known Hamilton-Jacobi-Bellman (HJB) sufficient condition of
optimality [, 6]. Conic duality provides the following link between the problems (ocp))

and (BE).

Lemma 1 The infimum in 15 attained and there exists a mazrimizing sequence in
. In addition, for any feasible primal pair (p, ur) and any sequence of dual variables
v € CHX) and wy, € R, k € N, the following assertions are equivalent

o (u,pur) is optimal for and (Vg, Wi )ken 1S @ mazimizing sequence for ;

e strong duality:
{110, V&) — wiTnr e (1,05 (5)

e complementarity:

wi({p, 1) — Twr) = 0
(i, I+ wy, + grad vy, - f) — 0, (6)
k—o00
(ur,vg) — 0.
k—o00



Proof : We only sketch the proof here, for more details see [21]. Observe that is
feasible thanks to Assumption [I] and is feasible with w = max(— minyyy{,0) and
v = 0. Moreover, the cone {(div fu+pur, (1, 1), {1, lo)) : o € M (X XU), ur € M (X7)}
is closed for the weak topology o(M, (X) x R?, C,(X) x R?) (by using Banach-Alaoglu’s
Theorem). Therefore there is no duality gap between and and the optimum is
attained in the primal, see e.g. [7, Theorem IV.7.2]. Condition is just a reformulation
of strong duality in this context. Equivalence with (6] follows by noticing that for any
primal feasible pair (u, ur) and dual feasible pair (v, w),
(. l) = (. 1) = {divfp+ pr = o, v)

(1) = {div fu+ pr — pro, v) +w({p, 1) — Tar)
(u, 1 +w+gradv - f) — (ug,v) + (o, v) — wTy
<:u07 U) - wTM

VIVl

O

Remark 1 If the Lagrangian [ is strictly positive on X x U, then Lemma[1] holds without
the constraint (ju, 1) < Ty and without the dual variable w.

3 Inverse optimal control

Given a “set” of trajectories and model constraints, the inverse problem of optimal control
consists of finding a Lagrangian for which the trajectories are optimal. Thanks to the
framework exposed in the previous section, it is now easy to define what is a solution to
the inverse optimal control problem.

e Firstly, the “set” of trajectories will be represented by measures satisfying Liouville
equation which are part of the data of the inverse problem.

e Secondly, a Lagrangian [ solution to the inverse problem is a continuous function such
that (u, ur) € OCP(I, po, T') for some T such that OCP(I, ug, T') is feasible.

In this section, we propose a rigorous definition of inverse optimality and prove an equiv-
alence result between direct and inverse optimality. To do so, we use Lemma (1| which
ensures that OCP((, ug,T') is non empty as long as 1" < T),. Furthermore, it provides a
certificate of (sub)optimality.

3.1 What is a solution to the inverse optimal control problem?

We can now formally define what is meant by a solution to the inverse optimal control
problem:

Definition 2 (IOCP and IOCP,) For ¢ > 0, given measures p € M (C x U) and
pr € My (Xr) such that divfu + pr € Mi(Xo), denote by IOCP (i, pur) the set of
e-optimal solutions to the inverse optimal control problem, namely the set of functions



1 € C(X x U) such that there exists a function v € C*(X) satisfying

(.l +gradv- f) < ¢
l+gradv-f+e € Ci(X xU),
</LT7U> > €,

—v € C+(XT)

Then the set IOCP(u, ur) of solutions to the inverse optimal control is defined by:

IOCP(p, pur) == {l € C(X xU) : 1 € IOCP(p, ur) Ve >0}.
The motivation behind the above definition is the following:

Theorem 1 Given p € M, (C x U) and ur € My (Xr), the set IOCP(u, ur) is a
convex cone, closed for the supremum norm. Moreover, the following two assertions are
equivalent:

o | € IOCP(u, pur), divfpu + pr = po € My (Xo);
e 3T > <p“7 1>7 (MMMT) S OCP(LHJU?T)'

Proof : Convexity follows from convexity of the constraints of Definition 2] There exists
a constant K such that for any pair (ly,vy) that satisfies constraints of Definition [2| for a
certain € > 0, then it holds for any Lagrangian [ that (u,l + grad vg - f) < e+ K||l — /o
and [ + grad vg - f > —e — K|l — ly||oo on X x U, which is sufficient to prove closedness.

For the first implication, suppose that | € IOCP(u, pr) and div f u+pr = po. Then for any
T > {(u,1), the pair (u, pr) is feasible for OCP(, y19, T'). Lemmall]holds and the definition
of IOCP(,U, pr) allows to construct a dual sequence that is feasible for OCP(I, ug, T') and
that satisfies the complementarity condition with the pair (u, pr).

We now turn to the last implication. Suppose that (u, ur) € OCP(I, po, T') and (u, 1) < T.
In particular, (u,pr) is feasible for OCP(l, 9, 7)) and Lemma [1| holds. Consider the
dual maximizing sequence (vy, wg)ken given by Lemma . Complementarity ensures that
limy_,o wy = 0. Furthermore, it holds that limy,_,o (i1, 4+ grad vy - f) = 0, I+graduvg- f>—
w on X X U, limy_o0 (g7, v) = 0 and vx, < 0 on Xp which shows that [ € IOCP(u, ur).
U

Remark 2 Another motivation behind Definition 2| of inverse optimality is the following.
Suppose that [ € IOCP(u, pur), then for any T > (u, 1), (u, pr) is close to optimal for the
problem OCP(I, uo, T'). Indeed, suppose that (g, i) € OCP(I, o, T'). Then there exists
v such that

(n.l+gradv- f) (1) + (pr — pro,v) < €
(il +gradv- f) = (i,1) + (fir — po,v) > —Te
V)
!

Y

and — (up,v) < e as well as (fir,v) < e. In addition, (u,l) < (ug,v) + 2¢ and (f,l) >
(po,v) — Te. Therefore (u,l) > < ) > (u,l) — (T+2) :



Remark 3 At first sight the introduction of 7" in Theorem [I| may look artificial whereas
in fact it carries important information. The second part in the equivalence states that
(w4, pr) is a solution to some direct problem and does not saturate one of the constraints.
This allows to avoid direct problems for which, for any value of T', any solution would
saturate the constraint on the mass of the occupation measure; for example this happens
in direct problems with free terminal time tending to infinity. Such problems should be
avoided since then an occupation measure with finite mass cannot be optimal. Given a
Lagrangian [, there is no guarantee that there exists a triplet (i, ur, T') which satisfies the
second point of Theorem [I However, checking that a Lagrangian [ meets our criterion
for inverse optimality ensures that this is the case.

Remark 4 If [ € IOCP(u, pr) and (u, po, i) is a superposition of classical trajectories
as defined in Section [2.3] then fip-a.a. (almost all) of these trajectories must be optimal
for the corresponding direct problem. In particular, vy(z) given by is attained for
[o-a.a. initial conditions z.

3.2 Applications to inverse optimality

We claim that Definition [2] is a powerful tool to analyze inverse optimality in the context
of optimal control. To go beyond Theorem [ we next describe results and comments that
stem from Definition [2] of inverse optimality.

3.2.1 How big is the space of solutions to the inverse problem?

Theorem (1] justifies the idea that if trajectories realize the minimum of some optimal
control process then the corresponding Lagrangian meets our criterion. This requirement
is necessary for any “inverse problem” (and not only for inverse optimal control). However
in general there could be many candidate solutions as illustrated in this section. In what
follows, we assume that the triplet (u, uo, p7) satisfies Liouville’s equation (|4]).

Conserved values. Suppose that there exists a function g € C(X x U) such that
g(z,u) = 0 for all (u,z) € spt u. Then g* € IOCP(u, pur). In practical examples there
might be many such conserved values. For instance this is the case when x or u or both
remain on a manifold or when there exists a continuous mapping z — u(x).

Total variations. Consider any function g € C'(X). All Lagrangians of the form
[ =grad g - f belong to IOCP(u, pur), independently of (g, o, pir).

Convex conic combinations and uniform limits of solutions. As stated in The-
orem [1} the set of solutions to the inverse problem is a convex cone, closed for the supre-
mum norm. For example, let g € C!'(X) and consider a Lagrangian [ € C(X x U). Then
OCP(l, o, T) = OCP(l4gradg- f, o, T') for every T' > 0 and therefore both Lagrangians
[ and [ + grad ¢ - f are solutions to the inverse optimal control problem.



All the above examples illustrate that many solutions to the inverse problem may exist.
Although these solutions are valid from a theoretical point of view, they do not correspond
to what is commonly expected from a solution. Indeed, they do not arise from an optimal
physical process that would have generated trajectories, but rather from mathematical
artifacts.

3.2.2 How does the direct problem affect the space of solutions to the inverse
problem?

Intuitively, the more information is contained in (p, pr, f1o), the smaller is the space of
solutions to the inverse problem. We next discuss two factors that impact the size of

Direct problem constraints. Denote by K! (resp. K?) the feasible set of problem
(ocp) and by IOCP (s, pr) (resp. IOCP?(u, pu7)) the set of solutions to the inverse prob-
lem (as described in Definition [2) when the state, control and dynamical constraints are
given by (X1, U, f1) (resp. (X2, U2, f?)).

If ' C K? then IOCP?(y, up) € IOCP (1, pup). In other words, there is a kind of duality
between the space of feasible solutions for the direct problem and the space of solutions to
the inverse problem. An extreme instance is when the feasible space of the direct problem
is a singleton (f does not depend on the control u), in which case any Lagrangian is a
solution to the inverse problem.

Range of the occupation measure. Suppose that (u, po, pr) = (b, ug, pk)+(u?, p2, 1%)
where divfu! + pk = pd and divfpu? + p2 = pd. Then IOCP (u, ur) C IOCP(p!, ut). As

a consequence, maximizing the support of the initial measure pg reduces the space of
solutions to the inverse problem. When the occupation measure p is a superposition of
trajectories as detailed in Section [2.3] the larger is the “space” occupied by trajectories,
the smaller is the space of potential solutions to the inverse problem.

3.2.3 A toy example of quantitative well-definedness analysis

To illustrate the proposed framework we consider a simple uni-dimensional example. We
emphasize that his example is very simple in the sense that the direct problem is easy.
However, inspecting the solution of the inverse problem leads to non trivial behaviors.
Let X = [—1,1] with X7 = {0} and let f(z,u) = w with U = [—1,1]. Consider the
family of Lagrangians F = {l,: u +— 1+ %u® a > 0}. Suppose that we are given a triplet
(14, 1o, por) which consists of a superposition of trajectories as described in Section .
We wish to find a candidate Lagrangian in the family F. Then we have the following
alternatives.

1 FNIOCP(u, ur) = 0.
2 FNIOCP(u, ur) = F.
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3 FNIOCP(u, pur) is a singleton, {l,}, a > 2.

4 FOI0CP(p, jir) = {la, 0 < 0 < 2} .

We should comment on case 1 latter. If the support of p is empty, which means that
to = pr = 0, then we are in case 2. Assume now that the support of u is non-empty
and we are not in case 1. Then there exists o > 0 such that [, € IOCP(u, ur). Consider
a sequence of decreasing positive numbers ¢, — 0 and the corresponding certificates
functions vy, that allow to verify that l, € IOCP,, (u, pr). Since pr = dp, we may assume
(up to an addition) that v;(0) = 0 which simplifies the problem. In addition, one must
have 14 $u* + vj(z)u — 0, p almost every where (recall that the support of p is non
empty and this concerns a non empty subset of X and U). Furthermore, for any z, one

v'(z)

2 ,
must have 1+ §u? + vj,(x)u + ¢, = (@u%— @) + 1+ € — % >0, for u € [—1,1].

e Suppose that a > 2. Then for any k, |vj(z)] < 1+ § + €. Since ¢ goes to
\

0 and o > 2, for k sufficiently large, has @ < 1. Taking u = %@ gives

«

1+ %uz +o(v)u+te > 1+ ¢ — % > 0. It must hold p almost everywhere that
l—l—ek—%—ﬂ)and |u|:\/g

e Suppose that 0 < o < 2. Tt must hold x almost every where that v}, (z)u — —1—2u?.

2
This implies that u # 0 and |v'(z)] — #, p almost every where. It can be
verified that for o < 2, this is a strictly decreasing function of |u| for |u| < 1.
Therefore, it holds that liminf |v; (z)] > 14§, p almost every where. Since we have
|vp(z)] < 14 § + €, it holds that |v;(z)] — 1+ § and therefore |u| = 1, p almost
everywhere. In this case, it is easy to construct alternative sequences v, = gi—gvk

for 0 < & < 2 to show that 5 is also a member of IOCP(u, ur).

To conclude, we are in case 1 when the trajectories that generate p are not optimal
with respect to any Lagrangian in F, in particular when |u| is not p almost everywhere
constant. If this is not the case and u is not degenerate, we have a unique solution or a
set of solutions depending on p and its relation with the constraint on w.

4 Practical inverse control

As discussed in Section [3.2.1] the space of solutions to the inverse problem can be very
large. Many of these solutions are of little interest for practitioners because they lack
some physical meaning. However, from a formal point of view “valid” solutions exist and

ideally they should be the only solutions of a practical inverse optimal control problem to
be defined.

One may invoke some heuristics to reduce the space of solutions and to enforce prior
knowledge in the treatment of the inverse problem. This is commonly achieved by impos-
ing constraints on the candidate Lagrangian solution. Such heuristics include :
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e restricting the dependence on certain variables;
e shape conditions (e.g., convexity);
e conic constraints such as positivity;

e parametric constraints (e.g., considering a finite dimensional family of candidate
Lagrangians);

e constraints relating the dependence between the candidate Lagrangian and the cor-
responding value function.

Notice that Definition [2| refers to the large class of continuous Lagrangians with conic
constraints. From a theoretical perspective, this allows to characterize inverse optimality
in full generality. However this is not amenable to numerical computation yet and so we
also describe tractable numerical approximations in the context of inverse optimality.

Finally, according to Definition [2| the input of the inverse problem is an occupation
measure. Again, this is a convenient tool for theoretical purposes but in most practical
cases such an occupation measure is not available. In fact, roughly speaking, only some
realizations of an experiment are available and these realizations form a data set which
is an approximation of an hypothetical occupation measure. Therefore in practice the
input of the inverse problem is only an approximation of an ideal input, and correctness
of this approximation is justified under certain experimental assumptions at the end of
this section.

4.1 Normalization

The trivial Lagrangian is solution to the inverse problem independently of the input
occupation measures. As we have seen in Section [3.2.1] total variations share the same
property. Even though these are solutions to the inverse problem, it is important to
avoid them in practice because they do not depend on the input occupation measure and
therefore carry no information about it. As illustrated in Example [3.2.3], one way to avoid
these spurious solutions is to consider only very restricted families of Lagrangians that
cannot contain such solutions. This might be quite restrictive in practice and therefore
we provide an alternative. We need the following assumption:

Assumption 2 (Finite time controllability) There exists T' > 0 and a compact set

X C X with smooth boundary and po(X) > 0, such that for any x1,x9 € X, there exists
s € [0,T], a bounded function u : [0,s] — U and an absolutely continuous trajectory

x:[0,s] = X such that ©(0) =z, z(s) = xy and ©(t) = f(z(t),u(t)) for all t € [0, s].

Under assumption [2| we have the following result.

Proposition 1 If in Definition[d one includes the normalization

‘1—/ l—l—gradv-f‘—e

XxU
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then 0 ¢ IOCP (u, pur).

Proof : This is due to the following contradiction. Suppose that 0 € TOCP(u, pur).
Choose a decreasing sequence ¢, — 0 as k — 0o, and construct a sequence vy of dif-
ferentiable functions that satisfy conditions of Definition [2| for the chosen €;. Then
(o, vi) = (pr,vr) — (p, grad v - f) = O(ex). Because of Assumption , V(o) < Threg
for every x¢ € Xy. Therefore, by integration, max(ff( Uk Mo, fX\X vktto) < O(ex). Further-

more, ff{ () -+ fX\X Vo = <,u0, Uk> = O(Gk) Finally,
max (/ Uk:,UOa_/ vkuo) < O(ex)
X X

In addition, by Assumption [2, we also have |vg(71) — vg(22)| < Ty, for every xy, 15 € X.
Since po(X) > 0, this implies that vy — 0 uniformly on X, as & — oco. In addition,
fXxU grad vy - f — 1 as k — oo. Next, with the polynomial vector field

and limy_, [ v, = 0.

v g(a) = / f,u)du,

Stokes” Theorem yields

/ div(vg(x)g(z)) = / div(g(x))vg(z) + grad vi(z) - g(x)

) = /: div(g(z))v(z) + /X XUgradw(fo(cc,U)

- [ @) -

where 7i(z) is the outward pointing normal to the boundary at . Because of the uniform
convergence of vy — 0 on X as k£ — 0o, and boundedness of g and div g on X, the left-

hand side converges to 1 while the right-hand side converges to 0, which is a contradiction.
O

Remark 5 The conditions on X may be relaxed. Indeed, the only important point is to
be able to apply Stokes’s Theorem. In particular, the set X could be a box or an open
set whose boundary does not have too many non-smooth points, see e.g. [37, Theorem

T11.14A].

Remark 6 The normalization given in Proposition [1{obviously ensures that Lagrangians
in the form of a total variation are excluded.

Assumption [2| may look very strong regarding the result of Proposition [II However the
next example shows that it cannot be excluded.
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Example 1 Consider the direct control problem with X = U =1[0,1], Xo = {1}, Tyy =1
and f(z,u) = u. These data are obviously not compatible with Assumption @ Choose
po(dzx) = dx and ly(x,u) = 1 so that the couple p(dx,du) = xdxdi(du) and pr(dx) :=
01(dx), solves the problem

P(mo) = inf {p. 1)
s.t. divfp+ pr = o,
(1, 1) < T, (7)
JIBS M+<X X U>7
pr € Mo (Xr).

Indeed, for any differentiable v, (divfu,v) = le —v' fu(dr) = f; vdr — v(1) = (o, v) —
(ur,v) . Furthermore, the function x — v*(x) := 1 — x ensures that (u, pr) is an optimal
solution. Indeed (p,1) = (po,v*). Consider a sequence of differentiable functions (vg),

k € N, such that vg(z) = 0 for x > 1 and vi(z) = —(kx — 1)* otherwise. For X =

[0,1], we have 0 < (u,v,f) = fT% kv — Ka?de = & — 0, v f > 0, (ur,vp) = 0,
vp(1) =0, [3,.pvif =vk(1) —ve(0) = 1. Therefore even if we enforce the normalization
fXxUl + o' f =1, we cannot prevent the trivial Lagrangian | = 0 from being an optimal

solution to the inverse problem.

Remark 7 Regarding Proposition [I} one could argue that simple linear constraints such
as [(0) = 1 or conic constraints such as [ > 0 would be sufficient to avoid the trivial
Lagrangian. However, this does not allow to avoid total variations which are equivalent
to the trivial Lagrangian in terms of solutions to the direct problem.

Denote by NIOCP the subset of IOCP with the normalization constraint of Proposition
added to the constraints of Definition [2| One important feature of this normalization
is that it can be thought of as a way to intersect the cone of solutions to the inverse
problem with an affine subspace. Therefore NIOCP is still closed and convex. Further-
more, if we restrict the set of candidate Lagrangians to be finite-dimensional, one may
look for minimum norm-like solutions which will prove to be useful in numerical experi-
ments. Indeed, NIOCP being closed and convex and all norms being equivalent in finite
dimensions, optimization problems over NIOCP, if bounded, have an optimal solution.
Finally, as 0 ¢ NIOCP, one may minimize any norm-like function to enforce specific prior
structure and avoid the trivial Lagrangian.

4.2 Polynomial approximation

Until now, all the results that we have presented involve continuous and differentiable
functions, in full generality. However, for practical computation one has to approximate
such functions and of course, polynomials are obvious natural candidates. But in our
context they are also of particular interest for mainly three reasons:

e for fixed degree, polynomials belong to finite-dimensional spaces and are therefore
amenable to computation;

14



e when varying the degree, the class of polynomials is rich enough to approximate a
wide class of functions;

e Positivity Certificates from real algebraic geometry allow to express positivity con-
straints in a computationally tractable way.

From now on, we make the following assumption:
Assumption 3 f is a polynomial and X, Xt and U are basic semi-algebraic sets.

As proposed in Definition [2] checking that a polynomial is a solution of the inverse prob-
lem involves the construction of a sequence of continuously differentiable functions. These
functions can also be approximated by polynomials. In this section we describe some tools
required for such an approximation and we also prove the correctness of the approxima-
tions.

Let ¢1,...,9m € R[z] be polynomials in the variable z € R" and consider the basic
semi-algebraic set

G={zeR":gi(2) >0,i=1,...,m}.
Let go = 1 and let 32 C R[z] denotes the set of sums-of-squares (SOS) polynomials, i.e.,
p € X2 if it can be written as a sum of squares of other polynomials.

Definition 3 Let Qx(G) denote the convex cone of polynomials that can be written as
pzZsigi, s, €Y% i=0,1,...,m,
=0

where the degree of s;g;, i = 0,1,...m, is at most 2k. If p € Qx(G) we say that p has a
Putinar positivity certificate.

It is immediate to check that any element of Q) (G) is non-negative on G. A remarkable
property of such certificates is that a partial converse is true.

Proposition 2 ([29]) Suppose that the polynomial super-level set {x : g;(x) > 0} is
compact for somei = 1,...,m. If p> 0 on G then there exists k > 0 such that p € Qr(G).

Furthermore and importantly from a computational viewpoint, checking whether p € X2
reduces to checking whether a set of LMIs [20] involving the coefficients of p has a solution.
Therefore a more precise definition of inverse optimality in the context of polynomial
Lagrangians is as follows (compare with Definition .

Definition 4 (polyIOCP and polyIOCP, ;) Fore > 0, given measures p € M (C x
U) and pr € My (Xr) such that div futpr = po € M4 (Xo), denote by polylOCP_; (p, pir)
the set of polynomials | € Rlz, uloy (i.e., of degree at most 2k) such that:

(il +gradv- f) < ¢
I+gradv-f4+e € Qp(X xU),
(pr,v) > —e€,

—v € Qu(Xr),
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for some polynomial v € R[z]ay.

Denote also by polylOCP(u, ur) the set of polynomial solutions to the inverse optimal
control problem: That is, | € polylOCP (u, ur) if for any € > 0 there exists k(e) such that
I € polyIOCP, ;-

In other words, polylOCP_; (u, pir) is the set of polynomial e-solutions with degree bound
2k, to the inverse optimal control problem. The advantage of the previous definition, is
that, provided that one has the possibility to compute the linear functionals p € Rz, u]*
and pr € Rlz]*, checking whether I € polylOCP_ (11, ur) for k and e given reduces to
solving a convex LMI problem [20]. Furthermore, under a compactness assumption, in
the asymptotic regime this definition is equivalent to Definition 2]

Proposition 3 (Correctness of polynomial approximation) Suppose that one of the
polynomials defining the basic semi-algebraic set X (resp. U) has a compact super-level
set. Then

polylOCP (u, ur) = IOCP (u, pr) N Rz, u).

Proof : The direct inclusion is trivial. For the reverse inclusion, suppose that [ €
IOCP(p, pr) NR[z,u]. Fix € > 0, and take for v a certificate that | € IOCP«¢(u, pur) as
given by Definition [2] Since we consider compact sets in finite dimensional spaces, both v
and its gradient gradv can be simultaneously approximated uniformly by a polynomial up
to an arbitrary precision. Therefore as f is bounded on X x U, there exists a polynomial
v of degree k such that supy [v —v,| < § and supy . |gradv - f —grad v, - f| < §. Hence
[+gradvy-f+e>5>00on X xU and §—v; > £ > 0 on Xr. Using Proposition there
exists k1 and ky such that [ +grad vy - f +¢€ € Qk, (X x U) and § — vy, € Qp,(X7). Then
I € polylOCP, (i, pr) whenever k > max(k, ki, ko) and finally, I € polylOCP (y, pur)
because € was arbitrary (fixed). O

All properties of Lagrangians in Definition [2] hold for the Lagrangians in Definition [4] For
example, as stated in Remark , if I € polylOCP,_ (p, pir), then (u, pur) is close to optimal
for OCP(I, po, T'). In particular, if we the moments of p and pp are available then the
latter property can be checked numerically by solving a semi-definite program.

4.3 Integral discretization

For practical numerical computation in the context of Definition [4, we still must be able
to integrate polynomials with respect to p and pp. This is easy provided that we know the
moments of ;1 and pp. However, exact computation of such moments cane be complicated
in practice, especially when p is a superposition of trajectories. Usually, data sets from
experiments consist of samples of trajectories which can be seen as realizations of a random
sampling process.

In this section we first describe how the framework of occupation measures can formally
describe the process of sampling trajectories and we justify the replacement of measures
(14, i) by their empirical counterparts when considering empirical samples as input data
for inverse control problems. In the context of polynomial certificates in Definition [4] this
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amounts to replacing the moments of the measures (u, pi) by their empirical counterparts.
Consider the probability measure 19 on X, and the measures (j, 1) in equations and
. One way to interpret these measures is to consider the following random process:

e choose z € spt g randomly;,

e choose ¢t randomly uniformly on [0, 7],
e output § = (:(t), u:(t)).

This defines a generative process for the random variable £. If the probability for an
initial condition z to belong to a Borel set A C Xj is given by

Pz € A]
. L fA TzNO(dZ)
=po(A) = —fXO Too(d2)

then the probability for a trajectory £ to belong to a Borel hyperrectangle (A, B) C X xU
is given by

Pl¢ € A x B]
T
: (A x B)
=p,(A X B :—/ (/ I(x.(t) € A)I(u,(t EBdt),u dz) = ————=.
u ) o\ (w2(t) € A)I(u.(t) € B)dt | puo(dz) X% D)
A statistical model for points (z;,u;), ¢ = 1,...,n, that are samples of trajectories, is

to assume that we repeat the previous process n times, independently. In this case, we
say that the database D = {(z;,u;)}!, is made of independent realizations of a random
variable with underlying distribution p,. The process which generates the database being
random, we write

n did.
{51 i=1 ™~ Pu-
to stress that all §; are independent and identically distributed (i.7.d.) according to p,

(they are independent copies of the same random variable). Similarly, pur can be seen as
the probability distribution describing the following random process:

e choose z € spt pp randomly according to py,

e output z,(75).

We now define what is an approximate solution to the inverse problem when the only
information available about p is a realization, D = {(x;,u;)}, of a random process,

i.4.d.
{gz 1 ~ Pu-
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Definition 5 (Sampled-IOCP. ;) Fore > 0 andD = {(z;, u;)};-,, let Sampled — IOCP_,
be the set of polynomials | € Rlz, ulay such that :

1 n
=3l )+ grad v(s) - f(@ivus) < e
i=1

l—i-_gradv [ e Qp(X x U),
—VE Qk(XT)a

v+ e € Qr(Xr),

/ l+gradv- f=1.

XxU

for some polynomial v € R[x|y. In other words, Sampled — IOCP_, is the set of poly-
nomial e-optimal solutions (with degree bound k) of the sampled inverse optimal control
problem.,

One has replaced p by its empirical counterpart, added the normalization of Proposition
and simplified other conditions; see also Remark [§]

Importantly, membership in Sampled — IOCP_, (D) can be tested by semi-definite
programming.

Using arguments from empirical processes and learning theory, one can quantify the price
to pay for this discretization. Of course since we assume that the process that generates
the data include some randomness, such a quantification holds probabilitically.

Proposition 4 Suppose that D = {(z;,u;)}, is a realization of the random process
{&H, % Pu- Then there exist constants K1(X,U, k), Ko(X,U, k) that only depend on
(X,U), and k € N, such that for any | € Sampled — IOCP_;(D) and any 0 <0 < 1:

I € polylOCP ) (11, ) with probability 1 — 9,
where

/ 1 2
e(n):6+%(Kl(X,U,k;)+K2(X,U,k) 1n5>’

and where the randomness comes from the realization of D.

Proof : Apply Lemma [2] of Appendix [A] to the polynomial [ + grad v - f to get a bound
on (p,,l+gradv - f). d

Remark 8 The conditions detailed in Deﬁnitionensure that v < 0on Xr and (ur,v) >
—e, for any terminal measure. This is done in order to avoid to deal with the terminal
measure pr but other alternatives are possible. For example, when X7 is a single point
or a simple algebraic set one may enforce (as we do in Section |5)) v = 0 on X7 instead.
Another possibility is to replace ur by its empirical counterpart. However in this case we
need to provide a lower bound or add constraints on v to obtain finite sample bounds as
described in Proposition
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Proposition 4] mixes arguments from measure theory and conic optimization with argu-
ments from empirical process and statistical learning theory. The implication of this
result is that for a fixed degree, provided that the sample size is big enough, with high
probability we do not loose much by approximating p by an empirical sample.

e We would like to emphasize here that it is necessary to restrict the complexity of the
class of functions in which the candidate Lagrangian is searched. Indeed otherwise for
instance, for any fixed sample, the polynomial (z,u) — [[;_; ||z — z:||*||u — w;||* belongs
to Sampled — IOCP ,,, (D), but this clearly does not give much insight on the original
control problem! The degree of the polynomial candidates is one among many possible
measures of complexity. Furthermore, although the constants are likely to be sub-optimal,
they give a sense of how fast the degree of the polynomial approximation may grow with
respect to the sample size in order to maintain accurate approximations of .

5 Numerical illustrations

Building on results of Section [ we next provide illustrative numerical simulations. In
order to fit in the framework of the previous section, we consider examples where f is a
polynomial and X, U and Xp are basic semi-algebraic sets. In addition, the input data
of the inverse problem is given by a finite database: D = {(x;, ;) }i=1. ». In the sequel,
the candidate Lagrangians satisfy Definition

To compute such Lagrangians, the main idea is to solve an optimization problem with
fixed k € N, where:

o | € Rix, u]ox, v € R[z]or and € > 0 are the decision variables,
e ¢ is the criterion to minimize,

e Sampled — IOCP_, (D) is the projection on ([,€) of the set of feasible solutions
(I, €,v).

In addition, we also include a sparsity inducing term in the criterion that will prove to be
useful in numerical experiments.

5.1 Numerical experiments
5.1.1 Problem formulation

We consider the following optimization problem:
inf e + \||l||1
lv,e

st =300 Uwg, u) + grad v(a;) - f(zi,u) <€
l+gradv- f € Qp(X x U), (iocp)
v=0 on Xp,
Js.ol+gradv- f=1.
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where | € Rlz,ulor, v € Rlz]o, € is a real, A > 0 (fixed) is a given regularization
parameter, and ||.||; denotes the ¢; norm of a polynomial, i.e. the sum of absolute values
of its coefficients when expanded in the monomial basis. The first constraints come
from Definition [5| and the last affine constraint is meant to avoid the trivial solution; see
Proposition . The ¢; norm is not differentiable around sparse vectors (with entries equal
to zero) and has the sparsity promoting role to bias solutions of the problem towards
polynomial Lagrangian solutions with few nonzero coefficients.

This regularization affects problem well-posedness and will prove to be essential in
numerical experiments.

5.1.2 Numerical implementation

Linear constraints are easily expressed in term of polynomial coefficients. A classical
lifting allows to express the ¢, norm as a linear program: for x € R™, ||z||; = ming > . | s;
subject to s; > x; and s; > —ux;, for all i. The Putinar positivity certificates can be
expressed as LMIs [20] whose size depends on the degree bound k. We use the SOS
module of the YALMIP toolbox [22] to manipulate and express polynomial constraints at
a high level in MATLAB. The size of the corresponding LMI grows as ("Zk) where n is the
number of variables and k the degree bound in Putinar certificates. Thus it is reasonable
to consider relatively small problems. As shown in the numerical results section, we could
handle problems with 5 variables and degree 10 with a reasonable amount of time and
memory. To handle larger size problems, specific heuristics and techniques beyond the

scope of this paper must be implemented.

5.1.3 General setting

We consider several direct problems of the same form as . That is, we give ourselves
compact basic semi-algebraic sets X, U, Xr, the dynamics f, and a Lagrangian [,. We
take known examples for which the (direct) optimal control law can be computed and
try to vary their degree of difficulty. Given these optimal state-control trajectories, we
generate randomly n data points D = {(z;, u;)}i=1.n according to the random process
described in Section [5} For a given value of A and k, we compute a solution [ of problem
. Then we measure how [ is close to [y by computing the following quantity (in the

monomial basis):
o =l o 0)* \*
min-—7———— =1 - ——+—5 | . (8)
o |lloll2 1o 3112113

We also report the value of € in program (iocp)). A larger value of € means less reliable
numerical certificates; see Remark [2]
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Figure 1: Solution for the one dimensional minimum exit time problem, effect of the
regularization parameter A. See Section for problem details and comments. The first
column is the distribution of the error €. It represents the value of (x,u) +grad v - f(x, u)
as a function of x where u = sign = is the optimal control. The second column is a
representation of the value function v and the third column is a representation of its
derivative for solutions of problem (iocp)) with and without regularization. We take 100
points on the segment. Lagrangian [ and value function v are both polynomials of degree
16.

5.2 Illustration on a one-dimensional example

First consider the eikonal problem of minimum exit time from the unit ball in the one-
dimensional case. The data of the problem are

X=U=58,Xr=0X,lp=1, f =u.

The optimal law for this problem is v = sign x and the value function is vo(z) = 1 — |z|.
We sample 100 points uniformly in X and solve problem . We compare the choices
A = 0 (no regularization) and A = 1. Results are presented in Figure |I| which displays the
distribution of the error e, the estimated value function v as well as its first derivative.
Despite the simplicity of the problem, it is quite representative of the difficulties that arise
in the context of inverse optimality. The first difficulty is the size of the set of solutions
to the inverse problem:

e given any symmetric differentiable concave function v vanishing on {—1, 1}, the pair
(I = |v'|,v) solves problem (fiocp|) with e = 0;

e any positive polynomial on X x U vanishing if |u| = 1 solves problem (iocp|) with
e=0;

e any Lagrangian of the form v'(x)u solves problem (iocp) with € = 0;
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Figure 2: Error versus regularization parameter \. Problems details are given in the main
text. Estimation error (est) is given in (8)). Epsilon error (eps) is the value of € in program
. Trajectory sample size: 20 for A; A’ and B, 50 for C. Degrees of [ and v are 4 and
10 respectively.

e any convex combination of solutions of the types mentioned above also solves prob-

lem (focp).

Even though formally accurate, these solutions form a relatively large set and do not
carry any physical meaning. In the absence of any additional form of prior knowledge, it
is impossible to discriminate between these solutions and the one that we wish to recover,
namely ly. This is illustrated in Figure [1| where the red line (A = 0) displays an example
of value function v obtained with a very low value of e. This is a very good certificate
that our database D is close to optimal for the corresponding Lagrangian [. However, the
estimated Lagrangian is far from the original one, namely [, = 1. Moreover, the shape
of the value function is quite uncommon. This motivates the use of prior knowledge to
bias the solutions of problem toward a certain set of solutions. We use the ¢; norm
which tends to promote Lagrangians with few non-zero coefficients.

When A\ = 1, the sparsity inducing effect of ¢1-norm regularization allows to recover the
true Lagrangian (I = 1) which is indeed sparse. The solution of problem involves
a polynomial function v which should in principle be close to the true value function
vo(z) = 1 — |z|. The v function displayed in Figure 1 is close to vy. However, vy is
not smooth around the origin and therefore its derivative is harder to approximate by
polynomials around this point. Hence the value of the error is higher around the origin.

5.3 Illustration on more complex problems

These simulations are taken from [27]. We consider the following free terminal time direct
problems:
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Minimum exit time in dimension 2:
X=U=By, X0 =0X,lp=1, f =u. 9)

The optimal law is u = = and the value function is vo(z) =1 —||z||2.

Minimum exit norm in dimension 2:
X =U = By, Xr = 0X,lg = |[]|5 + ||ull3, f=u. (10)

The optimal law is u = x and the value function is vo(x) = 1 — ||z||3.

Minimum time Brockett integrator:
X = 333, U= BQ, lo = 1, f = (Ul,UQ,Ul.Z'Q — 'LL2£E1). (11)

Recall that the Brockett integrator of nonlinear systems control is also known (up to a
change of coordinates) as the unicycle or Dubins system, one of the simplest instance of a
non-holonomic system in robotics, see e.g. [12] for the connection. The optimal law and
value function are described in [2§]. Complementary details are found in Appendix .

Data generation: We consider the following settings:

A problem @ with samples from Bs;
A’ problem @ with samples from By \ %Bg;
B problem with samples from Bjy;

C problem 1) with samples from Bj \ (%BQ X R).

In all cases we fix the degree of [ to 4 and that of v to 10.

Results: The results for the four problems are presented in Figure 2] For all problems,
[ is of degree 4. Therefore, [ is to be found in a space of dimension 70 for problems
A, A’ and 126 for problem D. When the estimation error is close to 1, we estimate a
Lagrangian [ that is orthogonal to Iy (in the monomial basis), and when it is close to 0,
they are colinear. We also display the e value of . We consider that the estimation
is reasonable, when both estimation error and € values are low.

e For all problems we are able to recover the true Lagrangian with good accuracy for
some value of the regularization parameter A. In the absence of regularization, we do not
recover the true Lagrangian at all. This highlights the important role of ¢; regularization
which allows to bias the estimation toward sparse polynomials. The choice of X in practical
settings is subject to heuristics: numerical simulations or cross-validation which consists
in keeping a portion of the input data as a validation set.
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e For all four problems, when the estimation error is minimal, the value of € is reasonably
low, depending on how the value function can be approximated by a polynomial. For
example, A’ shows lower € value because we avoid sampling database points close to the
non-differentiable point of the true value function. In example D, the value function is
known to be harder to approximate by polynomials and the value of € is a bit larger. The
estimation accuracy is still very reasonable.

6 Conclusion

The main contribution of this paper is to propose a general framework to analyze the
inverse problem of optimal control. The analysis is based on the weak formulation of
direct optimal control problems using occupation measures, relaxed Hamilton-Jacobi-
Bellman optimality conditions, and duality of infinite-dimensional linear programs. The
proposed formulation is powerful enough to ensure that there is no gap between solutions
of the direct and inverse problem (Theorem [1). To the best of our knowledge this is the
first result of this kind. In addition, in principle the proposed methodology is applicable
to practical problems where we only have access to sample trajectories. We have also
proposed numerical and statistical approximation procedures from which solid theoretical
guaranties can be obtained. Finally we have illustrated our results on relatively simple
(but not trivial) numerical examples of modest size.

One of the most striking aspects of the inverse problem is its set of valid solutions. Indeed,
even for the simplest problems it is difficult to discriminate between physically meaning-
ful Lagrangians and spurious mathematical solutions. For this reason, formulating the
inverse problem as a well-posed problem (in particular with a unique solution) requires
the introduction of strong prior knowledge — sometimes arguably too restrictive — about
the nature of the Lagrangian to be recovered; see for example [2]. However the proposed
formulation based on relaxed HJB-optimality conditions, allows to get intuitions about
characteristics that affect well-posedness of the problem.

This work is to be seen as a first step toward a theoretical and practical framework for the
resolution of inverse problems in a variety of contexts. Further aspects of the problem have
to be investigated within this realm. First, we only deal with deterministic trajectories.
For practical purposes it is essential to consider the effect of experimental noise, both
from theoretical and practical perspectives, and to determine to which extent and how the
problem can be solved in this more difficult context. Second, we have proposed a numerical
scheme to approximate solutions and show that it is effective on academic examples of
modest size. Experimental validation of such approximations should be carried out on
real world examples of larger size. This involves a lot of data processing and fine tuning
for each specific example. In this perspective, humanoid robotics provides an active and
attractive field of application [4 24].
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A Proof of Proposition

We develop uniform finite sample bounds that hold with high probability for arbitrary
probability distribution in the context of polynomial functions. These are in particular
useful to derive bounds for the random process described by occupation measures as
exposed in Section [£.3] The techniques used have become fairly standard in empirical
process theory and statistical learning theory, see for example [9] for a nice introduction.

In what follows, we consider a compact set Z C RP with non empty interior. For a
polynomial z € R? — g € Ry|z] of degree d, ¢(q) denotes its coefficients in the monomial
basis (of size (pj;d)). Similarly for a point z € Z, v(z) denotes the (p;d) dimensional vector
representing the evaluation of the corresponding monomials at z such that ¢(z) = ¢(q)-v(2)
with the dot denoting the inner product. We consider the following set of polynomials
Ki(Z)={qeRylz],¢>00nZ, [;q=1} where Z is a closed subset of Z with nonempty
interior. We fix an arbitrary probability distribution P on Z. We denote by ¢ the linear
functional on the space C(Z) such that

<&ﬁ—ﬂj@f@@

Similarly for a sample of size n, S,, = {z1,...,2,} € Z", drawn iid from P, we denote by
¢, the linear functional on the space C(Z) such that

1 n
(o ) =~ D (=)
i=1
for any function f continuous on Z.

Lemma 2 For any 0 < <1 and any q € K4(Z), it holds with probability 1 — § that

MIZ)MAZ) | . 4 1 2
€, q) < ln,q) + QT +ML(2) %lng’

where
ML(Z)= sup  p(2),
peKy(Z), 22
M(Z)= sup |lc(p)l,
pEKy(Z)
M(Z) = sup [[v(2)][2
z€Z

are finite quantities that only depend on X and d.
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Proof : The proof combines standard arguments from statistical learning which we de-
scribe here for completeness. In the sequel, given a probability distribution P on Z, we
use the notation

P[A] = / P(dz)...P(dz,), E.,[F]= / F(z1,...,2,)P(dz1) ... P(dz,)
A A
and we rely on the following concentration result:

Lemma 3 (McDiarmid’s inequality [23]) Assume for alli =1, ..., n,

sup  |F(21,- s 205 2n) — Fzn, o0 20000 20)] < a

Gyt -~

then, for all € > 0, when {z;}_, is drawn iid from a probability distribution P on Z, we
have

P[|F —E.[F]| > ¢ < 2exp (—262),

na?
where the expectation is taken over the random sample. An equivalent formulation is that
for 0 <6 <1, with probability 1 — ¢, it holds that

n. 2
< \/=In=.
F<E,[F]+« 2111(S

We consider the following quantity

F(z1,...,2n) = sup ({—4{,,p).

pEK4(2)

Observe that K4(Z) is a subset of a finite dimensional space and that for p € Kq(Z2), we
have ||p||f = [; |p| = 1. Since all norms are equivalent, K4(Z) is bounded in any given
norm on polynomials, in particular, the supremum norm. Therefore, the quantity

ML(Z):= sap |]pl|Z:= sup p(z)
pEKd(Z) pEKd(Z),ZQZ

is finite. We have that for all i, and any z1,..., z,, 2, and any p € K;(Z)

1 M (Z
|F(21, .y 2oy 2n) — Fz1, o200 z0)| < osup —|p(z) — p(2))] < ( )
peKa(Z) T n
Therefore McDiarmid’s inequality of Lemma (3| applies to function F' with a = Mg"n(x),

and, for any ¢ € K4(Z), with probability 1 — 4, it holds that

+Mymw%m§ (12)

The left hand side depends on the random draw of the sample {z;}",, but the right
hand side is deterministic. We use a standard symmetrization argument to bound the

(€ —"tln,q) < sup ({—1,,p) <E,
pEK4(Z)

sup ({ —{,,p)
pEK4(Z)
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expectation in the right hand side. Using the definition of ¢ and ¢,,, the convexity of the
supremum and Jensen’s inequality, we have that

E,| sup ({—VLn,p)| =E. | sup E.[{€,p)]— (ln, D) (13)
peKy(Z) pEKq(Z)
S ]Ez,z/ sup <£;L - €n7p>
| PEKa(Z)
= Ez,z sup U2
pGKd(Z Z ]
where the notation 2’ refers to any other sample S" = {z/}I | drawn from P and ¢, is

the corresponding empirical measure. The id assumption allows to flip z; and 2] in the
expectation. Let & be Rademacher variables, i.e. random variables which take values in
{—1,1}, each with probability one half. We have

sup Zp ] (14)

pEKd(Z

=E. ¢ | sup % Z &ilp(z) — p(zi))]

]Ez,z’

1 1
Eewe| s L en+ s gz—@m)]

k n
=2E,¢ | sup Hzgp(zz)]

=2E,¢ | sup lc(p) : Zfﬂ)(%)] .

The quantity on the right hand side is known as the Rademacher complexity of the
function class K4(Z). Intuitively, it measures to which extent elements of a function class
correlate with random noise in a worst case scenario. The function p — ||c(p)]|2 is a norm
on polynomials and since K4(Z) is bounded, the quantity

M (Z) = sup_|le(p)l]:

pEK4(Z)

is finite. Moreover, since Z is compact, the quantity

M/(Z) = sup|v(2)|l>

z2€Z
is also finite and attained. We have that
MI(Z) ||
sup —c giv(z) <—= &iv(z
pEK (Z) T Z n ;

i Z Z §igjo(z) - v(z).




i-+++¢ Moreover, E, [Z?:1 &i&v(z) - v(zj)} =30 u(z)? (Eel&&;] = I(i = 7)). Therefore,
using Jensen’s inequality (with concavity of the square root), we obtain

n

sup~e(p) - 3 vl

n
per i=1

;. AOMIX)

Putting things together, using inequalities , , , we have that with probability
1 —9, it holds

(ea) < (emg) + 270 (Xff ) | ae

B Minimal time Brockett integrator

This section covers materials that were presented in [28]. Equation (21) and Lemma 1 in
[28] are directly related to the computation of optimal control for problem C in Section
but they contain a misprint. We expose here details that have been acknowledged to
be correct by the authors of [28]. The free terminal time problem can be formulated as
follows:

s
T(xy1, 29, x3) = 15115 /o dt (15)
ui(t)
(75} (t)l'g(t) — UQ(t)I'l (t)
Ty 0
z0)=| 22 |,2z(S)=| 0 |,
T3 0

lufl2 < 1.

If T is differentiable at (z1, x2, x3), then, by Bellman’s principle of optimality, one must
have

Uy
inf grad T'(z1, 22, x3) - Uy +1 (16)
=t ur ()@(t) — ua () (t)

or , or
— inf (“1)-<%ﬂ%+%ﬂ§3x2)+1
ful<t \ U2 Dzs  Ozz Ll

oT oT
_ 0 0.
1| (&

8562 61‘3 1 2
:O’
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with the optimal feedback given by
or | T
e 4"f;‘$2
u:—<%fﬁ ik ) (17)

In particular, it must hold that

=1. (18)

or | or
(2 i)

02 Oxs

It is known ([8, Theorems 1.36 and 1.56]) that, provided that (x1,x5) # (0,0), T is
differentiable and we have

0
\/9+sin29—sin060s9

T(ar, w2, 75) = Vi + 23+ 2] (19)

where 6 is the unique solution in [0, 7) to

2‘%3’
— 2
o) = 52 (20)
with
6 — sinfcosf
g(0) = ————. (21)

sin’ @

Let us compute the gradient of T' to get an expression of the optimal control as in .

From , we get
00

oo (0) @} + a8) + 29(0): = 0,

for ¢ = 1,2. This leads to
a0 2g(0)x;

Ox;  g'(0)(a} +a3)

for i = 1,2. Similarly, we have (assume that z3 # 0)

90  2signus
Oxz  g'(0)(a] +a3)

Moreover it holds that

0
T<x1a X2, 'I3) = Sine I’% + ZE% (22)

sinf — 0 cosf

"0) =2
g0) sin® 6
0 .
7 = g(#)sinf + cos b
0 0 sinf —fcosf 1
— = = —sinfq'(0).
00 <Sin0> S o o g1(6)
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We have, for i =1, 2,

o wo (0N 5. 0w
- a0 2
O O, 00 (me) VA TR TG00 St a2 (23)
_ —2g(0)x; sinfg'(0)
CgO)at+a3) 2

cos Ox;

Vo + 13

or 00 o 7 [ 5 o
dxs  Ox300 (sin@) SRR (24)

2 sign o sin0q' (0
=7 g2 32 g()\/x%‘i“w%
g'(0)(x + 3) 2
_ sign x3 sin 6
Vi + a3 '

It can be verified that equation holds for these values of the partial derivatives. The
optimal control can be computed by combining , and .

g(0) sin Ox; + cos Ox;

2 2
V I+ T3

3+ 23+

Moreover
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