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Preamble

his volume on advances and applications of Dezert-Smarandache Theory

(DSmT) for information fusion collects theoretical and applied contribu-
tions of researchers working in different fields of applications and in mathe-
matics. Some contributions have not been published until now, or only par-
tially published and presented since the summer 2006 in international confer-
ences, seminars, workshops and journals. Several chapters include figures in
color which can be seen from the free electronic copy of this volume available
at http://www.gallup.unm.edu/~ smarandache/DSmT-book3.pdf or upon re-
quest to editors or authors. Part 1 of this volume presents the current state-of-
the-art on theoretical investigations while Part 2 presents new applications in
defense, geosciences, remote sensing, medicine, etc. Some works in this book
are at their preliminary stages, others are under progress, and some are at
their final stages of development. We hope that this third volume on DSmT
will bring help and suscitate new ideas to researchers and engineers working in
quantitative and qualitative information fusion under uncertainty. This third
volume has about 760 pages, split into 25 chapters, from 41 contributors.

In the first part of this volume the readers will discover: the different fusion
spaces where the DSmT can work (power-set, hyper-power set, or super-power
set) depending on the model associated with the frame of the problem one
wants to solve; new fusion rules such as the simple uniform or partial uni-
form redistribution rules, and more complex classes based on redistribution
to subsets or complements including also the reliability of the sources; a new
probabilistic transformation which outperforms the classical pignistic transfor-
mation in term of probabilistic information content; a DSm Field and Linear
Algebra of Refined Labels (FLARL) that is able to deal exactly with qualitative
masses if the labels are equidistant (if they are not equidistant, the FLARL
operators can be still used, but the result will be approximate); the extension
of quantitative fusion rules into qualitative fusion rules by simply replacing
the numerical operations by corresponding qualitative operations thanks to
FLARL; the extension of the proportional conflict redistribution rule no. 6
on continuous frames for combining densities of probabilities and thus keeping
multiple modes in the resulting fusionned density; new sampling techniques
based on referee functions for the fusion and also codes or pseudo-codes to
implement some rules, etc.



More applications of DSmT have emerged in the past three years from the
apparition of the second book of DSmT in summer 2006. Part 2 of this vol-
ume presents some of them done in target tracking, in satellite image fusion,
in snow-avalanche risk assessment, in multi-biometric match score fusion, in
assessment of an attribute information retrieved based on the sensor data or
human originated information, in sensor management, in automatic goal allo-
cation for a planetary rover, in computer-aided medical diagnosis, in multiple
camera fusion for tracking objects on ground plane, in object identification, in
fusion of Electronic Support Measures (ESM) allegiance reports, in map regen-
erating forest stands, in target type tracking, etc.

We want to thank all the contributors of this third volume for their research
works and their interests in the development of DSmT. We are also grateful
to other colleagues for encouraging us to edit this third volume, for sharing
with us several ideas and for their questions and comments on DSmT through
the years. We specially thank Dr. Albena Tchamova for her constant devotion
and help in the preparation and in the peer-review of this volume. We thank
Dr. Erik Blasch, 2007 President of the International Society of Information
Fusion (www.isif.org.) for the Preface. We also thank Prof. Pierre Valin,
2006 ISIF President, for peer-reviewing the chapters of this book. Jean Dezert
thanks Dr. Romain Kervarc, Dr. Christophe Peyret and Dr. Grégoire Mercier
for helping him to overcome typesetting difficulties under I¥TgX during the pre-
liminary stage of this book project. Florentin Smarandache is grateful to The
University of New Mexico, U.S.A. that many times partially sponsored him
to attend international conferences, workshops and seminars on Information
Fusion and Jean Dezert is grateful to the Department of Information Modeling
and Processing (DTIM) at the French Aerospace Lab (Office National d’Etudes
et de Recherches Aérospatiales), Chatillon, France for encouraging him to carry
on this research and for its financial support.

The Editors.



Preface

Each decade, there have been probabilistic and non-probabilistic reasoning
advances that have spawned a new generation of processing techniques to
support information fusion. Dezert-Smarandache Theory (DSmT) is the the-
ory of the first decade of the 215 century. Dr. Jean Dezert and Dr. Florentin
Smarandache have combined their efforts to advance the mathematical field
of evidence theory popularized by Dempster-Shafer (DS). The DS method ex-
tended Bayesian theory to deal with conflicting and imprecise data, ignorance,
and belief and plausibility relations. DSmT further generalizes the DS theory
to include the hyper-power set over which (1) complex static and dynamic in-
formation fusion results are realized for large data conflicts, (2) the frame of
discernment (set) is refined and beliefs redistributed, and (3) data is better
understood over vagueness, imprecision, and large relative differences.

Throughout the last decade, Dr. Dezert and Dr. Smarandache have sup-
ported the decision-making community by providing solutions to information
fusion technique limitations by developing the DSmT, providing seminars and
tutorials, as well as producing a series of texts. The dedication of their efforts is
demonstrated through the compilation of the on-line and freely available texts
and exemplar code. The hard work and contribution is a serious commitment
to organize their thoughts, teach the next generation of researchers, as well as
provide valuable feedback to the authors and researchers throughout the world.

As this text is the third volume in the series on Advances and Applications
of DSmT for Information Fusion, the broad range of applications shows the
power of the DSmT technique to advance the state-of-the-art in many math-
ematical, business, and engineering fields. Volume 1 focused on defining the
DSmT, providing comparisons between many fusion rules, and the hybrid DSm
(DSmH) rule applied to tracking in clutter, data association, and distributed
situation analysis. Volume 2 focused on the Proportional Conflict Redistribu-
tion (PCR) rules, Belief Conditioning Rules (BCR), and fusion of qualitative
beliefs for applications in targeting and tracking. Volume 2 also provides many
MATLAB™ routines to implement the DSmT.

iii



The completion of the third volume is quite exciting as it contains 25 chap-
ters, from 41 contributors, detailing the DSmT applications over 700 pages.
In the current installment of DSmT Advances and Applications, there is some-
thing for everyone in the field of Information Fusion. Dezert and Smarandache
work with Frédéric Dambreville to present new advances for the Proportional
Conflict Redistribution (PCR) rule for qualitative applications. Arnaud Martin
and Xinde Li provide new developments in belief redistribution of subsets or
complements (RSC) and imprecise labels, respectively. Milan Daniel provides
new insights on Belief Conditioning Rules (BCR). For these various advances,
examples are shown for applications in tracking that leverage contemporary
techniques such as particle filtering.

Applications demonstrate the power of the DSmT framework. In this third
Volume, DSmT is applied to the entire spectrum of the Information Fusion
that would interest any reader in data, sensor, information, and mathemat-
ical fusion topics. Highlighted in Figure 1 are the contemporary issues that
include the links between (1) data conditioning and information management,
(2) combined situation and impact assessment, and (2) knowledge representa-
tion between machine processing and user coordination. Various applications
leverage DSmT “Advances” listed above along with DSmH (hybrid), DSmP
(Probabilistic), and DSmT theoretical insights. The third volume attacks these
application issues of coordination between the “levels” of information fusion.

Info Fusion
Explicit Tacit
Real Sensors Fusion Fusion User
And Sense-makingy [+
World Sources LO Analysis L5 Refinement
E— L1 —‘| L2/3
. Knowjedge
Machine Human Represéntation
ﬁ L 4/ 6 ﬁ Reasoning
Platform
<=>| Resource Management |-7
Ground
Station <3='| Mission Management |

Figure 1: Data Fusion Information Group (DFIG) Model.



Briefly, here is a list of DSmT applications in Vol. 3 as categorized by the
DFIG:

e Level 0 — Data Assessment: terrain analysis and data conditioning

e Level 1 — Object Assessment: simultaneous track and identification as
well as image fusion

e Level 2 — Situation Assessment: association as well as event and entity
determination

e Level 3 — Impact Assessment: geographic risk assessment

e Level 4 — Process Refinement: sensor management and performance eval-
uation

e Level 5 — User Refinement: decision and display

e Level 6 — Mission Management: attribute information for command and
control

Many results are presented for different research areas including: robotics,
biometric fingerprinting, satellite image fusion, and standard object tracking
and identification. Without a doubt, DSmT is the tool! from this decade that
advances information fusion for decision-making.

Erik Blasch, PhD, MBA

Air Force Research Laboratory
Dayton, OH

April 2009

1. E. Bossé, J. Roy, and S. Wark, Concepts, Models, and Tools for Information Fusion,
Artech House, 2007.
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An introduction to DSmT

Jean Dezert Florentin Smarandache
French Aerospace Research Lab., Chair of Math. & Sciences Dept.,
ONERA/DTIM/SIF, University of New Mexico,
29 Avenue de la Division Leclerc, 200 College Road,
92320 Chatillon, France. Gallup, NM 87301, U.S.A.
jean.dezert@onera.fr smarand@unm.edu

Abstract: The management and combination of uncertain, im-
precise, fuzzy and even paradozical or highly conflicting sources of
information has always been, and still remains today, of primal im-
portance for the development of reliable modern information sys-
tems involving artificial reasoning. In this introduction, we present
a survey of our recent theory of plausible and paradoxical reasoning,
known as Dezert-Smarandache Theory (DSmT), developed for deal-
ing with imprecise, uncertain and conflicting sources of information.
We focus our presentation on the foundations of DSmT and on its
most important rules of combination, rather than on browsing spe-
cific applications of DSmT available in literature. Several simple ex-
amples are given throughout this presentation to show the efficiency
and the generality of this new theory.
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1.1 Introduction

The management and combination of uncertain, imprecise, fuzzy and even
paradoxical or highly conflicting sources of information has always been, and
still remains today, of primal importance for the development of reliable modern
information systems involving artificial reasoning. The combination (fusion) of
information arises in many fields of applications nowadays (especially in de-
fense, medicine, finance, geo-science, economy, etc). When several sensors,
observers or experts have to be combined together to solve a problem, or if
one wants to update our current estimation of solutions for a given problem
with some new information available, we need powerful and solid mathemat-
ical tools for the fusion, specially when the information one has to deal with
is imprecise and uncertain. In this chapter, we present a survey of our recent
theory of plausible and paradoxical reasoning, known as Dezert-Smarandache
Theory (DSmT) in the literature, developed for dealing with imprecise, uncer-
tain and conflicting sources of information. Recent publications have shown
the interest and the ability of DSmT to solve problems where other approaches
fail, especially when conflict between sources becomes high. We focus this pre-
sentation rather on the foundations of DSmT, and on the main important rules
of combination, than on browsing specific applications of DSmT available in
literature. Successful applications of DSmT in target tracking, satellite surveil-
lance, situation analysis, robotics, medicine, biometrics, etc, can be found in
Parts IT of this volume, in Parts IT of [32, 36] and on the world wide web [38].
Several simple examples are given in this chapter to show the efficiency and
the generality of DSmT.

1.2 Foundations of DSmT

The development of DSmT (Dezert-Smarandache Theory of plausible and para-
doxical reasoning [9, 32]) arises from the necessity to overcome the inherent
limitations of DST (Dempster-Shafer Theory [25]) which are closely related
with the acceptance of Shafer’s model for the fusion problem under consider-
ation (i.e. the frame of discernment © is implicitly defined as a finite set of
exhaustive and exclusive hypotheses 0;, i = 1,...,n since the masses of be-
lief are defined only on the power set of © - see section 1.2.1 for details), the
third middle excluded principle (i.e. the existence of the complement for any
elements/propositions belonging to the power set of ©), and the acceptance of
Dempster’s rule of combination (involving normalization) as the framework for
the combination of independent sources of evidence. Discussions on limitations
of DST and presentation of some alternative rules to Dempster’s rule of com-
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bination can be found in [12, 16, 18-20, 22, 24, 32, 40, 48, 51, 52, 55-58] and
therefore they will be not reported in details in this introduction. We argue
that these three fundamental conditions of DST can be removed and another
new mathematical approach for combination of evidence is possible. This is
the purpose of DSmT.

The basis of DSmT is the refutation of the principle of the third excluded
middle and Shafer’s model, since for a wide class of fusion problems the in-
trinsic nature of hypotheses can be only vague and imprecise in such a way
that precise refinement is just impossible to obtain in reality so that the exclu-
sive elements 6; cannot be properly identified and precisely separated. Many
problems involving fuzzy continuous and relative concepts described in nat-
ural language and having no absolute interpretation like tallness/smallness,
pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT
starts with the notion of free DSm model, denoted M7 (0), and considers ©
only as a frame of exhaustive elements 6;, i = 1,...,n which can potentially
overlap. This model is free because no other assumption is done on the hy-
potheses, but the weak exhaustivity constraint which can always be satisfied
according the closure principle explained in [32]. No other constraint is involved
in the free DSm model. When the free DSm model holds, the commutative and
associative classical DSm rule of combination, denoted DSmC, corresponding
to the conjunctive consensus defined on the free Dedekind’s lattice is performed.

Depending on the nature of the elements of the fusion problem under con-
sideration, it can happen that the free model does not fit with the reality
because some subsets of © can contain elements known to be truly exclusive
and even possibly truly non existing at a given time (specially in dynamic fu-
sion problems where the frame © changes with time with the revision of the
knowledge available). These integrity constraints are introduced in the free
DSm model M/ (©) in order to fit with the reality. This allows to construct
a hybrid DSm model M(©) on which the combination will be efficiently per-
formed. Shafer’s model, denoted M(©), corresponds to a very specific hybrid
DSm model including all possible exclusivity constraints. DST has been devel-
oped for working with M%(6) whereas DSmT was proposed for working with
any hybrid models (including Shafer’s and free DSm models), to manage as
efficiently and precisely as possible imprecise, uncertain and potentially highly
conflicting sources of evidence while keeping in mind the possible dynamicity of
the frame. The foundations of DSmT are therefore totally different from those
of all existing approaches managing uncertainties, imprecisions and conflicts.
DSmT provides a new interesting way to attack the information fusion prob-
lematic with a general framework in order to cover a wide variety of problems.
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DSmT refutes also the idea that sources of evidence provide their beliefs
with the same absolute interpretation of elements of the same frame © and the
conflict between sources arises not only because of the possible unreliability
of sources, but also because of possible different and relative interpretations
of ©, e.g. what is considered as good for somebody can be considered as bad
for somebody else. There is some unavoidable subjectivity in the belief assign-
ments provided by the sources of evidence, otherwise it would mean that all
bodies of evidence have a same objective and universal interpretation (or mea-
sure) of the phenomena under consideration, which unfortunately rarely occurs
in reality, but when basic belief assignments (bba’s) are based on some objec-
tive probabilities transformations. But in this last case, probability theory can
handle properly and efficiently the information, and DST, as well as DSmT,
becomes useless. If we now get out of the probabilistic background argumenta-
tion for the construction of bba, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frame of the fusion problem
only based on their own limited knowledge and experience without reference
to the (inaccessible) absolute truth of the space of possibilities.

1.2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care of the model associated with the set © of hypothe-
ses where the solution of the problem is assumed to belong to. In particular,
the three main sets (power set, hyper-power set and super-power set) can be
used depending on their ability to fit adequately with the nature of hypothe-
ses. In the following, we assume that © = {01,...,0,} is a finite set (called
frame) of n exhaustive elements!. If © = {;,...,0,} is a priori not closed (0
is said to be an open world/frame), one can always include in it a closure ele-
ment, say 6,41 in such away that we can work with a new closed world/frame
{61,...,0,,0,11}. So without loss of generality, we will always assume that
we work in a closed world by considering the frame © as a finite set of exhaus-
tive elements. Before introducing the power set, the hyper-power set and the
super-power set it is necessary to recall that subsets are regarded as propo-
sitions in Dempster-Shafer Theory (see Chapter 2 of [25]) and we adopt the
same approach in DSmT.

We do not assume here that elements 6; are necessary exclusive, unless specified. There
is no restriction on 6; but the exhaustivity.
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e Subsets as propositions: Glenn Shafer in pages 35-37 of [25] consid-
ers the subsets as propositions in the case we are concerned with the
true value of some quantity 6 taking its possible values in ©. Then the
propositions Py (A) of interest are those of the form?:

Py(A) & The true value of 6 is in a subset A of ©.

Any proposition Pp(A) is thus in one-to-one correspondence with the
subset A of ©. Such correspondence is very useful since it translates
the logical notions of conjunction A, disjunction V, implication = and
negation — into the set-theoretic notions of intersection N, union U, in-
clusion C and complementation ¢(.). Indeed, if Py(A) and Py(B) are two
propositions corresponding to subsets A and B of ©, then the conjunction
Po(A) A'Pp(B) corresponds to the intersection AN B and the disjunction
Po(A) V Py(B) corresponds to the union AU B. A is a subset of B if
and only if Py(A) = Py(B) and A is the set-theoretic complement of B
with respect to © (written A = co(B)) if and only if Py(A) = =Py(B).
In other words, the following equivalences are then used between the
operations on the subsets and on the propositions:

Operations Subsets Propositions
Intersection/conjunction ANB Po(A) A Py(B)
Union/disjunction AUB Po(A) V Py(B)
Inclusion/implication ACB Po(A) = Py(B)
Complementation/negation | A = cg(B) | Po(A) = = Py(B)

Table 1.1: Correspondence between operations on subsets and on propositions.

e Canonical form of a proposition: In DSmT we consider all propo-
sitions/sets in a canonical form. We take the disjunctive normal form,
which is a disjunction of conjunctions, and it is unique in Boolean alge-
bra and simplest. For example, X = AN BN (AU BUC) it is not in
a canonical form, but we simplify the formula and X = AN B is in a
canonical form.

e The power set: 2° = (0, U)

Aside Dempster’s rule of combination, the power set is one of the corner stones
of Dempster-Shafer Theory (DST) since the basic belief assignments to combine

2We use the symbol £ to mean equals by definition; the right-hand side of the equation
is the definition of the left-hand side.
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are defined on the power set of the frame ©. In mathematics, given a set O, the
power set of ©, written 22, is the set of all subsets of ©. In Zermelo-Fraenkel
set theory with the axiom of choice (ZFC), the existence of the power set of
any set is postulated by the axiom of power set. In other words, ©® generates
the power set 2° with the U (union) operator only. More precisely, the power
set 29 is defined as the set of all composite propositions/subsets built from
elements of © with U operator such that:

1. 0,6,...,6, € 2°.
2. If A, B €29, then AUB € 2°.

3. No other elements belong to 2°, except those obtained by using rules 1
and 2.

Examples of power sets:

o If © = {0;,0,}, then 20=101.02} — L1G} {0}, {65}, {601,02}} which is
commonly written as 29 = {0),0;,0,,60, U6}

e Let’s consider two frames ©1 = {A, B} and ©; = {X,Y}, then their
power sets are respectively 201={4.8} = [() A B, AUB} and 202=1X.Y} =
{0, X,Y,X UY}. Let’s consider a refined frame ©"¢/ = {1, 04,03,0,}.
The granules 6;, i = 1, ..., 4 are not necessarily exhaustive, nor exclusive.
If A and B are expressed more precisely in function of the granules 6; by
example as A 2 {01,0,03} = 6, U6 Ufs and B 2 {0,604} = 0, U0,
then the power sets can be expressed from the granules 6; as follows:

291=t45} = {), A, B, AU B}
= {@7 {917 927 93}7 {927 94}7 {{917 927 93}7 {027 94}}}
——

A B AUB
= {@,91 U92U93,02U94,01 U02U93U94}

If X and Y are expressed more precisely in function of the finer granules
0; by example as X = {61} =60, and Y = {0,03,04} = 0 Uf3 U0, then:

20:=00Y) — {0, X, Y, X U Y}
= {wv {01}, {027 93a 04}7 {{91}7 {927 93a 04}}}
~—~—~

X Y XUy
- {@,91,92 U93U94,91 U92U93U94}
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We see that one has naturally:

901={A,B} £ 9O2={X,Y} _ 90"/ ={61,02,0.04}
even if working from 6; with AUB = X UY = {0y,0,,03,0,} = O™/,
e The hyper-power set: D® = (©,U,N)

One of the cornerstones of DSmT is the free Dedekind’s lattice [4] denoted
as hyper-power set in DSmT framework. Let © = {64,...,0,} be a finite set
(called frame) of n exhaustive elements. The hyper-power set D® is defined as
the set of all composite propositions/subsets built from elements of © with U
and N operators such that:

1. @,91,...,9n€D@.
2. If A,B € D® then ANB € D® and AUB € D°.

3. No other elements belong to D®, except those obtained by using rules 1
and 2.

Therefore by convention, we write D® = (6, U, N) which means that © gen-
erates D® under operators U and N. The dual (obtained by switching U and
N in expressions) of D® is itself. There are elements in D® which are self-dual
(dual to themselves), for example ag for the case when n = 3 in the following
example. The cardinality of D® is majored by 22" when the cardinality of ©
equals n, i.e. |©| = n. The generation of hyper-power set D® is closely related
with the famous Dedekind’s problem [3, 4] on enumerating the set of isotone
Boolean functions. The generation of the hyper-power set is presented in [32].
Since for any given finite set ©, |D®| > 29| we call D® the hyper-power set
of ©.

Example of the first hyper-power sets:

e For the degenerate case (n = 0) where © = {}, one has D® = {ag = (I}
and |D®| = 1.

e When © = {61}, one has D® = {ag £ ),y £ 61} and |D®| = 2.

e When © = {6;,0}, one has D® = {ag,a1,...,a4} and |D®| = 5 with
O{Oé@, aléﬁlﬁﬁg, agéﬂl,agéﬁg anda4é91U92.
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e When © = {6;,605,05}, one has D® = {ag,a1,...,a;g} and |[D®| = 19

with
(&%) £ 0
a1201002003 a10é92
ag £ 61 N6, a1y £ 03
a3é01003 algé(Ol 002)U03
a4é02003 algé(Ol 003)U02
a5 £ (91 U 92) N 05 @14 £ (92 n 03) U6,
agéwlu&g)ﬂ% a15é91 U 6Oy
a7é(92U93)ﬂ91 a16é01 U 03
g = (91 n 92) @] (91 N 03) @] (92 N 03) 17 £ 0> U 63
a9é91 a18é01u02U03

The cardinality of hyper-power set D® for n > 1 follows the sequence of
Dedekind’s numbers [27], i.e. 1,2,5,19,167, 7580,7828353,... and analytical ex-
pression of Dedekind’s numbers has been obtained recently by Tombak in [47]
(see [32] for details on generation and ordering of D®). Interesting investiga-
tions on the programming of the generation of hyper-power sets for engineering
applications have been done in Chapter 15 of [36] and in Chapter 7 of this vol-
ume.

Examples of hyper-power sets:

Let’s consider the frames ©; = {A,B} and ©3 = {X,Y}, then their
corresponding hyper-power sets are D®1={4B} — [, AN B, A B,AU B}
and DO2={XY} — {0, XNY, X, Y, X UY}. Let’s consider a refined frame
0r¢f = {0y,0,,03,0,} where the granules 6;, i = 1,...,4 are now considered
as truly exhaustive and exclusive. If A and B are expressed more precisely in
function of the granules #; by example as A £ {0;,0,,03} and B 2 {65,0,}
then

DO ={ABY — 19 AN B, A, B, AU B}

={0,{01,02,03} N {02,04},{01,02,05}, {02, 04},

——
ANB={02} A B
{{91, 027 93}a {02a 04}}}
AUB:{01,92,93,94}
= {@,92,91 U02U03,02U94,91 U 0, U03U04}
7& 2@1={A,B}
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If X and Y are expressed more precisely in function of the finer granules
0; by example as X = {61} and Y = {fo,03,0,} then in assuming that 6;,
i=1,...,4 are exhaustive and exclusive, one gets

DoY) — 1) X NY, X, Y, XUY}
={0,{01} N {02,053, 94}7@7 {02,03,04}, {{01},{02,05,04}}}

XNYy=0 X Y Xuy
0
= {@, {91}7 {927 937 94}7 {{91}7 {027 937 94}}}
—
X Y XUY
= 2@2:{X,Y}

Therefore, we see that DO2={XY} = 90:={X.Y} pecause the exclusivity con-
straint X N'Y = ) holds since one has assumed X = {6} and Y = {fy,03,0,}
with exhaustive and exclusive granules 0;, i = 1,... 4.

If the granules 8;, i = 1, ..., 4 are not assumed exclusive, then of course the
expressions of hyper-power sets cannot be simplified and one would have:

DO={ABY — 19 ANB,A,B,AUB}
= {@,(01U02U03)ﬁ(92U94)791 U02U03,92U94,91 U92U93U94}
7& 2®1={A,B}

DO=XNYY — 1) X NY, X, Y, XUY}
- {@,01ﬂ(92U93U94),91,92U(93U(94,(91U92U93U94}
# 2@2:{X,Y}

Shafer’s model of a frame: More generally, when all the elements of a given
frame © are known (or are assumed to be) truly exclusive, then the hyper-power
set D® reduces to the classical power set 2€. Therefore, working on power set
29 as Glenn Shafer has proposed in his Mathematical Theory of Evidence [25])
is equivalent to work on hyper-power set D® with the assumption that all
elements of the frame are exclusive. This is what we call Shafer’s model of the
frame ©, written M°(©), even if such model/assumption has not been clearly
stated explicitly by Shafer himself in his milestone book.
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e The super-power set: S £ (0,U,N,¢(.))

The notion of super-power set has been introduced by Smarandache in the
Chapter 8 of [36]. It corresponds actually to the theoretical construction of
the power set of the minimal® refined frame ©"¢/ of ©. © generates S® under
operators U, N and complementation ¢(.). S = (0,U,N,¢(.)) is a Boolean
algebra with respect to the union, intersection and complementation. There-
fore working with the super-power set is equivalent to work with a minimal
theoretical refined frame ©7¢/ satisfying Shafer’s model. More precisely, S© is
defined as the set of all composite propositions/subsets built from elements of
© with U, N and ¢(.) operators such that:

1. 0,64,...,6, € S°.
If A,B € S® then ANBe S®, AUB e S°.
If A€ S®, then c¢(A) € S®.

Ll

No other elements belong to S©, except those obtained by using rules 1,
2 and 3.

As reported in [33], a similar generalization has been previously used in
1993 by Guan and Bell [15] for the Dempster-Shafer rule using propositions in
sequential logic and reintroduced in 1994 by Paris in his book [21], page 4.

Example of a super-power set:

Let’s consider the frame © = {61,05} and let’s assume 61 N Oy # 0, i.e. 6,
and # are not disjoint according to Fig. 1.1 where A £ p; denotes the part of
6, belonging only to #; (p stands here for part), B £ py denotes the part of 6,
belonging only to # and C' £ pi5 denotes the part of #; and 6, belonging to
both. In this example, S©=101.92} is then given by

SO = (0,0, N b, 0:,05,0,Ub,c(0),c(6yNB),c(61),c(a),c(6; Ub)}

where ¢(.) is the complement in ©. Since ¢(f})) = 6; Ufy and ¢(6; Ubs) = 0, the
super-power set is actually given by

SO = (0,0, N 6,601,050, Uby, c(61 Nb),c(br),c(62)}

Let’s now consider the minimal refinement ©"¢/ = {A, B, C'} of © built by
splitting the granules #; and 6> depicted on the previous Venn diagram into
disjoint parts (i.e. ©"¢ satisfies the Shafer’s model) as follows:

3The minimality refers here to the cardinality of the refined frames.
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Figure 1.1: Venn diagram of a free DSm model for a 2D frame.

0, =AUC, 0, = BUC, 01Nl =C

Then the classical power set of ©7¢/ is given by

gores ={0,A,B,C,AUB,AUC,BUC,AUBUC}

We see that we can define easily a one-to-one correspondence, written ~, be-
tween all the elements of the super-power set S© and the elements of the power
set 20" as follows:

D~0, (61NO)~C, 6; ~(AUC), 6y~ (BUC), (6;Ub)~ (AUBUCQC)
0(91 N 02) ~ (A @] B), 0(91) ~ B, 0(92) ~ A

Such one-to-one correspondence between the elements of S and 20" can
be defined for any cardinality |©] > 2 of the frame © and thus one can consider
S© as the mathematical construction of the power set 20" of the minimal
refinement of the frame ©. Of course, when © already satisfies Shafer’s model,
the hyper-power set and the super-power set coincide with the classical power
set of ©. It is worth to note that even if we have a mathematical tool to build
the minimal refined frame satisfying Shafer’s model, it doesn’t mean necessary
that one must work with this super-power set in general in real applications
because most of the time the elements/granules of S have no clear physical
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meaning, not to mention the drastic increase of the complexity since one has
29 C D® C S© and

ref
26| = 2101 < |DO| < 89 =27 =221 (1.1)
Typically,
O] =n | [2°[=2" | [D®] | [S®[=[2%[=2""""1
2 4 5 23 =28
3 8 19 27 =128
4 16 167 | 2% = 32768
5 32 7580 | 231 = 2147483648

Table 1.2: Cardinalities of 2©, D® and S®.

In summary, DSmT offers truly the possibility to build and to work on re-
fined frames and to deal with the complement whenever necessary, but in most
of applications either the frame © is already built/chosen to satisfy Shafer’s
model or the refined granules have no clear physical meaning which finally
prevent to be considered/assessed individually so that working on the hyper-
power set is usually sufficient for dealing with uncertain imprecise (quantitative
or qualitative) and highly conflicting sources of evidences. Working with S©
is actually very similar to working with 2° in the sense that in both cases we
work with classical power sets; the only difference is that when working with
S we have implicitly switched from the original frame © representation to a
minimal refinement ©7¢/ representation. Therefore, in the sequel we focus our
discussions based mainly on hyper-power set rather than (super-) power set
which has already been the basis for the development of DST. But as already
mentioned, DSmT can easily deal with belief functions defined on 2 or S©
similarly as those defined on D®.

Generic notation: In the sequel, we use the generic notation G® for denoting
the sets (power set, hyper-power set and super-power set) on which the belief
functions are defined.

Remark on the logical refinement: The refinement in logic theory pre-
sented recently by Cholvy in [2] was actually proposed in nineties by a Guan
and Bell [15] and by Paris [21]. This refinement is isomorphic to the refine-
ment in set theory done by many researchers. If © = {01, 65,605} is a language
where the propositional variables are 01, 05, 03, Cholvy considers all 8 possible
logical combinations of propositions 6;’s or negations of 6;’s (called interpreta-
tions), and defines the 8 = 2% disjoint parts/propositions of the Venn diagram
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in Fig. 1.2 [one also considers as a part the negation of the total ignorance] in
the set theory, so that:

11 =01 N0z N\ O3
1o = 01 N\ O3 N\ 03
i3 = 01 N\ =03 N O
14 = 01 N\ 02 N\ 03
15 = —f01 A O A NO3
ig = =01 A Oy A\ =03
i7 = =01 A =0 N O3
ig = —f1 A =0y A =03

where —6; means the negation of 6;.

Pp123

01 A3 A O3

—01 A Oy A =03 \ =071 A O3 A O

p23

—61 N =02 A 03 Po

Figure 1.2: Venn diagram of the free DSm model for a 3D frame.

Because of Shafer’s equivalence of subsets and propositions, Cholvy’s logical
refinement is strictly equivalent to the refinement we did already in 2006 in
defining S© - see Chap. 8 of [36] - but in the set theory framework.
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We did it using Smarandache’s codification (easy to understand and read)
in the following way:

- each Venn diagram disjoint part p;;, or p;j. represents respectively the
intersection of p; and p; only, or p; and p; and p, only, etc; while the
complement of the total ignorance is considered py [p stands for part].

Thus, we have an easier and clearer representation in DSmT than in logical
representation. While the refinement in DST using logical approach for n very
large is very hard, we can simply consider in the DSmT the super-power set
S® = (©,U,n,¢c(.)). So, in DSMT representation the disjoint parts are noted
as follows:

p123 = 01 AN O2 AN b3 =iy

p12 = 01 A b2 A =03 = iy
p13 = 01 A=l A O3 = i3
p23 = 01 A b2 A O3 =i
L= 00 A By A 3 = iy
po = =01 Ay A =03 = ig
p3 = 01 Al A O3 =iy
po = =01 A =03 A =03 = ig

As seeing, in Smarandache’s codification a disjoint Venn diagram part is
equal to the intersection of singletons whose indexes show up as indexes of
the Venn part; for example in pio case indexes 1 and 2, intersected with the
complement of the missing indexes, in this case index 3 is missing.

Smarandache’s codification can easily transform any set from S® into its canon-
ical disjunctive normal form. For example, 61 = p; U p12 U p13 U p1ag (i.e. all
Venn diagram disjoint parts that contain the index “1” in their indexes ; such
indexes from S© are 1, 12, 13, 123) can be expressed as

0, = (91 n 0(92) N 6(93)) U (91 NN 6(93))(91 N 6(92) n 93) U (91 NN 93)

where the set values of each part was taken from the above table.
01 A O3 = p12 Upias (ie. all Venn diagram disjoint parts that contain the
index “12” in their indexes) equals to (01 A 02 A —03) V (01 A O3 A 03).
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The refinement based on Venn Diagram, becomes very hard and almost im-
possible when the cardinal of ©, n, is large and all intersections are non-empty
(the free model). Suppose n = 20, or even bigger, and we have the free model.
How can we construct a Venn Diagram where to show all possible intersections
of 20 sets? Its geometrical figure would be very hard to design and very hard
to read (you don’t identify well each disjoint part of a such Venn Diagram
to what intersection of sets it belongs to). The larger is n, the more difficult
is the refinement. Fortunately, based on Smarandache’s codification, we can
algebraically design in an easy way for all such intersections (for example, if n
is very big, we can use computer programs to make combinations of indexes
{1,2,...,n} taken in groups or 1, of 2, ..., or of n elements each), so the refine-
ment should not be a big problem from the programming point of view, but
we must always keep in mind if such refinement is really necessary and if it has
(or not) a deep physical interpretation and justification for the problem under
consideration.

The assertion in [2], upon Milan Daniel’s, that hybrid DSm rule is equivalent
to Dubois-Prade rule is untrue, since in dynamic fusion they give different
results. Such example has been already given in [8] and is reported in section
1.2.6.3 for the sake of clarification for the readers. The assertion in [2] that
“from an expressivity point of view DSmT is equivalent to DST” is partially
true since this idea is true when the refinement is possible (not always it is
practically /physically possible), and even when the spaces we work on, S© =
297%7 where the hypotheses are exclusive, DSmT offers the advantage that the
refinement is already done (it is not necessary for the user to do (or implicitly
presuppose) it as in DST). Also, DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and of course it can a fortiori
deal with sets of exclusive hypothesis and work either on 2° or 29" Wwhenever
necessary, while DST first requires implicitly to work with exclusive hypotheses
only.

The main distinctions between DSmT and DST are summarized by the
following points:

1. The refinement is not always (physically) possible, especially for elements
from the frame of discernment whose frontiers are not clear, such as:
colors, vague sets, unclear hypotheses, etc. in the frame of discernment;
DST does not fit well for working in such cases, while DSmT does;

2. Even in the case when the frame of discernment can be refined (i.e. the
atomic elements of the frame have all a distinct physical meaning), it
is still easier to use DSmT than DST since in DSmT framework the
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refinement is done automatically by the mathematical construction of
the super-power set;

3. DSmT offers better fusion rules, for example Proportional Conflict re-
distribution Rule # 5 (PCR5) - presented in the sequel - is better than
Dempster’s rule; hybrid DSm rule (DSmH) works for the dynamic fu-
sion, while Dubois-Prade fusion rule does not (DSmH is an extension of
Dubois-Prade rule); therefore DSmT with its fusion rules cannot be con-
sidered as a special case of DST, contrariwise to some authors’ claims in
the literature (see [5] by example).

4. DSmT offers the best qualitative operators (when working with labels)
giving the most accurate and coherent results;

5. DSmT offers new interesting quantitative conditioning rules (BCRs) and
qualitative conditioning rules (QBCRs), different from Shafer’s condi-
tioning rule (SCR). SCR can be seen simply as a combination of a prior
mass of belief with the mass m(A) = 1 whenever A is the conditioning
event;

6. DSmT proposes a new approach for working with imprecise quantita-
tive or qualitative information and not limited to interval-valued belief
structures as proposed generally in the literature [6, 7, 49].

1.2.2 Notion of free and hybrid DSm models

Free DSm model: The elements 0;, i = 1,...,n of © constitute the finite set
of hypotheses/concepts characterizing the fusion problem under consideration.
When there is no constraint on the elements of the frame, we call this model the
free DSm model, written M7 (©). This free DSm model allows to deal directly
with fuzzy concepts which depict a continuous and relative intrinsic nature and
which cannot be precisely refined into finer disjoint information granules hav-
ing an absolute interpretation because of the unreachable universal truth. In
such case, the use of the hyper-power set D® (without integrity constraints) is
particularly well adapted for defining the belief functions one wants to combine.

Shafer’s model: In some fusion problems involving discrete concepts, all the
elements 0;, 7 = 1,...,n of © can be truly exclusive. In such case, all the exclu-
sivity constraints on 8;, i = 1,...,n have to be included in the previous model
to characterize properly the true nature of the fusion problem and to fit it with
the reality. By doing this, the hyper-power set D® as well as the super-power
set S© reduce naturally to the classical power set 2© and this constitutes what
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we have called Shafer’s model, denoted M°(0). Shafer’s model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding to
the free DSm model M/ (0) and the class of fusion problems corresponding to
Shafer’s model M%(0), there exists another wide class of hybrid fusion prob-
lems involving in © both fuzzy continuous concepts and discrete hypotheses.
In such (hybrid) class, some exclusivity constraints and possibly some non-
existential constraints (especially when working on dynamic* fusion) have to be
taken into account. Each hybrid fusion problem of this class will then be char-
acterized by a proper hybrid DSm model denoted M (0) with M(0) # M/(0)
and M(0) # M°(©).

In any fusion problems, we consider as primordial at the very beginning and
before combining information expressed as belief functions to define clearly the
proper frame © of the given problem and to choose explicitly its corresponding
model one wants to work with. Once this is done, the second important point
is to select the proper set 29, D® or S© on which the belief functions will be
defined. The third important point will be the choice of an efficient rule of com-
bination of belief functions and finally the criteria adopted for decision-making.

In the sequel, we focus our presentation mainly on hyper-power set D® (un-
less specified) since it is the most interesting new aspect of DSmT for readers
already familiar with DST framework, but a fortiori we can work similarly on
classical power set 2© if Shafer’s model holds, and even on 20"/ (the power
set of the minimal refined frame) whenever one wants to use it and if possible.

Examples of models for a frame O:

e Let’s consider the 2D problem where © = {0;,6>} with D® = {0,6; N
02,01,02,607 U 03} and assume now that 6; and 6y are truly exclusive (i.e.

Shafer’s model M holds), then because 0; N 6 A 0, one gets D = {0, 6, N
02 = (Z), 01,62,0; U 92} = {(Z), 01,065,601 U 02} =929,

e As another simple example of hybrid DSm model, let’s consider the 3D case
with the frame © = {f},6, 03} with the model M # M/ in which we force
all possible conjunctions to be empty, but #; N #>. This hybrid DSm model
is then represented with the Venn diagram on Fig. 1.3 (where boundaries of

4i.e. when the frame © and/or the model M is changing with time.
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intersection of #; and #; are not precisely defined if #; and 0, represent only
fuzzy concepts like smallness and tallness by example).

0, 02

03

Figure 1.3: Venn diagram of a DSm hybrid model for a 3D frame.

1.2.3 Generalized belief functions

From a general frame ©, we define a map m(.) : G® — [0, 1] associated to a
given body of evidence B as

m(®) =0  and > m(A) =1 (1.2)

AeG®

The quantity m(A) is called the generalized basic belief assignment /mass (gbba)
of A.

The generalized belief and plausibility functions are defined in almost the same
manner as within DST, i.e.

Bel(A) = > m(B) Pl(A)= >  m(B) (1.3)
BCA BNA#0)
BeG® BeG®

We recall that G is the generic notation for the set on which the gbba is
defined (G® can be 2°, D® or even S® depending on the model chosen for
©). These definitions are compatible with the definitions of the classical belief
functions in DST framework when G® = 2° for fusion problems where Shafer’s
model M°(©) holds. We still have YA € G®, Bel(A) < P1(A).

Note that when working with the free DSm model M7 (©), one has always
PI(A) = 1 YA # () € (G® = D®) which is normal.
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Example: Let’s consider the simple frame © = {A, B}, then depending on
the model we choose for G, one will consider either:

e G© as the power set 2€ and therefore:

m(A)+m(B)+m(AUB) =1

e G© as the hyper-power set D® and therefore:

m(A) +m(B) +m(AUB)+m(ANB)=1
e (G° as the super-power set S© and therefore:

m(A) +m(B) +m(AU B) +m(AN B)
+m(c(A)) + m(c(B)) + m(c(A)Uc(B)) =1

1.2.4 The classic DSm rule of combination

When the free DSm model M/ (©) holds for the fusion problem under consid-
eration, the classic DSm rule of combination m s @) = m(.) £ [m1 & mo](.)
of two independent® sources of evidences B; and B, over the same frame ©
with belief functions Bel;(.) and Bels(.) associated with gbba m1(.) and ma(.)
corresponds to the conjunctive consensus of the sources. It is given by [32]:

VCeD®  murey(C)=m(C)= > mi(A)ma(B) (1.4)
A,BeD®
ANB=C
Since D® is closed under U and N set operators, this new rule of com-
bination guarantees that m(.) is a proper generalized belief assignment, i.e.
m(.) : D® — [0,1]. This rule of combination is commutative and associative
and can always be used for the fusion of sources involving fuzzy concepts when
free DSm model holds for the problem under consideration. This rule can be
directly and easily extended for the combination of k£ > 2 independent sources
of evidence [32].

According to Table 1.2, this classic DSm rule of combination looks very
expensive in terms of computations and memory size due to the huge number

5While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we follow here the interpretation of Smets in [39] and [40], p. 285 and consider
that two sources of evidence are independent (i.e distinct and noninteracting) if each leaves
one totally ignorant about the particular value the other will take.
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of elements in D® when the cardinality of © increases. This remark is however
valid only if the cores (the set of focal elements of gbba) K1(m1) and Ko(ms)
coincide with D®, i.e. when mi(A) > 0 and m2(A) > 0 for all A # () € D®.
Fortunately, it is important to note here that in most of the practical appli-
cations the sizes of Kj(my) and Kq(mz) are much smaller than |D®| because
bodies of evidence generally allocate their basic belief assignments only over a
subset of the hyper-power set. This makes things easier for the implementation
of the classic DSm rule (1.4). The DSm rule is actually very easy to imple-
ment. It suffices for each focal element of K;(m1) to multiply it with the focal
elements of Ko(m2) and then to pool all combinations which are equivalent
under the algebra of sets. While very costly in term on memory storage in the
worst case (i.e. when all m(A) > 0, A € D® or A € 2@TE1), the DSm rule
however requires much smaller memory storage than when working with S©,
i.e. working with a minimal refined frame satisfying Shafer’s model.

In most fusion applications only a small subset of elements of D® have
a non null basic belief mass because all the commitments are just usually
impossible to obtain precisely when the dimension of the problem increases.
Thus, it is not necessary to generate and keep in memory all elements of D®
(or eventually S®) but only those which have a positive belief mass. However
there is a real technical challenge on how to manage efficiently all elements
of the hyper-power set. This problem is obviously much more difficult when
trying to work on a refined frame of discernment ©"¢/ if one really prefers
to use Dempster-Shafer theory and apply Dempster’s rule of combination. It
is important to keep in mind that the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refined exclusive hypotheses
is just impossible to justify and to define precisely for all problems dealing with
fuzzy and ill-defined continuous concepts. A discussion on refinement with an
example has be included in [32].

1.2.5 The hybrid DSm rule of combination

When the free DSm model M7 (6) does not hold due to the true nature of the
fusion problem under consideration which requires to take into account some
known integrity constraints, one has to work with a proper hybrid DSm model
M(©) # M/ (©). In such case, the hybrid DSm rule (DSmH) of combination
based on the chosen hybrid DSm model M(©) for k > 2 independent sources
of information is defined for all A € D® as [32]:

mpsmi (A) = me)(4) £ 6(A)[S1(4) + $2(4) + S5(4)]  (1.5)
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where all sets involved in formulas are in the canonical form and ¢(A) is the
characteristic non-emptiness function of a set 4, i.e. ¢p(A) = 1if A ¢ @ and
#(A) = 0 otherwise, where @ = {@n,0}. Dy is the set of all elements of D®
which have been forced to be empty through the constraints of the model M
and () is the classical/universal empty set. S1(A) = mpqr9)(A), S2(A), S3(A)
are defined by

k
Si(4) 2 ) [Tmi(x) (1.6)
X1,X2,...,XkED9 =1
X1NXoN...nXp=A

k
> [[mi(x3) (1.7)

X1,Xo,.., Xpe®  i=1
[U=AIV[UED)A(A=T})]

(>

Sa(A)

k
S3(A) £ Z Hmz(Xz) (1.8)
X1,X2,...,X,eD® =1
X1UXoU...UXL=A
X1NX2N...NnX,€0

with U = u(X1) Uu(Xz2)U...Uu(Xg) where u(X) is the union of all §; that
compose X, I, £ 6, UByU...U#, is the total ignorance. S; (A) corresponds to
the classic DSm rule for k independent sources based on the free DSm model
M (©); S2(A) represents the mass of all relatively and absolutely empty sets
which is transferred to the total or relative ignorances associated with non ex-
istential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the canonical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of
combination and is not equivalent to Dempter’s rule. It works for any models
(the free DSm model, Shafer’s model or any other hybrid models) when manip-
ulating precise generalized (or eventually classical) basic belief functions. An
extension of this rule for the combination of imprecise generalized (or eventually
classical) basic belief functions is presented in next section. As already stated,
in DSmT framework it is also possible to deal directly with complements if
necessary depending on the problem under consideration and the information
provided by the sources of evidence themselves.

The first and simplest way is to work with S® on Shafer’s model when
a minimal refinement is possible and makes sense. The second way is to deal
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with partially known frame and introduce directly the complementary hypothe-
ses into the frame itself. By example, if one knows only two hypotheses 61,
6, and their complements 6, A, then we can choose to switch from original
frame © = {61,602} to the new frame © = {f,62,0;,0,}. In such case, we
don’t necessarily assume that 61 = 05 and 6y = 6; because 6; and 0 may in-
clude other unknown hypotheses we have no information about (case of partial
known frame). More generally, in DSmT framework, it is not necessary that the
frame is built on pure/simple (possibly vague) hypotheses 6; as usually done
in all theories managing uncertainty. The frame © can also contain directly as
elements conjunctions and/or disjunctions (or mixed propositions) and nega-
tions/complements of pure hypotheses as well. The DSm rules also work in
such non-classic frames because DSmT works on any distributive lattice built
from © anywhere © is defined.

1.2.6 Examples of combination rules

Here are some numerical examples on results obtained by DSm rules of com-
bination. More examples can be found in [32].

1.2.6.1 Example with © = {01,05,05,0,}

Let’s consider the frame of discernment © = {61,605, 05,04}, two independent
experts, and the two following bbas

m1(91) =0.6 m1(03) =04 m2(02) =0.2 T)’LQ(04) =0.8
represented in terms of mass matrix

06 0 04 0
M= 0 02 0 08

e Dempster’s rule cannot be applied because: V1 < j < 4, one gets m(;) =
0/0 (undefined!).

e But the classic DSm rule works because one obtains: m(f;) = m(fz) =
m(Gg) = m(94) = O7 and m(&lﬁﬁg) = 0.12, m(91ﬂ94) = 0.48, m(92ﬂ03) =
0.08, m(f5 N 64) = 0.32 (partial paradoxes/conflicts).

e Suppose now one finds out that all intersections are empty (Shafer’s
model), then one applies the hybrid DSm rule and one gets (index h
stands here for hybrid rule): mp (61 U 63) = 0.12, mp (61 U 6y) = 0.48,
mh(92 @] 03) = 0.08 and mh(03 @] 94) =0.32.
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1.2.6.2 Generalization of Zadeh’s example with © = {61,0-,05}

Let’s consider 0 < €1, €2 < 1 be two very tiny positive numbers (close to zero),
the frame of discernment be © = {61, 02,603}, have two experts (independent
sources of evidence s; and sg) giving the belief masses

m1(91) =1- €1 m1(02) =0 m1(03) = €1
m2(01) =0 m2(02) =1—¢€9 m2(03) = €2
From now on, we prefer to use matrices to describe the masses, i.e.

1—61 0 €1
0 1—62 €2

e Using Dempster’s rule of combination, one gets

(e1€2)

=1
(1—61)'0+0'(1—€2)+6162

m(fs) =

which is absurd (or at least counter-intuitive). Note that whatever posi-
tive values for €1, €5 are, Dempster’s rule of combination provides always
the same result (one) which is abnormal. The only acceptable and correct
result obtained by Dempster’s rule is really obtained only in the trivial
case when €1 = €5 = 1, i.e. when both sources agree in f3 with certainty
which is obvious.

e Using the DSm rule of combination based on free-DSm model, one gets
m(93) — €1€2, m(01 n 02) = (1 — 61)(1 — 62), m(91 n (93) = (1 — 61)62,
m(f2 N 0s) = (1 — e2)e; and the others are zero which appears more
reliable/trustable.

e Going back to Shafer’s model and using the hybrid DSm rule of combi-
nation, one gets m(f3) = erea, m(61Uby) = (1—€1)(1 —e€2), m(61Ub3) =
(1 —€1)ea, m(f2Ub3) = (1 — e2)er and the others are zero.

Note that in the special case when €; = €2 = 1/2, one has
m1(91) = 1/2 ml(ﬁg) =0 m1(93) = 1/2

m2(91) =0 m2(02) = 1/2 m2(93) = 1/2

Dempster’s rule of combinations still yields m(fs) = 1 while the hybrid DSm
rule based on the same Shafer’s model yields now m(f3) = 1/4, m(6; U 6;) =
1/4, m(6; U03) = 1/4, m(02 U 63) = 1/4 which is normal.
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1.2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the main common rules
of combination on the following very simple numerical example where only
2 independent sources (a priori assumed equally reliable) are involved and
providing their belief initially on the 3D frame © = {61, 65,05}. It is assumed
in this example that Shafer’s model holds and thus the belief assignments ms (.)
and ma(.) do not commit belief to internal conflicting information. m4(.) and
maz(.) are chosen as follows:

m1(91) =0.1 m1(02) =04 m1(03) =0.2 m1(91 U 92) =0.3
mg(ﬁl) =0.5 m2(02) =0.1 m2(03) =0.3 m2(91 U 92) =0.1

These belief masses are usually represented in the form of a belief mass matrix
M given by

101 04 02 03
~ 105 0.1 03 0.1

where index i for the rows corresponds to the index of the source no. i and
the indexes j for columns of M correspond to a given choice for enumerating
the focal elements of all sources. In this particular example, index j = 1 cor-
responds to 67, j = 2 corresponds to 3, j = 3 corresponds to f3 and j = 4
corresponds to 61 U 05.

M (1.9)

Now let’s imagine that one finds out that 63 is actually truly empty because
some extra and certain knowledge on 63 is received by the fusion center. As
example, 01, 5 and 03 may correspond to three suspects (potential murders) in
a police investigation, my(.) and ms(.) corresponds to two reports of indepen-
dent witnesses, but it turns out that finally #3 has provided a strong alibi to
the criminal police investigator once arrested by the policemen. This situation

corresponds to set up a hybrid model M with the constraint 05 M 0.

Let’s examine the result of the fusion in such situation obtained by the
Smets’, Yager’s, Dubois & Prade’s and hybrid DSm rules of combinations.
First note that, based on the free DSm model, one would get by applying the
classic DSm rule (denoted here by index DSm(') the following fusion result

mpsmc(61) = 0.21 mpsmc(f2) = 0.11

mpsmc(03) = 0.06 mpsmc (01 Uby) =0.03
mDSmc(91 n 92) =0.21 mDSmc(91 N 93) =0.13
mDSmc(92 n 93) =0.14 mDSmc(93 n (91 U 92)) =0.11



Chapter 1: An introduction to DSmT 27

But because of the exclusivity constraints (imposed here by the use of

Shafer’s model and by the non-existential constraint 65 M (), the total con-
flicting mass is actually given by k12 = 0.06 +0.214+0.13+0.14+ 0.11 = 0.65.

e If one applies Dempster’s rule [25] (denoted here by index DS), one

gets:
mps(0) =0
mps(01) = 0.21/[1 — k2] = 0.21/[1 — 0.65] = 0.21/0.35 = 0.600000
mps(f2) = 0.11/[1 — k12) = 0.11/[1 — 0.65] = 0.11/0.35 = 0.314286
mps(01 Uby) =0.03/[1 — ki2] = 0.03/[1 — 0.65] = 0.03/0.35 = 0.085714

e If one applies Smets’ rule [41, 42] (i.e. the non normalized version of
Dempster’s rule with the conflicting mass transferred onto the empty set),
one gets:

mg(0) = m(0) = 0.65 (conflicting mass)
ms(61) = 0.21
ms(f) = 0.11
ms (61 U ) = 0.03

0
0.2
0.1
0.

03—|—k12—003+065—068

my ( UGQ
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e If one applies Dubois & Prade’s rule [13], one gets because 03 M 0:

mpp(0) =0 (by definition of Dubois & Prade’s rule)
mpp(01) = [m1(01)m2(01) + m1(61)ma(61 U b2)

+ ma(61)m1 (61 U 6s)]

+ [m1(61)ma(03) + ma(61)m1(0s)]
=[0.1-05+0.1-0.14+0.5-0.3]+[0.1-0.3+0.5-0.2]
=0.2140.13=0.34

mpp(f2) =[04-0.1+04-0.14+0.1-0.3]+[04-0.3+0.1-0.2]
=0.1140.14=0.25
mpp (01 Uby) = [mq(61 Ub2)ma(61 U b))

+ [m1(01 U b2)ma(fs) + ma(61 U O3)mq(03)]

+ [m1(61)ma(62) + ma(61)m1(62)]
=[0.30.1]+[0.3-0.3+0.1-0.2]) + [0.1 - 0.1 4+ 0.5 - 0.4]
= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]
=0.034+0.1140.21 =0.35

Now if one adds up the masses, one gets 040.344-0.2540.35 = 0.94 which
is less than 1. Therefore Dubois & Prade’s rule of combination does not
work when a singleton, or an union of singletons, becomes empty (in a
dynamic fusion problem). The products of such empty-element columns
of the mass matrix M are lost; this problem is fixed in DSmT by the

sum So(.) in (1.5) which transfers these products to the total or partial
ignorances.

e Finally, if one applies DSmH rule, one gets because 603 M 0:

mpsmu(0) =0 (by definition of DSmH)

mpsmm(01) = 0.34 (same as mpp(01))
mpsmm (02) = 0.25 (same as mpp(02))
Mmpsm (01 Ub0z) = [mq(61 U bz)ma(61 Ub2)]

+ [m1(61 U b2)ma(03) + ma(61 U b2)mq(03)]

+ [m1(01)m2(02) + ma(61)m1(62)] + [ma(03)m2(03)]
=0.034+0.11 4+ 0.21 + 0.06 = 0.35 4+ 0.06 = 0.41
£ mpp(0y U by)

We can easily verify that mpgmm (01) + mpsmu (02) +mpsme (61 Uby) =
1. In this example, using the hybrid DSm rule, one transfers the product
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of the empty-element 63 column, mq(f3)m2(f3) = 0.2 - 0.3 = 0.06, to
mpsmpu (01 U 63), which becomes equal to 0.35 + 0.06 = 0.41. Clearly,
DSmH rule doesn’t provide the same result as Dubois and Prade’s rule,
but only when working on static frames of discernment (restricted cases).

1.2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impossible) to have pre-
cise sources of evidence generating precise basic belief assignments (especially
when belief functions are provided by human experts), and a more flexible
plausible and paradoxical theory supporting imprecise information becomes
necessary. In the previous sections, we presented the fusion of precise uncer-
tain and conflicting/paradoxical generalized basic belief assignments (gbba)
in DSmT framework. We mean here by precise gbba, basic belief function-
s/masses m(.) defined precisely on the hyper-power set D® where each mass
m(X), where X belongs to D®, is represented by only one real number be-
longing to [0, 1] such that )y pe m(X) = 1. In this section, we present the
DSm fusion rule for dealing with admissible imprecise generalized basic belief
assignments m’(.) defined as real subunitary intervals of [0, 1], or even more
general as real subunitary sets [i.e. sets, not necessarily intervals].

An imprecise belief assignment m?(.) over D® is said admissible if and only
if there exists for every X € D® at least one real number m(X) € m!(X) such
that >y pem(X) = 1. The idea to work with imprecise belief structures
represented by real subset intervals of [0,1] is not new and has been inves-
tigated in [6, 7, 17] and references therein. The proposed works available in
the literature, upon our knowledge were limited only to sub-unitary interval
combination in the framework of Transferable Belief Model (TBM) developed
by Smets [41, 42]. We extend the approach of Lamata & Moral and Denceux
based on subunitary interval-valued masses to subunitary set-valued masses;
therefore the closed intervals used by Denceux to denote imprecise masses are
generalized to any sets included in [0,1], i.e. in our case these sets can be unions
of (closed, open, or half-open/half-closed) intervals and/or scalars all in [0, 1].
Here, the proposed extension is done in the context of DSmT framework, al-
though it can also apply directly to fusion of imprecise belief structures within
TBM as well if the user prefers to adopt TBM rather than DSmT.

Before presenting the general formula for the combination of generalized
imprecise belief structures, we remind the following set operators involved in
the DSm fusion formulas. Several numerical examples are given in the chapter
6 of [32].
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Addition of sets

515352:525351é{x|l’281+82,81651,82652}

Subtraction of sets

SlEISQé{x|m:sl—52,sl€S1,82652}

Multiplication of sets

SlmSQé{JJ|J}:Sl'SQ,Sl651,82652}

e Division of sets: If 0 doesn’t belong to Sy,

SlZSQé{J)ll‘:Sl/SQ,Sl € 51, 89 ESQ}

1.2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combine any type of imprecise
belief assignment which may be represented by the union of several sub-unitary
(half-) open intervals, (half-)closed intervals and/or sets of points belonging to
[0,1]. Several numerical examples are also given. In the sequel, one uses the
notation (a, b) for an open interval, [a, b] for a closed interval, and (a, b] or [a, b)
for a half open and half closed interval. From the previous operators on sets,
one can generalize the DSm rules (classic and hybrid) from scalars to sets in
the following way [32] (chap. 6): VA # () € D®,

ml(A) =" | [1| mixi (1.10)

Xl,XQ,...,XkEDe i=1,....k
(X1NX9N...NX)=A

where Z and H represent the summation, and respectively product, of

sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in
the following way:

Mbsmu(A) = Miye)(A) £ 6(A) B |57 (A) B 53(A) B 53{(14)} (1.11)

where all sets involved in formulas are in the canonical form and ¢(A) is the
characteristic non emptiness function of the set A and S{(A), SI(A) and Si(A)
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are defined by

SHEVEREEDY [T]mix) (1.12)

S3(4) £ > [T mix) (1.13)

Xl,Xz,...,Xkem i=1,...k
U=ATV (€A (A=T})]

SHEVES >

X1,X2,..,.X,€D®i=1,....k
X1UXoU...UX=A
X1NXoN...NX €0

—
5~
=

(1.14)

In the case when all sets are reduced to points (numbers), the set operations be-
come normal operations with numbers; the sets operations are generalizations
of numerical operations. When imprecise belief structures reduce to precise
belief structure, DSm rules (1.10) and (1.11) reduce to their precise version
(1.4) and (1.5) respectively.

1.2.7.2 Example

Here is a simple example of fusion with multiple-interval masses. For simplicity,
this example is a particular case