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Résumé— This paper proposes an approach for safe design
of hardware embedded control systems. The approach is
based on a combination of formal verification and discrete
controller synthesis techniques. Formal verification is so-
licited to detect design errors and provide counterexamples,
while the Discrete Controller Synthesis technique is used to
correct those error since it attempts to enforce previously
verified specifications which do not hold. It automatically
produces control code, which is assembled to the erroneous
component in order to provide a system correct by con-
struction with respect to the specification to enforce. We
illustrate the approach on a train controller subsystem taken
from ”Bomabardier Transport” company.

Mots-clés—COTS, Vrification formelle, synthse du contrleur
discret, systme evenements discrets, proprit de sret, proprit
de vivacit, composant correct par conception.

I. Introduction

Design errors have serious consequences when they ap-
pear in critical control systems, such as robotized plants,
energy production plants, or transport systems. Such er-
rors may cost human lives, or at best, a large amount of
money to redesign the system. Such systems are often
modeled as synchronous reactive systems, by using com-
municating finite state machines. They call for safe de-
sign methods and techniques, ensuring functional correct-
ness against a set of specifications. Besides simulation, the
model checking (formal verification) technique [7], [8] is
unavoidable for discovering subtle bugs, usually known as
corner-case configurations, which are very difficult to un-
cover by simulation. The model checking technique was
used in the industrial domain to detect design errors of
avionic systems [5] and [14]. However, the designer must
correct these errors manually, which is an error-prone pro-
cess in general. It is usual that by attempting to manually
correct an error, another error is introduced, which creates
a vicious circle situation.

However, this design process allows the progressive cre-
ation of reusable building blocks considered as certified:
enough time has been spent in design/verification, without
finding any more significant errors. Such re-usable blocks
can be managed internally, or acquired from vendors; they
are known generically as Commercial off-the-shelf (COTS)
components. A COTS encompasses both a behavior, and
a set of specifications. COTS can be assembled according
to their specifications, in order to create new behaviors,
satisfying more complex specifications, and gain a lot of
time through code reuse. However, even though each of
them has been individually and thoroughly verified, they
are rarely designed to perfectly operate together. Design
errors can appear by simply assembling a collection of cor-
rect COTS and their manual correction is likely to be error-

prone and time-consuming. Thus, COTS integration can
remain an expensive task.

The Discrete Controller Synthesis (DCS) technique is
an emerging solution able to build correct-by-construction
designs, by automatically generating a controller. It was
first proposed by Ramadge and Wonham [17] in 1989, to
generate controllers for manufacturing plants. DCS seems
a promising approach for automatically producing correct
designs, or correcting design errors. In this paper, we pro-
pose a component-based design approach for safe design of
COTS-based hardware systems. This approach uses model
checking in synergy with discrete controller synthesis. We
demonstrate the validity of this approach on an railway
control system. The discrete controller synthesis has been
suggested to synthesize some temporal properties over toy
robot [1], and to solve mismatches between interacting pro-
tocols [18]. An optimization over the DCS method has been
proposed in [11].

The rest of the paper is organized as follows: In section 2
we define the notion of COTS. Section 3 briefly recalls the
model checking basic concepts. Section 4 explains the dis-
crete controller synthesis technique. Section 5 introduces
our safe design method for component-based hardware sys-
tems. Section 6 illustrates the method on a train control
system, it presents an application of the proposed method
and the results obtained. Section 7 concludes the article.

II. Definition

A control COTS can be found in a generic COTS library.
It is characterized by four elements: (1) COTS interface (I).
(2) environment assumptions, or sometimes named precon-
ditions (A). (3) behavioral guarantees, or sometimes named
post-conditions (G). (4) COTS functional behavior (M).
Given C, a control component in a hardware embedded
system, with (n) input and (m) output, we define its ele-
ments as follows: a COTS interface (I) is the list of inputs
and outputs though which the component is connected to
the physical environment.

Many hardware COTS have a discrete event behavior
which can be described as a discrete event system DES, it
can be modeled as a set of synchronous Finite State Ma-
chines (FSM) with outputs. A FSM is defined as a tuple
M = {q0, X,Q, δ, PROP, λ} where:

• q0 is the initial state;
• Q is a finite set of Binary state variables;
• X is the set of Binary input variables;
• X = Xc ∪ Xuc, the sets on controllable uncontrollable
inputs respectively;



• PROP is set of Binary output propositions;
• δ is the translation relation
δ : B|s| ×B|xc| ×B|xuc| ×B|s| → B|PROP |

• λ is the output function:
λ : B|s| ×B|xc| ×B|xuc| → B|PROP |

λ : B|s| → B|PROP |

III. The model checking technique

This technique checks the behavior of a design against a
formal specification written in temporal logic [13]. The de-
sign is modeled by a set of communicating finite state ma-
chines. The verification algorithm performs a symbolic ex-
haustive search inside the state space of the studied model,
and returns the set of states satisfying the specification.

Model checking is more powerful than simulation since
it verifies the system against all its possible input values
instead of only selected scenario. In addition, it is able
to provide a diagnostic counterexample in case a specifi-
cation is violated. This counterexample contains all the
system inputs that are involved in the property violation
and chains of their values, starting from the system ini-
tial state till the error state. However, its performance de-
creases dramatically with the size of the design under verifi-
cation because of its exponential complexity in the number
of design variables. Model checking is suitable for verifying
small/medium-sized designs, in order to find corner-case er-
rors [reference]. Although it can find all the design errors,
but it leaves a harder mission which is correcting these er-
rors to the designer.

IV. Discrete controller synthesis

Given (M) a FSM modeling a system, (P) a formal spec-
ification expressing safety (possibly in temporal logic), the
DCS technique attempts to build a supervisor SUP, which,
once composed with M, guarantees the invariance of P.
The satisfaction of P is considered within a game, where
the supervisor, if it exists, plays against the environment;
at each moment is able to implement a non-losing strat-
egy, preventing M to reach a state where P does not hold.
The input set of M is divided into two disjoint subsets:
controllable (Xc) and uncontrollable (Xuc) inputs. Con-
trollable inputs are driven by the supervisor, whereas the
uncontrollable inputs are driven by the environment. The
DCS technique operates in two steps. First, an Invariant
Under Control set IUC is built; as long as M stays inside
IUC, the game cannot be lost: states not satisfying P can-
not be reached. This is performed by selecting controllable
values which always lead to IUC, whatever the uncontrol-
lable values provided by the environment. The second step
constructs the supervisor SUP, as the set of all transitions
leading to IUC. We integrate this technique in the design
method to correct automatically the design errors detected
in the model checking techniques.
IUC0 = {q | P holds in q}.

IUCi+1 = {q ∈ IUCi | ∀xuc∃xc : δ(q, xc, xuc) → q′ : q′ ∈
IUCi}. A supervisor does not exist if IUC is empty or
does not contain q0. The supervisor is the set of transitions
denoted as follows:
SUP = {(q, xc, xuc, q′) | ∀xuc∃xc : q′ ∈ IUC}

The solution SUP obtained above is a relation, repre-
sented as a characteristic equation. A final step implements

the supervisor SUP by transforming it into a set of control
functions, one for each xc, according to the technique de-
scribed in [10]. The DCS technique has been suggested to
synthesis some temporal properties over toy robot [1], and
to solve mismatches between interacting protocols [18].

V. Component-based design flow

As mentioned above, each COTS has its local environ-
ment assumptions (A) and local guarantees (G). The fact of
connecting COTS to each other can entail incorrect global
behavior of the assembly, because some local assumptions
of a COTS conflict some guarantees of another COTS and
vice versa. For example, if G2 conflicts A1 in figure 1
a global design errors appear when assembling the COTS
despite the correct local behavior of each individual COTS.

Fig. 1. COTS assembly

Designing a safe system based on COTS means assem-
bling the components and ensuring that the assembly op-
erates correctly, i.e, the assembly satisfies certain defined
global properties and preserves the local guarantees of each
individual component. Figure 2 presents our design flow.
The design method is semi-automatic method which had
two main goals. The first one is to provide formal COTS
library which contains not only the executable model of the
component with a textual documentation, but also a for-
mal representation of the component’s functional require-
ments. The second goal is to construct hardware control
systems based on prebuilt COTS components. The first
step in the design method is selecting the needed com-
ponent(s) and formalizing the environment assumptions,
the behavioral guarantees and additional new properties.
Two or more COTS can be composed together, according
to some new specifications to satisfy. This task amounts
to a synchronous composition between FSMs in the cases
where the final system will be implemented on chips like
FPGA or ASIC. In the second step the composite design is
formally verified against a specification spec in order to de-
tect the design errors. If the verification passes, the newly
obtained design can be inserted in the COTS library as a
new reusable component with its formal documentation for
the environment assumptions, behavioral guarantees and
additional properties. Otherwise, the model checking tool
produces a counterexample which means a property un-
der verification is violated. If the detected error is related
to a liveness property the designer must correct this er-
ror manually. Whereas, if the error is related to a safety
property, the designer passes to an automatic correction
step based on the DCS method. As said before the DCS
tool needs two sets of inputs (controllable, uncontrollable
inputs). As this tool is still a research demonstration tool,
the set of controllable inputs is chosen by the researchers



through random testing of different inputs and choose the
set that fits better the synthesis process, i.e, the set with
which the DCS tool can provide a correcting solution (no
specific strategy is used for choosing the controllable in-
puts). In hardware control systems, the designer cannot
impose the controllabily of the system inputs, since he is
working with a real system and some inputs can be im-
possibly controlled like sensors. In our method we suggest
to use the counterexample provided by the model checking
tool to find the set of controllable inputs. As the counter
example, provides a set of only and all the signals respon-
sible of the property violation, it can direct the designer
to choose the signals candidate to be controllable. The
model checking tool ”Cadence SMV” [16] that we use for
this study categorizes the counterexample signals’ variables
in (Input variables, state variables). To construct the set
of controllable signals Xc, the designer should select the
set of input and internal variables in the counterexample
list and remove some of those signals which are impossible
to be controlled. The designer should respect some rules
when removing the signal variables :
• Xc initial = the complete set of signals provided by the
counterexample.
• remove from Xc every variable of a sensor signal;
• remove from Xc every variable of data signal;
• remove from Xc every variable of an alert or alarm signal;
• remove from Xc every state variable;

Those rules can be applied for the hardware systems
which contain the above types of signals. The DCS step
attempts to build a supervisor which enforces spec by con-
trolling the variables previously chosen. If a supervisor
exists, it is implemented as a set of control functions f and
assembled to the original executable model of the compo-
nents. Otherwise, the designer concludes that spec cannot
be satisfied by this system. Sometimes, the DCS produces
very restrictive supervisors which ensures spec by disabling
most interesting behaviors. We propose to verify some key
Liveness properties after the synthesis step to ensure that
the system still achieves certain behavior. We also verify
the controller passiveness, i.e, the controller do not invent
events to the system, it only delays or prevents some events.
Finally, we call a simulation step order to dynamically val-
idate the newly obtained control solution. In the following,
this design method is illustrated on an example of building
a train controller subsystem over COTS.

VI. Case study : Passengers’ access system

The design method proposed above is illustrated on the
subsystem (Door / filling-gap). The objective of this case
study is to show how the controller synthesis automatically
generates a control component correct by construction, in
order to save time and correction guaranties compared to
manual coding. Our case study is obtained from the project
FerroCOTS [6]. The system consists of three components
(the open authorization component, the door controller
(Manage open close) and the filling-gap controller (Man-
age FG)) which are separately prebuilt.

COTS Manage open close illustrated in figure 3 han-
dles the control of the door, in accordance with a request
for the opening/closing (Demand open,Demand close) re-
spectively and the state of physical sensors (Sns ϕ d).

Fig. 2. Design Method of Control Embedded Systems

Fig. 3. Manage open close COTS

Some specific functional constraints related to the train
context are not part of the COTS Manage open close. For
example, at the time of closing, wait (1s) between the close
request and the order of the panels’ command. This period
corresponds to a sound (ringing) signal. It is an operational
constraint which is integrated in the assembly of COTS in
form of a new component modeling this behavior named
SEQ PORTE shown in figure 4.

Fig. 4. Operational constraint SEQ DOOR

The Open-authorization component shown in figure 5
provides the COTS Manage open close with the open and
close requests.

Fig. 5. Open authorization component

The filling-gap control component Manage FG is shown
in figure VI, it controls the deploying (opening) and with-



drawing (closing) of the physical filling gap. It receives
a deploy or a withdraw request from the train driver
(Deploy,Withdraw) respectively, it reads the values of sen-
sors CR fg out, CR fgin which indicate the full opening
and the full closing states of the physical filling-gap.

Fig. 6. Manage FG COTS

We suppose that the internal functionality of each com-
ponent is correct and no local errors occur. The global
behavior of the component’s assembly has to obey a global
safety temporal property which is: the door must not start
opening before the full opening of the filling-gap.

The component SEQ FG component shown in figure 7
allows to model an operational constraint of Manage FG
component.

Fig. 7. Operational constraint SEQ FG

A. Behavioral description of COTS

While the train is in mode ”stop in the station”,
the train driver send requests to the door and the
filling-gap to open/close. Manage open close component
controls the panels and speed, according to the infor-
mation sent by the physical sensors. It sends com-
mands to the physical environment (CmdFunctionPanels,
CmdSensPanels, CmdSpeedPanels) regarding the driver
requests. CmdFonctionPanels commands the panels of
the door to function, CmdSensPanels commands the di-
rection of the door panels (opening direction / closing direc-
tion), CmdSpeedPanels commands the speed of the panels
movement (quick / slow movement).

Manage FG component controls the movement of the
filling-gap and its direction, basing on information received
from physical sensors. It returns signals at the end of the
operation CR fg in,CR fg out. Authorization opening
component produces a control opening and closing of ap-
plications sent by the driver. The exact behavior of the
COTS is purely combinatorial.
• Open = (DemandOpenExt or demandOpenInt) and
LT OpenAuthorisation and not LT DemandClose;
• Close = LT DemandClose.

In order to preserve safe behavior of the system, the door
must not start opening before a full opening of the filling-
gap. To ensure such a safe behavior a global safety property
must be synthesized over the assembly of the components.

B. Safe design of the system

We build the system following the steps of the
method. First, we formalize the door, the filling-gap and

the open authorization components as follows: Md =
{Id,Mexe, Ad, Gd} where:

• Id = {SnsClose, SnsOpen, SnsApproachClose,
SnsApproachOpen, SnsClosedLocked,Demand open,
Demand close, CmdFunctionPanels,
CmdSensPanels, CmdSpeedPanels};
• Ad = {F (CmdFunctionPanels ∧ CmdSensPanels ∧
CmdSpeedPanels), F (CmdFunctionPanels∧
CmdSensPanels ∧ ¬CmdSpeedPanels)};
• Gd = {F (Demand open→ (CmdFunctionPanels∧
CmdSensPanels ∧ CmdSpeedPanels)),
G(Demand close→ (CmdFunctionPanels
∧CmdSensPanels ∧ ¬CmdSpeedPanels))}.

The filling-gap is modeled as follows: Mfg =
{Ifg,Mexe, Afg, Dfg} where:

• Ifg = {(SnsFGin, SnsFGout,Demand deploy fg,
Demand withdraw fg, CommandStartFG,
CommandSensFG,CR fg out, CR fg in};
• Afg = {F (Demand deploy fg), F (Demand withdraw fg)};
• Gfg = {G(Demand deploy fg → CommandStartFG ∧
CommandSensFG),
F (Demand withdraw fg → CommandStartFG
∧¬CommandSensFG)}.

The open authorization component is modeled as follows:
MO AUT = {IO AUT ,Mexe, AO AUT , DO AUT } where:

• IO AUT = {DemendOpenExt,DemandOpenInt,
LT OpenAuthorization, LT DemandClose,Open,Close};
• AO AUT = {F (DemendOpenExt ∨DemandOpenInt),
F (LT close)};
• GO AUT = {G(DemendOpenExt∨DemandOpenInt→
F (Open)), G(LT close→ Close)}.

The models of all the components are generated and as-
sembled in VHDL form in order to synthesize the safety
global property.

The assembly of the original components is shown in
figure 8.

The assembly model is Msys = {Isys,Mexe, Asys, Gsys}
where:

• Isys = {Id ∪ Ifg ∪ IO AUT };
• Ad = {Ad ∪Afg ∪AO AUT };
• Gd = {Gd ∪Gfg ∪GO AUT }.

The global safety property is modeled in LTL logic as :
p = G¬(CR open ∧ CR fg in) In the second step of

the method, p is firstly verified over the assembly model
Msys using a model checking tool Cadance SMV, a coun-
terexample is obtained. It contained the set of the system
inputs and outputs which caused the property violation.
This set represents the initial list of controllable variables
Xinit

c = {SnsClose, SnsOpen, SnsApproachClose,
SnsApproachOpen, SnsClosedLocked,Demand open,
Demand close, CmdFonctionPanels, CmdSensPanels,
CmdSpeedPanels, SnsFGin, SnsFGout,
Demand deploy fg,Demand withdraw fg,
CommandStartFG,CommandSensFG,CR fg out,
CR fg in,DemendOpenExt,DemandOpenInt,
LT OpenAuthorization, LT DemandClose,Open,
Close}.
We notice that the set contains all the assembly in-

puts and outputs, this result is expected since the ex-
ample is relatively small, so all its signals are involved



Fig. 8. Original COTS assembly

in the property violation. To build the final set of con-
trollable variables, we remove all the variables of the sen-
sors since they represent information which cannot be nei-
ther delayed, nor ignored. We remove the variables of
the commands since they are outputs of the control com-
ponents. The final set of controllable variables is Xc =
{DemandOpenExt,DemandeOpenInt, LT DemandClose,
Deploy,Withdraw} All remaining variables are considered
uncontrollable variables

In the third step in the design method, a controller is
automatically generated using the DCS to synthesis the
safety property (p) over the assembly model. We use for
this study the tool Sigali [4]

The controller generates the values of (DemandOpenExt,
DemandeOpenInt, LT DemandClose,Deploy,Withdraw).
If the value received from the environment is the ex-
pected value, the controller let it pass to the compo-
nent, otherwise, it change it, in order to keep the be-
havior of the system safe. An extract of the real con-
troller of the door-filling-gap system can be seen as fol-
lows: if (SnsOpen ∨ SnsFGout) then (Withdraw =
0) else (Withdraw = 1); if (SnsClose ∨ SnsFGin)
then (DemandOpenExt,DemandeOpenInt = 0) else
(DemandOpenExt,DemandeOpenInt = 1);

We assemble the resulting controller to the sys-
tem model in order to construct the controlled sys-
tem as shown in figure 9. The dashed arrows
represent the uncontrollable signals. The signals
(O DemandOpenExt,O DemandOpenInt,
O LTDemandClose,O Deploy,O Withdraw) are the sig-
nals received by the controller from the environment, their
values are modifiable by the controller i order to provide the
corresponding signals (DemandOpenExt,DemandOpenInt,
LTDemandClose,Deploy,Withdraw) correct values which
prevent the system of going to error states. The assembly
obtained by the controller synthesis allows several possible
implementations of the composite function door / Filling-
gap. The presence of the controller allows the arrival of
the opening and deployment requests in any order, with
the guarantee of a correct sequence.

In the fourth step we verify the liveness of the controlled
system and the passiveness of the controller. To do so we
verify the assembly guarantees Gasm, and some passiveness

properties :

• passive1 : G¬(DemandOpenExt∧¬O DemandOpenExt);
• passive2 : G¬(DemandOpenInt∧¬O DemandOpenInt);
• passive3 : G¬(LT DemandClose∧¬O LT DemandClose);
• passive4 : G¬(Deploy ∧ ¬O Deploy);
• passive5 : G¬(Withdraw ∧ ¬O Withdraw);

After calculating the controllers, a simulation step (the
fifth step) allows the designer to visualize the behavior of
the controlled assembly for certain scenarios in order to
provide a final validation of the system before implement-
ing it on the chip.

VII. Conclusion

In this article, we present a compositional, semi-formal
safe design framework over prebuilt, reusable COTS com-
ponents, it is an enhancement over a former work [12], here,
we detail the formalization step and we manage to provide
the simulation results. The method uses model checking
in synergy with Discrete Controller Synthesis for automat-
ically finding and automatically correcting design errors
respectively. The method proposed is illustrated on a rail-
way control system and the results obtained demonstrate
the validity of the proposed method in producing correct
by construction designs. Although the model checking and
the discrete controller synthesis methods already exist in
the literature, our method is considered the first coopera-
tion between these two techniques, which takes advantages
of each one and solves the problem of manual correction
after the model checking and the problem of finding the
controllable variables which is a basic input for the DCS
technique. It is also the first application of the DCS tech-
nique on a real industrial system. Current investigations
include possible performance to fully automatize the choice
of controllable inputs of the DCS in order to reach a full-
automatic safe design method starts by a system model
and finishes by the implementation code.
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Fig. 9. The controlled system
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