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Abstract

An agregation method adapted to life insurance portfolios is presented. The aim of this
work is to reduce the running time induced by the increasing complexity of actuarial
models. The method is a two steps procedure. The first step consists in using statistical
partitioning methods in order to gather insurance policies. The second step is the construc-
tion of a representative policy for each aforementioned groups. Running times reduction
techniques are motivated by the production in a timely manner of more and more sensitiv-
ity analysis, required for both decision making and regulatory reporting. The efficiency of
the agregation method is illustrated on a real saving contracts portfolio within the frame
of a cash flows projection model used for best estimate liabilities and solvency capital re-
quirements computations. The procedure is already part of AXA France valuation process.

Keywords: Solvency II, claim reserving, statistical partitioning and classification, func-
tional data analysis, longitudinal data classification.

1 Introduction

Cash flows projection models are getting more and more sophisticated so as to reflect
expected realistic future demographic, legal, medical, technological, social or economic de-
velopments. These models are designed to provide realistic evaluations of the financial
reserves of an insurance company. Best Estimate Liabilities (BEL) are the probability
weighted average of future cash flows taking into account the time value of money. The use
of Monte-Carlo simulations techniques induces large running time for a policy-by-policy
approach. In addition to baseline runs, several sensitivities analysis are needed to under-
stand the dependency of resulting financial reserves on different input and parametrizations.
Running time is of prime importance because these studies usually need to be performed
within tight deadlines. Actuaries have therefore to develop efficient modeling techniques to
tackle this issue. Grouping methods, which group policies into model cells and replace all
policies in each groups with a representative policy, is the oldest form of modelling tech-
niques. It has been advised in [6] and is commonly used in practice due to its availability
in commercial actuarial softwares such as MG-ALFA and GGY-Axis, see [8]. Recently an
alternative technique, based on statistical sampling and extrapolation, has been proposed.
This method has been put into practice by Towers and Watson and is the subject of a
recent PhD thesis [18]. In this paper, we present a new agregation method that is applied
to the agregation of a life insurance portfolio. This work has been motivated by the recast
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of the valuation process in AXA France to prepare the enforcement of Solvency II. The
agregation method needed to meet many practical requirements such as easy implemen-
tation and understanding, appliacability to the whole life insurance portfolio and good
empirical and theoritical justification. We believe that many insurance companies face
running time problems, and this paper may help practionners to solve it. Section 1 is an
introduction that presents the context and the motivations of this work. In Section 2, we
give a description of a cash flows projection model. In Section 3, we describe a statistical
based way to group policies, followed by procedures to construct the representative policy.
Section 4 illustrates the efficiency of the method on a portfolio of saving contracts on the
french market.

2 Cash flows projection models and best estimate liabilities

evaluations

We consider a classical asset-liability model to project the statutory balance sheet and
compute mathematical reserves, described for instance in [1]. This model allows compu-
tations of reserves linked to any type of guarantee. For the sake of simplicity, we describe
a cash flow projection model for life insurance of saving type. Consider a saving contract
with surrender value SV (0) at time t = 0, the surrender value at time t is defined as

SV (t) = SV (0)× exp

(
∫ t

0

ra(s)ds

)

, (2.1)

where ra denotes the instantaneous accumulation rate (including any guaranteed rate)
modeled by a stochastic process. We are interested in the present surrender value at time
t, we need therefore to add a discount factor in order to define the Present Surrender Value

PSV (t) = SV (t)× exp

(

−

∫ t

0

rδ(s)ds

)

,

= SV (0)× exp

(
∫ t

0

(ra(s)− rδ(s))ds

)

, (2.2)

where rδ denotes the instantaneous discount rate, also modeled by a stochastic process. The
spread between the accumulation and the discount rates in (2.2) is then a stochastic process.
Let τ be the early surrender time, modeled by a random variable having probability density
function fτ on the positive half line, absolutely continuous with respect to the Lebesgue
measure. The probability density function can be interpreted as an instantaneous surrender
rate between times t and t+ dt, which depends on the characteristics of the policy holder
like for instance his age, his gender or the seniority of his contract. More specifically, in
the case of a saving contract, the payment of the surrender value occurs in case of early
withdrawal due to lapse or death, or expiration of the contract. In the cash flows projection
model definition, an horizon of projection is usually specified. There are also life insurance
contracts with a fixed term. Both of these instants are deterministic. We denote by T
the minimum of the expiration date of the contract and the horizon of projection. The
real surrender time τ ∧ T = min(τ, T ) is a random variable associated with a probability
measure divided into the sum of a singular part and a continuous part

dPτ∧T (t) = fτ (t)dλ(t) + Fτ (T )δT (t), (2.3)

where λ is the Lebesgue measure on [0, T ], δT is the Dirac measure at T and Fτ (t) denotes
the survival function associated to the random instant τ . The BEL at time t = 0 is defined
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as

BEL(0, T ) = EPτ∧T⊗Qf

(PSV (τ ∧ T )), (2.4)

where Qf is a probability measure that governs the evolution of instantaneous rates. We
refer to [10] for this definition of best estimate liabilities. Let F be a financial scenario,
which correponds to a trajectory of the spread between the accumulation and discount
rates. We write the BEL given a financial scenario, assuming no dependency between
surrender probabilities and financial scenarios, as follows

BELF(0, T ) = EPτ∧T (PSV (τ ∧ T )|F)

=

∫

+∞

0

SV (0)× exp

(
∫ t

0

(ra(s)− rδ(s))ds

)

dPτ∧T (t)

=

∫ T

0

SV (0)× exp

(
∫ t

0

(ra(s)− rδ(s))ds

)

fτ (t)dt

+ Fτ (T )× SV (0)× exp

(
∫ T

0

(ra(s)− rδ(s))ds

)

(2.5)

In order to avoid tedious calculations of the integral in (2.5), time is often discretized. The
BEL is therefore writen as

BELF(0, T ) ≈

[

T−1
∑

t=0

p(t, t+ 1)

t
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)
+ p(T )

T−1
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)

]

SV (0),

(2.6)
where p(t, t + 1) is the probability that surrender occurs between time t and t + 1, and
ra(t, t+1) and rδ(t, t+1) are the accumulation and discount rates between time t and t+1.
The probabilities p(t, t+1) necessitate the evaluation of a mortality and a lapse rate from
one period to another using classical actuarial tools, see [17]. Monte-Carlo methods for
BEL evaluation consists in generating a set of financial scenarios under Qf and compute
the BEL for each one of them. The final estimation is the mean over the set of all scenarios.
This procedure is fast enough for one policy, it becomes time consuming for a large portfolio.
It is worth noting that we use this Cash flows projection model to illustrate the agregation
procedure. We just describe here a model that is used by practitioners. The purpose of
this work is not to comment the validity of the model, we agree on the fact that a lot of
theoretical questions might arise from its definition.

3 Presentation of the agregation procedure

The goal of agregation procedures is to reduce the size of the input portfolio of the cash
flows projection model. The first step consists in creating groups of policies sharing similar
features. The second one is the definition of an "average" policy, called Model Point (MP),
that represents each group and forms the agregated portfolio. The initial surrender value of
the MP is the sum of the initial surrender values over the represented group. The method
must be flexible so as to generate the best agregated portfolio under the constraint of a
given number of MP. Let us consider two contracts having identical characteristics (same
age, same seniority,...) and therefore having identical surrender probabilities. We build
a contract having these exact characteristics and whose initial surrender value is the sum
of the initial surrender values of the two aforementionned contracts. The BEL of this
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contract, given a financial scenario, is

BELF
MP (0, T ) =

[

T−1
∑

t=0

p(t, t+ 1)
t
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)
+ p(T )

T−1
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)

]

× SVMP (0)

=

[

T−1
∑

t=0

p(t, t+ 1)
t
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)
+ p(T )

T−1
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)

]

×

2
∑

i=1

SVCi
(0)

=
2

∑

i=1

[

T−1
∑

t=0

p(t, t+ 1)
t
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)
+ p(T )

T−1
∏

k=0

1 + ra(k, k + 1)

1 + rδ(k, k + 1)

]

× SVCi
(0)

=

2
∑

i=1

BELF
Ci
(0, T ),

where BELF
Ci
(0, T ) and SVCi

(0) are the best estimate liability and initial surrender value
of the contract i ∈ {1, 2}. The idea behind the grouping strategy lies in this additivity
property of the BEL. The agregation of contracts having the same surrender probabilities
leads to an exact evaluation of the BEL of the portfolio. The creation of an agregated
portfolio by grouping the policies having identical characteristics leads to a portfolio that
is usually still too big to perform an valuation. Nevertheless, as it is smaller than the
input portfolio the use of partitioning algorithms will be faster and one valuation might
be doable in order to get a benchmark value for the BEL and assess the accuracy of the
agregation procedure in the validation phase. We describe in the first subsection how to
gather contracts having close surrender probabilities and in the second subsection how to
build a representative contract for each group.

3.1 The partitioning step

A portfolio is a set of contracts P ={xi}i∈1,...,n, where n is the size of the portfolio and
each observation xi is a vector. We aim to partition the n contracts into k sets C=
{C1, ..., Ck}. The idea is to use clustering algorithms widely used in datamining to identify
sub-populations. A choice has to be made concerning the d variables that caracterize
each observation and the metric that permits to measure the dissimilarity between two
observations. In order to get closer to the additivity of the BEL, every individuals in the
portfolio is represented by its sequence of surrender probabilities

xi = (pi(0, 1), pi(1, 2), ..., pi(T − 1, T ), pi(T )) . (3.2)

Policies are therefore located in a vector space of size T + 1, the variables are quantitative
and fall between 0 and 1. The natural dissimilarity measure between two observations is
the euclidean distance defined as

||xi − xj ||2 =

√

(pi(0, 1)− pj(0, 1))2 + ...+ (pi(T )− pj(T ))
2. (3.3)
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Partitioning algorithms are designed to find the k-sets partition that minimizes the Within
Cluster Sum of Square (WCSS), which characterises the homogeneity in a group,

C̃ = argmin
C

k
∑

j=1

∑

x∈Cj

||x− µj ||
2
2, (3.4)

where µj is the mean of the observations that belongs to the set Cj . The two foreseen
methods are the so called KMEANS procedure and the agglomerative hierarchical cluster-
ing procedure with Ward criterion. These two standard methods are described in [11, 7],
and Ward criterion has been introduced in [19].
The KMEANS algorithm starts with a random selection of k initial means or centers, and
proceeds by alternating between two steps. The Assignement step permits to assign each
observation to the nearest mean and the update step consists in calculating the new means
resulting from the previous step. The algorithm stops when the assignements no longer
change. The algorithm that performs an agglomerative hierarchical clustering uses a bot-
tom up strategy in the sense that each observation forms its own cluster and pairs of cluster
are merged sequentially according to Ward criterion. At each step, the number of clusters
decreases of one unit and the WCSS increases. This is due to the Huygens theorem that
divides the Total Sum of Square (TSS), into Between Cluster Sum of Square (BCSS) and
WCSS,

∑

x∈P

||x− µ||22 =
k

∑

j=1

∑

x∈Cj

||x− µj ||
2
2 +

k
∑

j=1

||µj − µ||22

TSS = WCSS(k) + BCSS(k)

Note that TSS is constant and that BCSS and WCSS evolve in opposite directions. The
application of Ward’s criterion leads to the agregation of the two individuals that goes
along with the smallest increase of WCSS at each step of the algorithm. The best way
to visualize the data is to plot "surrender trajectories" associated with each policy as in
Figure 4. Our problem is analogous to the problem of clustering longitudinal data that
arises in biostatistics and social sciences. Longitudinal data are obtained by doing repeated
measurements on a same individual over time. We choose a non parametric approach, also
chosen in [9, 12]. A parametric approach is also possible by assuming that the dataset
comes from a mixture distribution with a finite number of components, see [16] for instance.
We believe that the non parametric approach is easier to implement and clearer from a
practionner point of view.
The KMEANS method, that takes the number of clusters as a parameter, seems to be
more suited to the problem than the agglomerative hierarchical clustering method. In the
Agglomerative Hierarchical Clustering (AHC) algorithm the grouping in k sets depends
on the previous grouping. Furthermore, the KMEANS algorithm is less greedy in the
sense that fewer distances need to be computed. However the KMEANS algorithm is an
optimization algorithm and the common problem is the convergence to a local optimum
due to bad initialization. To cope with this problem, we initialize the centers as the means
of clusters builded by the AHC, thus we ensure that the centers are geometrically far from
each other. The value of the BEL is highly correlated to the initial surrender value, thus a
bad representation of some policy having a significant initial surrender value gives rise to
a significant negative impact on the estimation error after agregation. We decide to define
a weight according to the initial surrender value

wx =
SVx(0)

∑n
x∈P

SVx(0)
, (3.5)
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and define the Weighted Within Cluster Inertia - WWCI as

WWCI(k) =
k

∑

j=1

∑

x∈Cj

wx||x− µj ||
2
2, (3.6)

where µj becomes the weighted mean over the set Cj . Each surrender path is then stored
in a group.

Remark 1. A time continuous approach within the cash flows projection model would
leave us with probability density function to group. The problem would be analogous to the
clustering of functional data that have been widely studied in the literature. A recent review
of the different techniques has been done in [13].

3.2 The agregation step

The agregation step leads to the definition of a representative policy for each group resulting
from the partitioning step. Probabilities of surrender depend on characteristics of the
contracts and of the policyholders. The best choice as a representative under the least
square criterion is the barycenter. Its surrender probabilities are defined through a mixture
model

fτC (t) =
∑

x∈C

wifτx(t), (3.7)

where C is a group of policies and τC is the random early surrender time for every member
of C. The equivalent within a discrete vision of time is a weighted average of the surrender
probabililities with respect to each projection year. The probability density function of
surrender of a given contract is associated to its age and seniority. The PDF defined in
(3.7) is not associated to an age and a seniority. This fact might give rise to an operational
problem if every MP in the agregated portfolio need to have an age and a seniority. The
number of suitable combinations of age and seniority fall into a finite set given the possible
features of policies. It is then possible to generate every "possible" surrender probability
density functions in order to choose the closest to the barycenter. This optimal density
function might be associated with a policy (or equivalently a combination of an age and a
seniority) that does not exist in the initial portfolio.

4 Illustration on a real life insurance portfolio

The procedure is illustrated within the frame of a saving contracts portfolio extracted from
AXA France portfolio. The mechanism of the product is quite simple. The policyholder
makes a single payment when subscribing the contract. This initial capital is the initial
surrender value that will evolve during the projection, depending on the investment strategy
and the financial scenario. The policy owner is free to withdraw at any time. In case
of death, the surrender value is payed to the designated beneficiaries. The contractual
agreement does not specify a fixed term. The projection horizon is equal to 30 years.
Best estimate liabilities are obtained under a discrete vision of time. Mortality rates
are computed using an unisex historical life table. Mortality depends therefore only on
the age of the insured. Lapse probabilities are computed with respect to the observed
withdrawal and is assumed to be dependent on the seniority of the contracts. The main
driver that explains the withdrawal behavior is the specific tax rules applied on french life
insurance contracts. Financial scenarios are generated through stochastic modeling. The
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instantaneous interest rates are stochastic processes and simulations are completed under
a risk neutral probability. The number of policies and the amount of the initial reserves
in the portfolio are given in Table 1. Surrender probabilities depend only on the age and

Number of policies Mathematical provision (euros)

140 790 2 632 880 918

Table 1: Number of policies and amount of the initial surrender value of the portfolio

the seniority. The heterogeneity of the trajectories depends on the distribution of ages
and seniorities in the portfolio. Statistical descriptions are given in tables 2 and 3. In

Variable: AGE

Mean Standard deviation Minimum Maximum

49.09 18.57 1 102

Table 2: Statistical description of the variable AGE in the portfolio

Variable: SENIORITY

Mean Standard deviation Minimum Maximum

4.10 1.63 1 7

Table 3: Statistical description of the variable SENIORITY in the portfolio

Section 3, it has been pointed out that an exact evaluation of the BEL is obtained with
a portfolio that agregates policies having the same key characteristics. In our modeling,
policies that have identical age and seniority are grouped together in order to have a first
agregation of the portfolio that provides an exact value of BEL, the number of MP in this
agregated portfolio and the resulting value of BEL are reported in Table 4. We define the

Number of policies BEL (euros)

664 2 608 515 602

Table 4: Number of MP and best estimate liability of the agregated portfolio

error by the difference between the exact BEL and the BEL obtained with an agregate
portfolio. We also want to compare the two agregation ways discussed in Section 3.2.
One corresponds to the exact barycenter of each group (METHOD=BARYCENTER),
the other being the closest-to-barycenter policy associated with an age and a seniority
(METHOD=PROXYBARYCENTER). These procedures are also compared to a more
"naive" grouping method (METHOD=NAIVE) that consists in grouping policies having
the same seniority and belonging to a given class of age. The classes are simply defined by
the quartiles of the distribution of ages in the portfolio. The age and seniorities of the MP
associated with each group are obtained by a weighted mean. The weights are defined as in
(3.5). The "naive" method leads to an agregated portfolio with 28 MP. The errors for the
three methods with 28 MP are given in Table 5. The two proposed methods outperform
greatly the naive one. On Figure 1, one can notice that the proposed methods permit a
better accuracy even for a smaller number of MP. The use of the barycenter is the best
choice. The question of the optimal choice of the number of clusters arises naturally. The
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BEL error (euros) BEL error (euros) BEL error (euros)
METHOD=BARYCENTER METHOD=PROXYBARYCENTER METHOD=Naive

-10 880 -199 734 1 074 983

Table 5: Best estimate liabilities error with 28 model points depending on the agregation
method

optimal number of clusters has been widely discussed in the literature, and there exists
many indicators. The main idea is to spot the number of clusters for which the WWCI
reaches a sort of plateau when the number of clusters is increasing, see Figure 2.

Figure 1: Error on the BEL evaluation depending on the number of model points and the
agregation method

Optimal number of clusters might be 3 or 6. In order to automatize the choice, we can use
indicators. The relevance of such indicators often depends on the partitionning problem.
We need to choose the best suited to our problem. Among the indicators recommended in
the literature, there is the index due to Calinsky and Harabasz, defined in [2] as

CH(k) =
WBCI(k)/(k − 1)

WWCI(k)/(n− k)
, (4.1)

where n is the number of observations, WBCI and WWCI denote the Weighted Between
and Weighted Within Cluster Inertia. The idea is to find the number of clusters k that
maximises CH. Note that CH(1) is not defined. This indicator is quite simple to under-
stand, as a good partition is characterized by a large WBCI and a small WWCI. Another
indicator has been proposed in [15] as follows: First define the quantity

DIFF (k) = (k − 1)2/p ×WWCI(k − 1)− k2/p ×WWCI(k), (4.2)
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Figure 2: WWCI evolution depending on the number of clusters

and choose k which maximises

KL(k) =

∣

∣

∣

∣

DIFF (k)

DIFF (k + 1)

∣

∣

∣

∣

. (4.3)

This permits to compare the decreasing of WWCI in the data with the decreasing of
WWCI within data uniformly distributed through space. The silhouette statistic has been
introduced in [14] and is defined, for each observation i, by

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (4.4)

where a(i) is the average distance between i and the others points in its cluster, and b(i)
is the average distance from i to the data points in the nearest cluster besides its own. A
point is well clustered when s(i) is large. The optimal number of clusters maximises the
average of s(i) over the data set. The different indicators have been computed for every
partition ranging from one to twenty groups, see Figure 3. The different indicators seems to
retain 3 clusters (except for KL, that is maximized for 6 clusters but still have a large value
for 3 clusters). The 3-groups partition of the portfolio portfolio can be visualized using the
surrender trajectories, that are displayed in Figure 4. The errors on the BEL, normalized
by its exact value and expressed in percentage are reported in Table 6. One can note again
that the presented methods outperform greatly the naive one with less model points. Our

BEL error % BEL error % BEL error %
BARYCENTER PROXYBARYCENTER NAIVE (28 MP)

-0.003 % 0.007 % 0.0412 %

Table 6: Best estimate liabilities error with 3 model points depending on the agregation
method

agregation procedure does not only performed an accurate BEL evaluation but manages
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also to replicate the cash flows dynamics throughout the entire projection. Figure 5 shows
the accuracy on the expected present value of the exiting cash flow associated with each
projection year for the 3−MP agregated portfolio.

Figure 3: Partitionning quality indicators variations depending on the number of clusters

Figure 4: Portfolio visualization through its trajectories of surrender

From a practical point of view, the optimal number of clusters should be associated with
a level of error chosen by the user. We did not manage to establish a clear link between
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Figure 5: Expected present value of surrender during the projection

WCSS and the error on the BEL evaluations. Maybe it does not exist and we need to
define another indicator, instead of WCSS, that we can compute from the probabilities of
surrender and that is more linked to the evaluation error. This a topic of current research.
We may also add that the optimal number of clusters is not necessarily a problem that
needs much thoughts from a practitionner point of view. The number of model points in
the agregated portfolio is often constrained by the capability of computers to deal with
the valuation of large portfolios. The number of model points is then a parameter of the
agregation process. Another technical requirement is to take into account the different
lines of business. Two life insurance products cannot be grouped together because they
may have characteristics, besides their probabilities of surrender, that impact the BEL
computations. A solution is to allocate a number of model points for each line of business
in proportion to their mathematical provision.
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5 Conclusion

The agregation procedure permits a great computation time reduction that goes along
with a limited loss of accuracy. The method is easy to understand and to implement as the
statistical tools are available in most datamining softwares. The application extends to the
entire scope of life insurance business, and can be tailored to many cash flows projection
model based on the general definition of best estimate liabilities given in the introduction.
This work represents the successful outcome of a Research and Development project in
the industry. It is already implemented in AXA France, from a portfolio that contains
millions of policies, the output is a portfolio of only a few thousands model points. It
remains many rooms for improvement, especially at the partitioning level where distance
other than euclidean might be better suited to quantify the distance between trajectories.
The definition of an indicator that gives insight on the error resulting from the agregation
would be as well a great improvement. For instance, the computation of this indicator may
provide an optimal number of model points allocated to each line of business and therefore
the whole portfolio.
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