
HAL Id: hal-01080349
https://hal.science/hal-01080349

Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Tile-Based Adaptive Sampling with User-Specified
Fourier Spectra

Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden,
Gurprit Singh, Gaël Cathelin, Fernando de Goes, Mathieu Desbrun, Victor

Ostromoukhov

To cite this version:
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh, et al.. Fast
Tile-Based Adaptive Sampling with User-Specified Fourier Spectra. ACM Transactions on Graphics,
2014, 33 (4), pp.56:1-56:11. �hal-01080349�

https://hal.science/hal-01080349
https://hal.archives-ouvertes.fr

Fast Tile-Based Adaptive Sampling with User-Specified Fourier Spectra

Florent Wachtel1 Adrien Pilleboue1 David Coeurjolly2 Katherine Breeden3 Gurprit Singh1

Gaël Cathelin1 Fernando de Goes4 Mathieu Desbrun4 Victor Ostromoukhov1,2
1Université de Lyon 2CNRS-LIRIS 3Stanford University 4Caltech

Subdivision rules Tiling Centroids Optimized centroids Sampling

Precomputation Runtime

Figure 1: Using a carefully-designed set of subdivision rules, our approach constructs a self-similar, equi-area tiling that provides an even,
unstructured distribution of tile centroids. Per-tile sampling points are then generated through offline optimization of the tile centroids in a
series of local patches using any existing point set optimizer; the resulting offsets between original and optimized point locations are stored in
a lookup table. These offset vectors are finally used at runtime to convert tile centroids into point set distributions with spectral properties
closely matching those of the optimizer, but several orders of magnitude faster than current spectrum-controlled sampling methods.

Abstract

We introduce a fast tile-based method for adaptive two-dimensional
sampling with user-specified spectral properties. At the core of our
approach is a deterministic, hierarchical construction of self-similar,
equi-area, tri-hex tiles whose centroids have a spatial distribution
free of spurious spectral peaks. A lookup table of sample points,
computed offline using any existing point set optimizer to shape
the samples’ Fourier spectrum, is then used to populate the tiles.
The result is a linear-time, adaptive, and high-quality sampling of
arbitrary density functions that conforms to the desired spectral
distribution, achieving a speed improvement of several orders of
magnitude over current spectrum-controlled sampling methods.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Sampling.

Keywords: Sampling, Tile-Based Methods, Blue-Noise Distribu-
tion, General-Noise Distribution, Fourier Spectrum

Links: DL PDF WEB

1 Introduction

Sampling is key in a variety of graphics applications. In rendering,
for instance, point sampling of continuous functions at strategically
chosen locations allows for the accurate evaluation of spatial inte-
grals. The spectral properties of these point samples have long been

understood to be crucial in defining the notions of bias (systematic
deviation from the ground truth), variance (signal-to-noise ratio),
and aliasing (appearance of undesirable artifacts) in sampling-based
evaluations. In particular, blue noise point sets [Ulichney 1988] are
widely regarded as excellent due to their particular spectrum [Pharr
and Humphreys 2010].

Recent work has made more explicit the relationships between
spectral content of a signal, spectral properties of sampling points,
and resulting bias, variance, or aliasing [Durand 2011; Subr and
Kautz 2013]. Consequently, exercising precise control over the
spectral properties of sampling points has been a recent subject of
research [Zhou et al. 2012; Öztireli and Gross 2012; Heck et al.
2013]. Unfortunately, current algorithms offering spectral control
are prohibitively slow—and thus poorly suited for what is arguably
their most important application: Monte Carlo or Quasi-Monte Carlo
integration. The only methods able to achieve the high throughput of
blue noise sample points commonly needed in practical applications
are based on precomputed tiles [Lagae et al. 2008]. However, despite
heavy offline optimizations, tile-based methods always exhibit spuri-
ous peaks and deficiencies in their associated Fourier spectra. These
artifacts may be very pronounced if the tile barycenter is used as the
sole sample per tile (Fig. 2), and remain visible even when there are
multiple optimized samples per tile (Fig. 13) due to inherent patterns
in the shape and positioning of the tiles.

Contributions. We present an efficient tile-based sampling system
capable of generating high quality point distributions with control-
lable spectral properties at a rate of several millions of samples
per second on commodity hardware—several order of magnitudes
faster than current spectrum-controlled sampling methods. In sharp
contrast to previous work, our approach relies on a deterministic set
of production rules to produce self-similar, equi-area tiles whose
centroids generate a blue noise distribution free of spurious spectral
peaks. This tiling serves as a foundation for a lookup table based
sampling system, in which the optimal positions of sampling points
within each tile are determined by an offline optimization process
to conform to a user-defined spectrum. Our approach thus allows
for linear-time adaptive sampling of arbitrary density functions with
precise spectral control over the resulting distributions.

To appear in TOG 33(4) SIGGRAPH 2014

http://doi.acm.org/10.1145/2601097.2601107
http://portal.acm.org/ft_gateway.cfm?id=2601107&type=pdf
https://liris.cnrs.fr/polyhex

0.0

0.2

0.4

0.6

0.8

DC

0.1

0.3

0.5

0.7

0.9

(a) (b) (c) (d) (e) (f)

Figure 2: Spectral characteristics of various tile-based sampling methods for one sample point per tile. Top row: tiling and tile centroids.
Bottom row: Fourier spectra of tile centroids. Circles on the right portion of each spectrum indicate peaks of size 0.1 and greater (DC value of
1). Left to right: (a) Penrose tiles, (b) polyominoes, (c) regular hexagons, (d) irregular hextiles h̃ (Sec. 2.2), (e) regular trihexes t (Sec. 3.1), (f)
irregular trihexes t̃ (Sec. 3). The spectrum of irregular trihexes t̃ is further improved via the optimization method described in Sec. 4.

1.1 Related work

In order to motivate and highlight our contributions, we briefly
review the main approaches to generating point distributions with
known desirable sampling properties and a few representative works
that illustrate them best.

Stochastic sampling. A first series of algorithms were formu-
lated in the 1980s to eliminate aliasing artifacts in ray tracing [Dippé
and Wold 1985; Cook 1986; Mitchell 1991]. In particular, jittered
sampling achieved a linear complexity compromise between uniform
and fully-stochastic sampling. Poisson-disk distributions were also
introduced via dart throwing [Cook 1986], with many improvements
and extensions proposed [McCool and Fiume 1992; Ebeida et al.
2011]. Current GPU implementations of stochastic sampling can
generate over 100K samples per second [Wei 2008; Ebeida et al.
2011]. However, stochastic sampling methods such as jittering or
Poisson-disk sampling produce distributions with relatively high
variance by today’s standards, and do not offer spectral control.

Optimal sampling. Over the last few years, higher quality sam-
pling techniques have been proposed in which sample positions are
spatially optimized to produce blue noise distributions [Balzer et al.
2009; Chen et al. 2012; Schmaltz et al. 2010; Schlömer et al. 2011;
Fattal 2011; de Goes et al. 2012]. While these methods generally
produce high-grade isotropic sampling, in practice their running
times are prohibitive for large point sets. Recent methods [Zhou
et al. 2012; Öztireli and Gross 2012; Heck et al. 2013] have added
control over the Fourier spectra of sample points by optimizing over
a differential domain, an intermediate space between the spatial
and Fourier domains [Wei and Wang 2011]. Once again, these new
methods suffer from prohibitive running times due to the need to
iteratively proceed through inherently local optimizations.

Tile-based sampling. A decade ago, Cohen et al. [2003] pro-
posed a sampling method relying on the offline placement of samples
within repeated tiles. Their approach was based on Wang tiles [1965]
containing precomputed Poisson disk distributions, and was able to
produce point sets containing desirable spectral properties with un-
matched efficiency. Recursive tile subdivision [Kopf et al. 2006] and
an improved management of tile borders [Lagae and Dutré 2006]

furthered this work, resulting in fast and adaptive sampling of vari-
able density functions. However, Wang-tile approaches all suffer
serious drawbacks: the low count of prototiles and their placement
on a square lattice induce a grid of peaks in the spectral domain,
thus leading to sampling artifacts. A typical implementation of
Wang tiles uses thousands of points per tile to alleviate these spectral
peaks, at the cost of a significant increase in memory. Additionally,
these methods rely on ranking the sampling points within each tile,
bringing forth another critical flaw: for densities that are not a power
of the subdivision factor, partial filling of prototiles is driven by a
ranking algorithm [Ulichney 1993], not through offline optimization.
This issue is clearly visible in the second row of Figure 11. Penrose
tiles [Ostromoukhov et al. 2004] and polyominoes [Ostromoukhov
2007] were proposed in lieu of Wang tiles as a convenient alternative.
With one sample per tile, these techniques allow for finer adaptivity
when dealing with steep density functions. However, single-sample
tiles result in rather poor Fourier spectra, as they exacerbate the
presence of tiling structures which are overly simple or regular.
While many other regular, semi-regular, or even irregular tilings may
provide some improvement – likely at the price of implementation
complexity – we are not aware of any self-similar tiling that fulfills
the need for isotropic and even distributions.

1.2 Our Approach at a Glance

While existing tiling methods offer the best compromise between
speed and quality of sampling, they fail to satisfy the two competing
properties of using a deterministic, hierarchical construction, while
generating a high quality isotropic, even, and non-periodic distri-
bution of tiles. In this paper, such a novel tiling based sampling
method is introduced. At its heart is an adaptive non-periodic tiling
with equi-area tiles, paired with an offline computation of a table of
optimized (spectrally-controlled) point sets defined over the tiles.

Rationale for our choice of tiling. From multiple failed attempts
at improving previous tiling methods, we derived a few key insights
that guided us in the design of our novel approach. First, we se-
lected hexagons as the building blocks of our tiling rather than the
squares used in Wang tiles [Cohen et al. 2003] and polyominoes [Os-
tromoukhov 2007]; hexagons offer an additional symmetry axis,
better intrinsic spectral properties, and only one adjacency relation-
ship between neighboring blocks [Grünbaum and Shephard 1986].

Second, we derived a hierarchical and deterministic subdivision
process based on trihexes (i.e., connected agglomerates of three
hexagons, Fig. 2(e)) as prototiles to break the symmetries of the
regular hexagonal lattice—much like polyominoes were unions of
squares introduced to create more complex tiling structures on a
square lattice. Finally, we devised a hierarchical, deterministic, and
area-preserving border shuffling procedure that mimics a stochastic
process in order to remove remaining frequency peaks in the result-
ing Fourier spectrum (Fig. 2(f)). We combine these three crucial
features to create non-overlapping tiles whose barycenters form a
high quality blue noise distribution. Note that each component is
necessary: for instance, border shuffling without trihex subdivision
only partially improves the spectrum of a tiling (Fig. 2(d)).

From tiles to controllable sampling. As hinted by the subtle
anisotropic structure visible in Fig 2(f), the removal of spectral peaks
through our novel tiling may not be sufficient for most sampling
purposes. Equipped with a non-periodic and even distribution, we
describe the construction of lookup tables that associate each tile
with an optimized point location, removing residual anisotropy and
allowing for the efficient generation of high quality samplings at
runtime. Existing optimization procedures may be used in this
offline step to generate samplings with given spectral properties.
Point sets are stored as offsets from the centroid of each polyhex
and are made coherent across subdivision levels, thus guaranteeing
high quality adaptive sampling of arbitrary density functions.

Notation. Throughout this paper, we will denote by H the reg-
ular hexagonal lattice and h a scaled down version of this lat-
tice. Hexagons Hi ∈H are subdivided into quasi-hexagonal tiles
hi we call hextiles, formed by the union of λ smaller hexagons
from h. Here, λ is a centered hexagonal number Cn, with Cn:=
1, 7, 19, 37, 61, ... for n = 1, 2, 3, 4, ... [Conway and Guy 1996];
while we adopt λ :=C4 = 37 to minimize memory requirements
and complexity, other Cn can be used as subdivision factors (Ap-
pendix C). The partition formed by these hextiles is denoted as H.
Hextiles are further made irregular by randomly reassigning small
hexagons on h to adjacent hextiles while preserving each hextile’s
connectedness and area, creating a tiling H̃ of irregular hextiles
{h̃ i}. We use trihexes (i.e., connected agglomerates ti of three
hexagons) as prototiles, such that irregular trihexes (i.e., connected
agglomerates t̃ i of three irregular hextiles) will form the 407 tiles,
unique up to rotations and translations, of our final tiling T (Sect.
3.2). Table 1 illustrates our notations used throughout this paper.

Notation Description See also

Hi Regular hexagon from regular gridH. Sec. 2.1,
Fig. 3

hi Hextile; partition of h (smaller regular
grid) into hextiles is denotedH.

Sec. 2.1,
Fig. 3

h̃ i Irregular hextile; partition of h into
irregular hextiles is denoted H̃.

Sec. 2.2,
Fig. 4

ti Regular trihex onH. Sec. 3.1,
Fig. 5

t̃ i Irregular trihex; partition of h into ir-
regular trihexes forms tiling T .

Sec. 3.2,
Fig. 8

Table 1: Main notations used in the description of our approach.

1.3 Outline

We present our approach in four parts. Section 2 describes the
creation of an irregular, equi-area tiling with hexagonal topology
through border shuffling. Section 3 then introduces our trihex-based
tiling, an extension of Ostromoukhov’s polyominoes [2007], which,
when used in conjunction with irregular hextiles, generates our tiling
structure. The tiles’ centroids will be shown to form a blue noise
distribution free of spectral artifacts. We detail in Section 4 an
adaptive sampling system with spectral control through an offline
optimization of sample points on tiles. We finally demonstrate in
Section 5 that our approach generates sampling points as fast as
previous tile-based methods, but with state-of-the-art quality Fourier
spectra on par with the best existing optimization methods.

2 Generating Irregular Hextiles

We begin with the construction of a hierarchical tilling in which each
tile is an equi-area quasi-hexagon with randomized borders.

2.1 Quasi-Hexagonal Tiling

From the regular hexagonal lattice H (Fig. 3(a)) we create quasi-
hexagonal regions we call hextiles, composed of λ hexagons from a
finer regular hexagonal grid h (Fig. 3(b)): each hexagon Hi ∈ H
is thus mapped to a hextile hi retaining the hexagonal structure of
elements ofH in that it still has six neighboring tiles. These hextiles
form a tiling H of the plane and an equi-area partition of h. This
construction defines a subdivision fromH (spanned by the directions
~U1 and ~U2) toH (spanned by ~u1 and ~u2) whose subdivision factor
is λ—chosen to be 37 to offer sufficient granularity (Appendix C).
This subdivision can be recursively repeated down to any level.

H

Hi

Hk

Hj

~U1

~U2

(a)

H
hi

hk
hj

~u1

~u2

(b)

Figure 3: Quasi-hexagonal tiles. (a) The unbounded, regular hexag-
onal lattice H generated by (~U1, ~U2). (b) The unbounded, quasi-
hexagonal latticeH over the finer regular hexagonal lattice h and
generated by (~u1, ~u2). Each regular hexagon Hi inH corresponds,
through subdivision, to a hextile hi made up of λ small hexagons.

2.2 Border Shuffling

Due to its regular structure, H and its subdivisions induce major
spectral artifacts when used for sampling (Fig. 2(c)). To disrupt
this structure, we introduce irregularity in the hextile borders while
maintaining both the area and topology of the original hextiles {hi},
resulting in irregular hextiles {h̃ i} that form, by construction, a
tiling H̃ of the plane.

�

✁

✁

✁

Discrete border alteration. We modify
tile geometry using a stochastic process that
reassigns hexagons of h along the original
border from one hextile to an abutting one,
thus maintaining the tiling property of the
resulting irregular hextiles. To encode this
border alteration, we use one bit per bound-
ary hexagon to indicate if it is kept as is or

reassigned to the adjacent hextile. One cannot pick random bits to
alter shape: this would likely affect the evenness of the tiling by
creating islands or holes, or by changing the tile area. Therefore,
border bits must be carefully selected to guarantee the validity of
the final irregular hextiling.

a0

a1

a2

a3

b0

b1

b2

b3

c1c0 c2 c3

hi

hk

hj

Triple-edge modifiers. A simple charac-
terization of valid border bits is achieved
by considering triplets of connected border
tiles. For each, we associate a triplet of binary
words A := a0a1a2a3, B := b0b1b2b3, and
C := c0c1c2c3 called a triple-edge modifier
using the convention depicted in the inset fig-
ure, where 0 indicates no local reassignment.
As discussed in Appendix A, each triple-edge modifier must consist
of three words A,B, and C containing an equal number of nonzero
entries, none of which terminates in the sequence “01.” Note that
this straightforward characterization of valid triple-edge modifiers is
in fact sufficient for any λ.

c1 c2 c3

c1c0 c2 c3

a2

a3

a0

a1

a2

a3

b0
b1

b2
b3

c1c0 c2 c3

a0

a1

a2

a3

b0
b1

b2
b3

c1c0 c2 c3

a0

a1

a2

a3

b0

c1c0 c2 c3

a0

a1

a2

a3

b0
b1

b2
b3

c1c0 c2 c3

a0
b0

b1
b2

b3

c1c0 c2 c3

a3

a0

a1

a2

a3

b0
b1

b2
b3

c1c0 c2

a0

a1

a2

a3

b0
b1

b2
b3

c1c0

b2
b3

hi

hk

hj

(a)

0 0 0

00 0 0

0
0

0
1

0
0

0

0
1

0

10 0 0

0
0

1
1

0

1
1

0

10 1 0

0
1

0
0

1
00 1 0

1
0

0
0

0

1
0

0

01 0 0

0
0

1
0

0

00 1 0

0

0
1

1
0

0

1
1

0

01 1

1
0

0
0

0

0
1

0

10

0
0

h̃ i

h̃k

h̃ j

(b)

Figure 4: Effect of edge modifiers. From a set of hextiles hi and
random valid edge modifiers (a), a set of irregular tiles h̃ i in H̃ is
obtained (b) which maintains the topology of the initial tiling as well
as each tile’s initial area.

2.3 Irregular Hextiling

Given the choice of λ = 37, there is a total of 120 valid triple-
edge modifiers, forming a sufficiently large set for our shuffling
purposes. To construct an irregular tiling H̃, we begin with the
regular tilingH and assign three independent triple-edge modifiers
to each hextile as shown in Fig. 4(a). Reassigments are made
based on the binary words bordering each regular tile hi, resulting
in irregular tiles h̃ i that are, by construction, also comprised of λ
hexagons from h (Fig. 4(b)). This irregular hextile is guaranteed
to be homeomorphic to a disk (Appendix A). Thanks to this area-
preserving border shuffling, our subdivision process from H to
H can thus be modified to instead map H to H̃, with the same
subdivision factor λ.

3 Trihex-based Tiling via Irregular Hextiles

Once the border shuffling procedure is applied, the resulting tiling
H̃ will contain a rich set of irregular hextiles. While improved, its
underlying quasi-hexagonal structure still results in an unsatisfactory
distribution of tile centroids (Fig. 2(d)). This issue is addressed
next through the use of m-polyhex tiles (here with m = 3, see
Appendix C), extending the polyominoes method [Ostromoukhov
2007] to our irregular hextiling setup. The resulting construction of
subdivision rules based on irregular trihexes will serve as the basis
of the tiling T used in our sampling approach.

3.1 Hierarchical Trihex Tiling

We adapt the polyomino tiling construction from [Ostromoukhov
2007] to our hexagon-based approach, first without border shuffling.
Unlike the original square-based method, we use prototiles that are
m-polyhexes, i.e., connected conglomerates of equal numbers of
hexagons [Grünbaum and Shephard 1986]. While an arbitrary value
of m might be used, we choose m=3 (i.e., trihexes) as it minimizes
the memory requirement for our lookup tables while achieving our
goal of improving spectral properties (Appendix C).

Prototiles Subdivision Rules

�✁✂
✄☎
✄✆

✝
✝t T

(a) (b)

Figure 5: (a) 11 configurations of trihexes onH. (b) The library of
subdivision rules {t →T}, where the quasi-trihex tile associated
with t after subdivision is partitioned into a set of λ=37 trihexes.

There are 11 trihex prototiles up to symmetries, shown in Fig. 5(a).
Moreover, we can extend the decomposition fromH toH defined in
Section 2.1 to trihexes: for each triplet of hexagons ofH forming a
prototile, we can trivially create a “quasi-trihex” onh, i.e., a group of
three hextiles shaped like the original trihex (see Fig. 5(b)). In order
to create a full hierarchical tiling, we decompose each quasi-trihex
tile into a set of λ trihexes. This decomposition is performed offline
using a simple discrete optimization as described in Appendix B.
The result is a cache of 11 subdivision rules {ti→Ti} transforming
trihexes in H to λ trihexes on h, as illustrated in Fig. 5(b). This
hierarchical tiling system is non-periodic, as follows from Statement
10.1.1 in [Grünbaum and Shephard 1986].

As substantiated by Fig. 2(e), these trihex subdivision rules {ti→
Ti} form a tiling with a distribution of centroids whose Fourier
spectrum has much reduced peaks when compared to the original
spectrum ofH. To further scramble this distribution, we now incor-
porate border shuffling.

3.2 Irregular Trihex-based Tiling

In order to mimic an ergodic stochastic process, border shuffling
might be added at each level of the subdivision. However, this
would defeat the purpose of using tiles for fast sampling, as it would
create an exponentially large number of tiles. We thus must use our
irregular tiling from Section 2 parsimoniously, adding just enough
irregularity to the tiles without requiring undue computational and
memory overhead. We achieve this balance by constructing a larger,
but limited, number of subdivision rules.

Limited Irregularity via Bi-Periodicity We first limit the number
of irregular hextiles in our tiling process through bi-periodicity in
our triple-edge modifiers. We choose two generative integer vectors
~g1=7 · ~u1−4 · ~u2 and ~g2=4 · ~u1+3 · ~u2 , where ~u1 and ~u2 are the
vectors spanning our hextiling (see Fig. 3), such that the areaA of the
parallelogram formed by these two vectors is A(~g1, ~g2) = λ ·Ahex,
where Ahex is the area of each hextile h̃ 1. The fundamental region
of this bi-periodic construction is highlighted in Fig. 6

1More generally, if λ is the nth centered hexagonal number, these vectors
are chosen to be ~g1=(2n+1) ·~u1−(n+1) ·~u2 and ~g2=(n+1) ·~u1+n ·~u2.

h̃i

H̃

~g1

~g2

~u1

~u2

Figure 6: Periodic tiling based on two integer basis vectors ~g1 and
~g2, creating a small set H̃ of λ irregular hextiles {h̃ i} (highlighted).

We then constrain our triple-edge modifiers to reflect the periodicity
generated by these two vectors. Consequently, we must create a
set of only λ different irregular hextiles {h̃ i}i=1..λ := H̃ repeated
over H̃, as illustrated in Fig. 6. Notice that, by construction, we
can naturally enumerate these irregular hextiles in H̃ based on the
(arbitrary) enumeration of the λ hexagons in h produced when
subdividing a hexagon fromH (see Fig. 3): one can therefore assign
a hex-index ∈ [1..λ] per irregular hextile, uniquely determining the
indices of the corresponding 6 adjacent hextiles. An example of this
enumeration is given in Fig. 7.

Subdividing Irregular Hextiles. Each irregular hextile is further
subdivided into smaller irregular hextiles from the limited set H̃:
starting from an irregular tile h̃ i with hex-indexed hexagons in h,
we first apply one regular subdivision step. Then, if a hexagon
h has hex-index i, the irregular tile used to replace h will be the
ith irregular hextile in H̃. This subdivision step is illustrated in
Fig. 7. The consistency of the subdivision system—in particular, the
property that the irregular hextiles in Fig. 7 (right) do not overlap—is
due to the fact that indices in H̃ coincide with the indices used in the
H→ H subdivision step.

�✁

✁✂

✄

✂

�✂

✁☎

✆

�✝

✁✞

✁

✞✂

�☎

✁✟

✞✝

�✞

✁�

✂

✞☎

�✟

✁✠

✞✞

��

✁✁

✞✟

�✠

✞

✞�

�✁

✞✠

�✄

�

✠

✞✄

�✆

✁

✁✝

✟

✡✡
✡☛

✡☞

✡✌

✌✌
✌✡

✌☛
✌☞

✌✍
☛

☛☛
☛☞

✌✎

✡✎
✡✍ ✡

☛✡

✡✡
✡☛

✡☞
✏

✌✑

✡✑

☛✑
☛✎

☛✍
✡✒ ✌

☛✌

✡✌

✌✌
✌✡

✌☛
✌☞

☛✏
✒

✌✓

✡✓

☛✓

✓
✑

✎
✍
☛✒

✡✏

✡☞
✏

✌✑

✌☛
✌☞

☛✏
✒

✌✓

✡✓

✌✑

✡✑

☛✑

✒
✌✓

✡✓

☛✓

✓

�✁

✁✂

✄

✂

�✂

✁☎

✆

�✝

✁✞

✁

✞✂

�☎

✁✟

✞✝

�✞

✁�

✂

✞☎

�✟

✁✠

✞✞

��

✁✁

✞✟

�✠

✞

✞�

�✁

✞✠

�✄

�

✠

✞✄

�✆

✁

✁✝

✟

✓

✡☞
✌☛

✡☛
✌✡

✡✡
✌✌

✡✌

✎

✌✓
✒
☛✏

☛✌
✡✓

✌✑
✏
✡☞

✌☛

✌
☛✓

✡✑
✌✎

☛☞
✡☛

✌✡

☛✑
✡✎

✌✍
☛☛

✡✡
✌✌

✑
☛✎

✡✍
☛
☛✡

☛✍
✡✒

✡

✍
☛✒

✡✏
✌

✒
☛✏

✓

✌✓

✌☞
✓

✡✓
✌✑

✏
✡☞

✌☛

✡✌
✌✓

☛✌
✡✓

✌✑

☛✓
✡✑

☛✑

�✁

✁✂

✄

✂

�✂

✁☎

✆

�✝

✁✞

✁

✞✂

�☎

✁✟

✞✝

�✞

✁�

✂

✞☎

�✟

✁✠

✞✞

��

✁✁

✞✟

�✠

✞

✞�

�✁

✞✠

�✄

�

✠

✞✄

�✆

✁

✁✝

✟

Figure 7: From an irregular hextile h̃ i with indexed hexagons (left),
we apply one regular subdivision step to construct sub-hextiles hi
(center). Replacing each of these λ sub-hextiles with a different
irregular hextile from H̃ creates a seamlessly subdivided irregular
hextile (right).

Full Subdivision Process. Since there are λ irregular hextiles in
H̃ and 11 configurations of classical trihexes in H, there may be
11 ·λ = 407 different trihexes in T (see, e.g., Figs. 8(a) and 10). We
construct our final tiling, at any level of refinement, as follows. First,
we make random selections of admissible edge modifiers to construct
H̃ and compute the set T̃ of all irregular trihexes (|T̃ | = 11 ·λ). For
each irregular trihex t̃ ∈ T̃ , we use a subdivision from H to H̃ to
generate finer structure. Such finer structure on the subdivided grid
is decomposed into a collection of λ trihexes of irregular hextiles,
denoted T in Fig. 8(b). Finally, the subdivision rule t̃ → T̃ is
recorded. As mentioned in Section 3.1, we discuss the technique
used to perform this decomposition into trihexes in Appendix B.
The resulting trihex tiling induced by the library of subdivision rules
{t̃→ T̃} is non-periodic, just as in the irregular hextile case.

Irregular Trihexes Subdivision Rules

�✁✂
✄☎
✄✆

✝
✝
✞
✟t̃ T̃

(a) (b)

Figure 8: (a) Examples of irregular trihexes in T (only 11 out of
11 · λ are shown). (b) The library of subdivision rules {t̃→ T̃} for
all irregular trihexes.

Ordering of Sub-Trihexes. Finally, trihexes in T are indexed by
a rank (i.e., an integer in {1 . . . λ}). This choice of ordering is
crucial to obtaining maximal quality during the adaptive sampling
described in Section 4.3, as it assigns indices such that sequentially
ranked trihexes are as physically distant from each other as possible—
thus offering, between subdivision levels, a generalized Halton-like
sequence of tile barycenters. We use the classical void-and-cluster
method [Ulichney 1993; Kopf et al. 2006; Ostromoukhov 2007] to
find the ranking rank (t̃ ′|t̃→ T̃) of the irregular trihex t̃ ′ in each
subdivision rule t̃→ T̃. Rankings within the subdivision of a few
trihexes can be seen in Fig. 10.

3.3 Concise Structural Indices

In order to efficiently access trihex lookup tables during sampling,
we must be able to uniquely, yet concisely, identify a given tile at an
arbitrary subdivision level. We address this important implementa-
tion issue by using hybrid structural indices as follows.

In our tiling T , an irregular trihex t̃k at subdivision level k could be
uniquely defined by a sequence of subdivision rules from the library,
i.e., as a sequence of trihex ranks2:

rank (t̃ 1|t̃ 0→ T̃1) ⊕ . . .⊕ rank (t̃k|t̃k−1→ T̃k) , (1)

with t̃ i a trihex in the set T̃i. However, in order to support adaptive
sampling (and thus, deep subdivision), k might become arbitrarily
large, making trihex identifiers intractable in practice. We thus desire
to formulate structural indices that are:

• finite, but from which trihexes of arbitrary resolution can be
represented;

• such that trihexes with the same structural index will share the
same local configuration of trihexes, regardless of their subdivi-
sion level

These properties can be achieved by exploiting the cyclic structure
in the sequence of trihex ranks, which leads to a limited number of
possible local tile neighborhoods. In fact, we propose to use as struc-
tural indices a mix of neighborhood indices and ranks, thus offering
a balance between the tile indexing proposed in [Ostromoukhov
et al. 2004] (ranks only) and [Ostromoukhov 2007] (neighborhood
indices only).

Instead of explicitly representing the entire subdivision path from t̃ 0

to t̃k, we characterize t̃k by the rank of its last l subdivision steps
t̃k−l → T̃k, and replace the prepending path from t0 to t̃k−l with a
neighborhood index based on the trihexes surrounding t̃k−l, which
we denote n(t̃k−l).

id(t̃k) :=n(t̃k−l)⊕ rank (t̃k|t̃k−l→ T̃k) . (2)

2If ranks are integer numbers on b bits, ⊕ is the concatenation operator
on bits. The trihex identifier would thus require k · b bits.

We found that using l = 1 provides a good balance between quality
and lookup table size (see Appendix C). The neighborhood index
n(t̃) for a given irregular trihex t̃ is a unique number representing
the trihex adjacency around t̃ , see Fig. 9. Such indices are computed
from a local analysis of irregular trihex adjacencies in the subdivision
rules: we observe that for each t̃ , the number of unique neighboring
trihex configurations n(t̃) is 336 on average. An irregular trihex
index is thus defined as one rank (a number between 1 and λ) and
one neighboring index, which in our actual implementation leads to
about 5M possible indices–thus 23 bits, however deep one needs to
subdivide the tiles.

Figure 9: Neighborhood of a trihex. Two trihexes (dark blue) with
identical neighborhood indices have the same 1-ring of neighboring
trihexes (light blue) but may have different (n>1)-rings. Point-set
optimizations start with the centroid of each tile and are averaged
over all possible configurations of a trihex’s vicinity (dotted circle).

4 Adaptive Tile-based Sampling

At any subdivision level k, our tiling method generates an artifact-
free blue noise distribution of trihex centroids with constant spatial
sample density (Fig. 2(f)). However, single-sample-per-tile ap-
proaches produce high quality results only for powers-of-λ densities:
in between two levels of subdivision, the spectral properties of the
centroids’ distribution are dictated solely by the ranking algorithm,
resulting in suboptimal sampling. In order to remediate this issue
and offer control over the distribution spectrum for the sampling of
arbitrary constant densities, we now show how to generate spatially-
optimized point samples for each tile in an offline stage, leading to
high-quality adaptive sampling at runtime.

4.1 Lookup Sampling Table

We first construct a lookup table D to exert control over the spectra
at intermediate levels of subdivision: for each tile, we will compute a
set of optimized point samples at each range of ranks Rr :=[0 . . . r]
(with r<λ), where sample locations are stored as offsets from the
tile centroid.

More precisely, we begin with a trihex for each neighborhood index
and subdivide it several times, generating a large patch containing
about N trihexes (the value of N is optimizer dependent; see Sec.
4.2). Inside each patch, each trihex t̃ is subdivided once more,
creating λ sub-trihexes. For each range of ranks Rr and for each
trihex with structural index id in this patch, we create a point set
containing the barycenter of the id trihex along with the N nearest
sub-trihex barycenters with ranks in Rr (see Fig. 10). These points
are then spatially optimized using any existing optimizer to improve
their spectral distribution (discussed below). Finally, the resulting
point set is converted into offsets from the barycenter of the id
trihex, which are then stored in the lookup table entry D[r, id] for
rank range Rr and structural index id. Note that our initial trihex
subdivisions are such that we will run multiple optimizations of
the same structural index. However, our construction of structural

(a) R1 (b) R2

(c) R3 (d) R37

Figure 10: Optimization snapshots for various sample densities (i.e.,
various rank ranges Rr). Black dots mark the centroids of sub-tiles
(colored); arrows indicate the sampling offsets computed in the first
iteration of the optimization loop.

indices is such that two identical structural indices only share the
same configuration of 1-ring of neighboring trihexes (see Fig. 9
in blue); farther neighboring trihexes may differ, but the offsets
resulting from the optimizer are very similar in practice. Offsets
from these multiple runs are thus averaged and stored in the lookup
table as advocated in [Ostromoukhov et al. 2004].

Once the offsets for all structuring indices and all ranges of ranks
are optimized separately, we convolve the results with a Gaussian
kernel to smooth and enhance the offset coherence between rank
ranges [Ostromoukhov et al. 2004]. The resulting lookup table,
containing∼90M elements (generated from∼5M structural indices
and λ=37 ranges of ranks) is then able to handle adaptive sampling
of arbitrary density functions as demonstrated in Fig. 11.

4.2 Optimizing Point Sets

Our approach can accommodate most existing point set optimizers
that rely on local updates. Even methods based on global sample
displacements such as [Schlömer et al. 2011] can be leveraged, at
the cost of a postprocessing step to remap the final sample points
to nearby trihex centroids. Based on the experiments described in
Sec. 5.2, we found that our method produced high quality distri-
butions even for very small patches around each possible irregular
trihex (see the dotted circle in Fig. 9) when using a Lloyd based
optimizer such as [Balzer et al. 2009; de Goes et al. 2012]; we thus
use a size N = 6 in this case. More general noise spectrum opti-
mizers [Zhou et al. 2012; Öztireli and Gross 2012; Heck et al. 2013]
warrant much larger patches, as they require accurate statistics on
point distances. For these methods we use N ∼ 100, corresponding
to a 5-ring vicinity. We are also able to tabulate our point sets to re-
produce not only high-quality isotropic spectra, but also anisotropic
spectra (see Fig. 14).

4.3 Adaptive Sampling

Upon completion of the offline optimizations and offset tabulation,
we can now adaptively sample any importance function with the
same approach described in previous tiling based methods [Ostro-

moukhov et al. 2004; Ostromoukhov 2007]: from the importance
function value, we locally select the most suitable subdivision level
(through rounding) and a rank threshold to handle the density levels
for octaves between power-of-λ levels. Samples are then gener-
ated by first performing an adaptive trihex-based irregular tiling
(Section 3.2) at the given spatially-adapted subdivision levels, then
placing, relative to the trihexes’ centroids, precomputed samples
from the lookup table based on the local rank threshold. The re-
sulting samples (see, e.g., Fig. 12) exhibit the spectral distribution
inherited from the point set optimizer that was used offline.

5 Results and Discussion

We now provide a series of tests and comparisons to demonstrate
the high quality and interactive nature of our tile-based approach for
various desirable spectra.

5.1 Testing against other Tile-based Methods

We begin by evaluating our results through comparisons with pre-
vious offline-optimized tile-based approaches—all of which are
designed to produce blue noise point distributions.

Visual (spatial) quality. For constant sample density (Fig.13), our
approach stands out: sampling through Penrose tiles exhibits clear
regularity and directionality, while polyominoes create distributions
in which “holes” appear due to their relatively poor number of subdi-
vision rules. Our results for density ramps (Fig.11) also show fewer
discrepancies in distances between neighbors through all density
levels than previous approaches; in particular, Wang tiles lead to
comparatively many holes and clusters.

Spectrum quality. Our tiling method is able to remove all peaks
from the Fourier spectrum, even when using unoptimized tile cen-
troids as the sampling points (Fig. 2(f)). After offline optimization,
our one-sample-per-tile sampling has a blue noise spectrum that
closely mimics the results of the best optimization techniques so
far (Fig. 14(top)), and the anisotropy is both flat and at noise level.
In comparison, Fig.13 shows that polyominoes retain visible resid-
ual peaks, while Wang tiles, even with 1024 samples per tile to
improve their spectrum, exhibit anisotropy and a less flat low fre-
quency region. For consistency, all power spectra, radial averages
and anisotropies shown here were averaged over 10 distributions of
4K samples.

Speed. At runtime we can generate over 1M samples per second
on commodity hardware, similar to most other tile-based methods.
As our approach is inherently parallelizable, one should be able to
improve efficiency with specialized hardware.

5.2 Comparison with general-noise algorithms.

Spectrum shaping and Quality. Unlike previous tile-based sam-
pling methods, we optimize our offsets offline in order to reproduce
input-specified spectra with very high fidelity, as demonstrated in
Fig.14. The method of [de Goes et al. 2012] for blue noise and
general-noise optimization techniques such as [Zhou et al. 2012;
Öztireli and Gross 2012; Heck et al. 2013] were used successfully in
our offline offset computations, and future point optimizers should
be directly usable as well. We are also able to reproduce anisotropic
spectra, even though our tiling is defined such that it forms an
isotropic sampling: optimization of the offsets is sufficient to gener-
ate anisotropic distributions.

Speed. Again, we are able to generate millions of samples per sec-
ond: our runtime complexity is independent of the target spectrum
because our approach is based on lookup tables. Even the spectrum
in Fig.15, derived from observations of the spatial distribution of
oak trees in a forest, can be adopted with no impact on timing.

5.3 Results of Adaptive Sampling

Our one-sample-per-tile output is able to capture varying density
functions with smooth, blue-noise preserving transitions (Fig. 11).
Adaptive sampling is achieved by refining tiles to a depth propor-
tional to the local density; our approach produces high quality results,
as demonstrated in Fig. 12.

[de Goes et al.
2012]

[Kopf et al.
2006]

[Ostromoukhov
et al. 2004]

[Ostromoukhov
2007]

Ours

Figure 11: Adaptive sampling of a quadratic density ramp with
2000 points for various sampling algorithms.

5.4 Generalization

While we focused on a particular implementation of our general
approach that strikes a good balance between memory consumption
and sampling quality, we note that different subdivision factors λ
and/or other (m>3)-polyhexes can be used without particular diffi-
culty (see supplemental material). This flexibility can be leveraged
to offer lower-memory or higher-quality alternative implementations
when targeting more specific applications. For completeness, the
supplemental material also provides an analysis of our stuctural
index based on λ and on the number of ranks one may keep from
the full indexing in Eq. 1.

5.5 Limitations

One drawback of our method is that it requires the selection of
several parameters, which vary either the geometric complexity of
tiles (λ, Sec. 2 and m, Sec. 3), or the extent of the irregular trihex
neighborhood captured by the structural index (l, Sect. 3.3) or con-
sidered during the optimization step (N , Sect. 4.2). As discussed
in Appendix C, these values represent a trade-off between point set
quality and the size of the lookup table. We found that λ = 37,
m = 3 and l = 1 provide the best compromise for this tiling sys-
tem; but these values produce a lookup table containing 90M offset
entries, potentially presenting a challenge for devices with limited
memory. The last parameter, N (Sec. 4.2), does not affect the size
of the lookup table, but does change the offline preprocessing time.
This parameter varies from 6 to 100 depending on the optimization
method the user selects to optimize point positions. Note that none
of these parameters impact the timing of the final sample generation.

Another limitation is that this system is unsuitable for the gener-
ation of spatially structured distributions such as regular lattices,
or of non-uniform distributions in the sense defined by Kuipers
and Niederreiter [1974]. In other words, our method is best suited
for distributions that are locally characterized, and thus generate
bounded offsets. Consequently, we follow the work of Heck and
colleagues [2013] and focus on spectra from the blue noise family.

6 Conclusion

Our sampling approach provides an extremely effective way to gen-
erate high-quality spectrum-specified sample distributions. From
a novel tiling with blue noise properties, precomputed offsets with
user-defined spectral properties are used to sample any density func-
tion in linear complexity at a rate of millions of samples per second
on commodity hardware. While our new tiling procedure exhibits
sampling properties that are far superior to current methods, we be-
lieve our approach can be further improved upon. First, our lookup
tables have a non-negligible memory footprint which may limit im-
plementations on GPUs. Furthermore, it would be desirable to have
multiple spectral targets embedded in our hierarchical tile-based
sampling system. The ideas presented in [Belcour et al. 2013] may
be pertinent to this extension.

Acknowledgements. This project was supported by the ANR
excellence chair (ANR-10-CEXC-002-01) and digitalSnow program
(ANR-11-BS02-009), as well as NSF grants CCF-1111943 and
CCF-1011944, and a Google graduate fellowship. The authors are
grateful to the anonymous reviewers for their constructive comments
and suggestions to improve the final version of this paper. We also
thank Kartic Subr for helpful discussions, and Patrick Mullen for his
insightful comments.

A Valid triple-edge modifiers

The two sufficient conditions on the validity of a triple-edge modifier
explained in Section 2.2 are trivial to prove. The first requirement—
having the same number of non-zero bits in the modifier words A,B,
and C—enforces that each tile preserves its original area. Indeed,
following Fig. 4(a), any 1 in A means that a hexagon of hj will be
added to hi, which implies that there must also be a corresponding
1 in B and C, indicating that a hexagon of hk will be added to hj
and another moved from hi to hk. Thusly, all modified hextiles will
still contain λ hexagons. The second requirement—having none
of the words end with “01”—is easily shown to imply homeomor-
phic shuffling (i.e., no islands or holes) through enumeration of all
configurations of A with at least one non-zero entry (dark orange
hexagons):

Grey hexagons are those in hi that may be removed from hi depend-
ing on surrounding triple-edge modifiers. We see that in all but
the rightmost case (word ending with “01”), every added hexagon
is adjacent to a hexagon of hi that will remain in h̃ i (light orange
hexagons), thus resulting in a modified tile h̃ i homemorphic to
hi. In our supplementary material, we provide a formal proof that
these two conditions are sufficient for arbitrary centered hexagonal
numbers.

B Decomposition of T̃ into irregular trihexes

As described in Sec. 3.2, an important step of our approach consists
of decomposing T̃ into irregular trihexes from T̃ . While this is likely

Figure 12: Importance sampling for rendering light integration;
high-dynamic range image courtesy of Paul Debevec.

to be an NP-complete problem, we purposely kept small both the
cardinality |T̃ | = 11 · λ and the number λ of irregular trihexes t̃ i
within each element. We can thus directly explore the combinatorial
search space to get a solution. In fact, one can design a very effi-
cient algorithm to quickly construct a wide set of solutions by using
the concept of discrete capacity-constrained Voronoi tessellation
(CCVT) proposed in [Balzer et al. 2009]. Indeed, we aim to decom-
pose T̃ into cells (defined as sets of irregular tiles h̃) with capacity 3
(each h̃ having a capacity of one), and we know that the tessellation
induces a valid decomposition of T̃ if each cell defines an irregular
trihex (i.e., if its three irregular tiles are adjacent). Following [Balzer
et al. 2009], we first attach random labels {1 . . . λ} to each tile and
perform label swaps if the proposed change minimizes the CCVT
energy. After several swaps, we check if the resulting decomposition
is valid—that is, if each cell is an irregular trihex. If not, we perform
local random label swaps and continue iterating. This minimization
of the CCVT energy allows us to quickly and robustly obtain valid
and non trivial decompositions in only a few iterations. Note that
this process is so fast to converge that one can generate multiple
valid decompositions of T̃ and pick the decomposition for which a
maximum number of different prototiles is used: this process further
improves the mixing of prototiles within the decomposition.

C Parameter Selection

Here we provide a brief review of the parameters used in the re-
sults shown. For a more complete treatment, along with additional
illustrations and spectra, we refer the reader to the supplementary

Penrose tiles Wang tiles Polyominoes Irregular trihexes
1 sample per tile 1024 samples per tile 1 sample per tile 1 sample per tile

[Ostromoukhov et al. 2004] [Kopf et al. 2006] [Ostromoukhov 2007] Our method
P

o
w

e
r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n
is

o
tr

o
p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o
w

e
r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n
is

o
tr

o
p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o
w

e
r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n
is

o
tr

o
p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o
w

e
r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n
is

o
tr

o
p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

Figure 13: Comparison with other tile-based sampling methods for constant density function. Top to bottom: power spectra, sample
distribution, radially-averaged power spectra and radial anisotropy. Notice the dramatic improvement in blue noise profile and isotropy.

Qualitative Analysis Timing (seconds)

Method Speed Memory
footprint

Distribution
Quality

Spectral
Control 10k 50k 1M 10M

[Schlömer et al. 2011] very poor good good 157.2 4880 - -
[de Goes et al. 2012] poor good excellent 6.135 65.00 10738 -
General Noise poor good good 3 10.11* 13.91* 147.5* -
[Ostromoukhov et al. 2004] excellent satisfactory satisfactory 0.730 4.55 11.8 80.14
[Kopf et al. 2006] excellent poor good 0.004 0.018 0.345 3.42
[Ostromoukhov 2007] excellent poor good 0.053 0.254 18.9 19.6
Ours (blue noise target) excellent poor excellent 3 0.016 0.067 0.989 9.28
Ours (general noise target) excellent poor good 3 0.016 0.067 0.989 9.28

Table 2: Overview of the properties and timings of sampling algorithms. Timing were measured on a single core 3.2 GHz CPU, except those
marked with an asterisk *, which utilized an NVIDIA GTX 660 GPU.

materials available on the project website.

Subdivision factor, λ: This parameter determines the number of
hexagons into which tiles are subdivided, and is thus constrained
to the centered hexagonal numbers (1, 7, 19, 37, 61, ...). Smaller λ
yield tile sets with insufficient variety to overcome the limitations
common to previous tile-based sampling methods (Sec. 1). On
the other hand, larger values lead to finer subdivision, reducing
the influence of each shuffled border hexagon (Sec. 2.2) on its tile
centroid and increasing the lookup table size. Using λ = 37 limits
lookup table size, provides sufficient tile variety, and maximizes
effectiveness of border shuffling.

Polyhex size, m: Smaller polyhexes (m = 1, see Fig. 2, or m = 2)
produce inferior blue-noise spectra. Larger polyhexes lead to more
possible tile configurations, but also more neighborhood indices.
The greatest jump in quality is found when increasing m from 2
to 3, with the advantages for larger polyhexes outweighed by the
corresponding increases in lookup table size.

Structural index depth, l: Increasing this parameter expands the
neighborhood referred to by each structural index, with an expo-

nential effect on the number of structural indices generated. Vast
improvements to sample distribution and spectral quality are ob-
served when increasing l from 0 to 1; the corresponding effects
when increasing from 1 to 2 are limited. Thus, l = 1 is found to
adequately characterize tile neighborhoods at an acceptable cost.

References

BALZER, M., SCHLÖMER, T., AND DEUSSEN, O. 2009. Capacity-
constrained point distributions: A variant of Lloyd’s method.
ACM Trans. Graph. 28, 3, 86:1–8.

BELCOUR, L., SOLER, C., SUBR, K., HOLZSCHUCH, N., AND
DURAND, F. 2013. 5D covariance tracing for efficient defocus
and motion blur. ACM Trans. Graph. 32, 3, 31:1–31:18.

CHEN, Z., YUAN, Z., CHOI, Y.-K., LIU, L., AND WANG, W.
2012. Variational blue noise sampling. IEEE Trans. Vis. Comput.
Graphics 18, 10, 1784–1796.

COHEN, M., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. ACM Trans. Graph-

Original method Results using our method

B
N

O
T

[d
e

G
oe

s
et

al
.2

01
2]

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

Po
is

so
n

D
is

k
[G

am
ito

an
d

M
ad

do
ck

20
09

]

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

St
ep

us
in

g
[H

ec
k

et
al

.2
01

3]

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

U
lic

hn
ey

us
in

g
[H

ec
k

et
al

.2
01

3]

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

A
ni

so
tr

op
ic

U
lic

hn
ey

us
in

g
[H

ec
k

et
al

.2
01

3]

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

P
o

w
e

r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

Pi
nk

N
oi

se
us

in
g

[H
ec

k
et

al
.2

01
3]

P
o

w
e

r

0 1 2 3 4

1

2

3

4

5

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

P
o

w
e

r

0 1 2 3 4

1

2

3

4

5

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

Figure 14: Optimization-based vs. tile-based sampling methods. Left: results of blue noise and general noise optimization methods. Right:
our tiling based method using each of these optimization methods for our offline offset computations. Each example includes Fourier spectrum,
point distribution, radial average and anisotropy of power spectrum. Notice the very limited degradation of the spectrum generated by our
tiling approach (see also Fig. 13).

P
o

w
e
r

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

Frequency

A
n

is
o

tr
o

p
y

0 1 2 3 4

-10

-5

0

5

10

15

Frequency

Figure 15: Distribution (left) of oak trees based on a measured distribution from [Pommerening 2002]. Visualization (center and right) of the
resulting forest.

ics 22, 3, 287–294.

CONWAY, J. H., AND GUY, R. K. 1996. The Book of Numbers.
Springer-Verlag.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1, 51–72.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. ACM
Trans. Graph. 31, 6, 171:1–171:10.

DIPPÉ, M. A. Z., AND WOLD, E. H. 1985. Antialiasing through
stochastic sampling. In ACM SIGGRAPH, 69–78.

DURAND, F. 2011. A frequency analysis of Monte-Carlo and other
numerical integration schemes. MIT CSAIL Technical report
TR-2011-052.

EBEIDA, M. S., DAVIDSON, A. A., PATNEY, A., KNUPP, P. M.,
MITCHELL, S. A., AND OWENS, J. D. 2011. Efficient maximal
Poisson-disk sampling. ACM Trans. Graph. 30, 49:1–49:12.

FATTAL, R. 2011. Blue-noise point sampling using kernel density
model. ACM Trans. Graph. 30, 3, 48:1–48:12.

GAMITO, M. N., AND MADDOCK, S. C. 2009. Accurate mul-
tidimensional poisson-disk sampling. ACM Trans. Graph. 29,
8:1–8:19.

GRÜNBAUM, B., AND SHEPHARD, G. C. 1986. Tilings and
patterns. W.H. Freeman & Company.

HECK, D., SCHLÖMER, T., AND DEUSSEN, O. 2013. Blue noise
sampling with controlled aliasing. ACM Trans. Graph. 32, 3,
25:1–25:12.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D.
2006. Recursive Wang tiles for real-time blue noise. ACM Trans.
Graph. 25, 3, 509–518.

KUIPERS, L., AND NIEDERREITER, H. 1974. Uniform Distribution
of Sequences. Dover Publications.

LAGAE, A., AND DUTRÉ, P. 2006. An Alternative for Wang Tiles:
Colored Edges versus Colored Corners. ACM Trans. Graph. 25,
4, 1442–1459.

LAGAE, A., KAPLAN, C. S., FU, C.-W., OSTROMOUKHOV, V.,
AND DEUSSEN, O. 2008. Tile-based methods for interactive
applications. In ACM SIGGRAPH 2008 classes, 93:1–93:267.

MCCOOL, M., AND FIUME, E. 1992. Hierarchical Poisson disk
sampling distributions. In Proc. Graphics Interface ’92, 94–105.

MITCHELL, D. 1991. Spectrally optimal sampling for distributed
ray tracing. In ACM SIGGRAPH ’91, vol. 25, 157–164.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast hierarchical importance sampling with blue noise properties.
ACM Trans. Graph. 23, 3, 488–495.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. ACM
Trans. Graph. 26, 3, 78:1–78:6.

ÖZTIRELI, A. C., AND GROSS, M. 2012. Analysis and synthesis of
point distributions based on pair correlation. ACM Trans. Graph.
31, 6, 174:1–174:6.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Render-
ing: From Theory to Implementation, 2nd ed. Morgan Kaufmann.

POMMERENING, A. 2002. Approaches to quantifying forest struc-
tures. Forestry 75, 3, 305–324.

SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-
point optimized point sets with maximized minimum distance. In
Symp. on High Performance Graphics, 135–142.

SCHMALTZ, C., GWOSDEK, P., BRUHN, A., AND WEICKERT, J.
2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8,
2313–2327.

SUBR, K., AND KAUTZ, J. 2013. Fourier analysis of stochastic
sampling strategies for assessing bias and variance in integration.
ACM Trans. Graph. 32, 4, 128:1–128:12.

ULICHNEY, R. A. 1988. Dithering with blue noise. Proc. of the
IEEE 76, 56–79.

ULICHNEY, R. 1993. The void-and-cluster method for dither array
generation. SPIE Vol. 1913, 332–343.

WANG, H. 1965. Games, logic, and computers. Scientific American
213, 5, 98–106.

WEI, L.-Y., AND WANG, R. 2011. Differential domain analysis
for non-uniform sampling. ACM Trans. Graph. 30, 50:1–50:10.

WEI, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans.
Graph. 27, 20:1–20:9.

ZHOU, Y., HUANG, H., WEI, L.-Y., AND WANG, R. 2012. Point
sampling with general noise spectrum. ACM Trans. Graph. 31, 4,
76:1–76:11.

