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Stability of infinite-horizon optimal control with discoun ted cost

R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz

Abstract— We investigate the stability of general nonlinear
discrete-time systems controlled by an optimal sequence of
inputs that minimizes an infinite-horizon discounted cost.We
first provide conditions under which a global asymptotic sta-
bility property is ensured for the corresponding undiscounted
problem. We then show that this property is semiglobally
and practically preserved in the discounted case, where the
adjustable parameter is the discount factor. We then focus on
a scenario where the stage cost is bounded and we explain
how our framework applies to guarantee stability in this case.
Finally, we provide sufficient conditions, including boundedness
of the stage cost, under which the value function, which serves
as a Lyapunov function for the analysis, is continuous. As
already shown in the literature, the continuity of the Lyapunov
function is crucial to ensure some nominal robustness for the
closed-loop system.

I. I NTRODUCTION

Optimal control selects control inputs so as to minimize
a cost incurred during the system operation ([14]). In this
paper, we focus on optimal control in discrete time over an
infinite horizon, with general nonlinear system dynamics as
well as general stage costs. In this general setting, optimal
control is a very powerful framework ([3]), able to address
decision-making problems not only in control engineering,
but also in artificial intelligence, operations research, econ-
omy, medicine, etc. Indiscountedoptimal control, stage
costs are weighted by an exponentially decreasing term
γk, where γ ∈ (0, 1) is the discount factor andk is
the time step. The discounted setting is popular in many
fields, such as reinforcement learning [24], [25], [6] and
dynamic programming [17]. For example, a novel class of
predictive optimistic algorithms [18], which provides a very
useful relationship between computation invested and near-
optimality, only makes sense in the discounted case.

A core practical question is whether the discounted op-
timal control law stabilizes the system. Some results exist
in the economy literature, showing local stability in the
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continuous-time casee.g., [21], [23], while, in the dynamic
programming field, the analysis is usually tailored to the
specific cost function considered or the specific algorithm
used, see for instance [1], [5], [22]. To the best of our
knowledge, the stability properties in the general discounted
case are not yet understood. The authors of [15] highlight
the difficulties remaining even in the linear case. The main
difficulty comes from the impact of the value ofγ on the
system stability. We will show that even for a simple linear
example,γ needs to be sufficiently close to1 to ensure
stability.

Motivated by this insight, we develop a stability analy-
sis for discounted optimal control with general nonlinear
dynamics and stage costs, building on the undiscounted
problem (γ = 1) as a nominal case. Contrary to most
aforementioned references, we investigate global asymptotic
stability properties. Furthermore, we define stability using
a generic measure as in [9], which allows one to address
the classical equilibrium point stability as a particular case,
but also set stability for instance. We first provide sufficient
conditions to ensure a global asymptotic stability property for
the undiscounted problem, like in [16]. Then, our main result
guarantees that this stability property is preserved semiglob-
ally and practically where the adjustable parameter isγ. In
other words, for any basin of attraction, the system solutions
initialized in this basin will converge to any neighborhood
of the target set providedγ is sufficiently close to1. We
only impose standard continuity and compactness conditions
on the problem ([3], [10]), together with a controllability
property of the system as in [9]. Our analysis is inspired
by [9], where the undiscounted finite-horizon case was
considered.

Often, the stage cost is taken bounded, see for instance
[18], [24], [25], [6] and Chapter 4 of [3]. This has impor-
tant practical advantages, such as ensuring bounded value
functions, as well as a contraction property that guarantees
the exponential convergence of important algorithms such as
value iteration and policy evaluation. By strengthening the
controllability requirement, we explain how our framework
applies to a type of bounded stage cost, obtained by satu-
rating an originally unbounded function. Finally, for general
continuous bounded stage costs, we show that the Lyapunov
(value) function is continuous. This property is essentialto
endow the system with some nominal robustness, see [8],
[12]. Note that when stage costs can grow unbounded, the
value function is usually only shown to be lower semicon-
tinuous [10], [7], whilee.g., [4] shows continuity for the
specific case of concave stage costs.

Next, after introducing some preliminaries in Section II



and stating the problem in Section III, we provide the
nominal, undiscounted analysis in Section IV. Stability with
discount is studied in Section V, while Section VI specializes
the analysis to bounded stage costs, and Section VII shows
the continuity of the Lyapunov function. Conclusions are
given in Section VIII.

II. PRELIMINARIES

Let R = (−∞,∞), R := R ∪ {−∞,∞}, R≥0 = [0,∞),
R>0 = (0,∞), Z≥0 = {0, 1, 2, . . .}, Z>0 = {1, 2, . . .}. For
(x, y) ∈ R

n+m, (x, y) stands for[xT, yT]T. A function χ :
R≥0 → R≥0 is of classK if it is continuous, zero at zero
and strictly increasing, and it is of classK∞ if in addition it
is unbounded. A continuous functionχ : R2

≥0 −→ R≥0 is of
classKL if for each t ∈ R≥0, χ(·, t) is of classK, and, for
eachs ∈ R>0, χ(s, ·) is decreasing to zero. We denote byB

the Banach space of bounded real functions onR
n with the

infinity norm ‖v‖ = supx∈Rn |v(x)|.
The definitions below can be found in [20]. A function

f : R
n → R is lower semicontinuousat x̄ ∈ R

n if
lim inf
x→x̄

f(x) := lim
δց0

[ inf
x∈B(x̄,δ)

f(x)] = f(x̄), whereB(x̄, δ)

is the closed ball ofRn, centered at̄x of radiusδ ≥ 0. We
say thatf is lower semicontinuous onX ⊆ R

n, when it is
lower semicontinuous at anȳx ∈ X . Note that whenf is
continuous, it is also lower semicontinuous.

Let S : R
n ⇉ R

m denote a set-valued mapping.
The domain of S is defined by domS := {x ∈
R

n : S(x) 6= ∅}. We recall the notions of outer
and inner limits of S at x̄ ∈ R

n: lim sup
x→x̄

S(x) :=
{

u : ∃{xn}n∈Z≥0
∃{un}n∈Z≥0

s.t. xn →
n→∞

x̄, un →
n→∞

u

with un ∈ S(xn)} and lim inf
x→x̄

S(x) :=
{

u : ∀{xn}n∈Z≥0
s.t. xn →

n→∞
x̄, ∃φ ∈ N ∃{uφ(n)}n∈Z≥0

s.t. uφ(n) →
n→∞

u with un ∈ S(xn)
}

, where N is the set

of strictly increasing functions fromZ≥0 to Z≥0. When
lim sup
x→x̄

S(x) = lim inf
x→x̄

S(x), we write the limit aslim
x→x̄

S(x).

The set-valued mappingS is continuousat x̄ ∈ R
n when

S(x) → S(x̄) asx → x̄, and it is continuous onX ⊆ R
n

when it is continuous at anȳx ∈ X . Define the image of
a setV under the mappingS by S(V) =

⋃

x∈V S(x). The
mappingS : Rn ⇉ R

m is locally boundedwhen for any
x̄ ∈ R

n, for some neighborhoodV of x̄, the setS(V) ⊂ R
m

is bounded.

III. PROBLEM STATEMENT

Consider the system

x(k + 1) = f(x(k), u(k)) (1)

with statex ∈ R
n and inputu ∈ U(x) ⊆ R

m, whereU(x)
is a non-empty set of admissible inputs associated to statex

(as in [10], [11] for instance), andn,m ∈ Z>0. Let W :=
{(x, u) : x ∈ R

n andu ∈ U(x)}. Define an infinite-length
sequence of control inputsu = (u0, u1, . . .), in which the
control input at timek ∈ Z≥0 is given byu(k) = uk. We
denote the solution to (1) at thekth-step starting at statex

and with the input sequenceu asφ(k, x,u|k), whereu|k :=
(u0, . . . , uk−1) is the truncation ofu to the firstk ∈ Z>0

steps, and we use the conventionφ(0, x,u|0) = x. We focus
on the scenario where the sequence of control inputs is given
by the solution to an optimization problem. In particular, we
consider thecost function

J(x,u) :=

∞
∑

k=0

γkℓ(φ(k, x,u|k), uk), (2)

where ℓ : W → R is the stage costand γ ∈ (0, 1) is the
discount factor. The objective is to minimize the costJ .
When inf

u

J(x,u) is well-defined (which is assumed to be
the case in this study), we call it theoptimal value function
and we denote it

V (x) := inf
u

J(x,u). (3)

Further, when the infimum in (3) is achieved by an infinite-
length input sequence, we denote this sequenceu

∗(x) and
call it the optimal solution at state x. Thus, V (x) =
J(x,u∗(x)).

The objective of this study is to infer about the stability
property of system (1) when controlled by the optimal
sequenceu∗(x) (which may be non-unique), when the latter
exists. Our approach consists in considering, as a nominal
case, the corresponding undiscounted problem,i.e. when the
cost function is given by (2) withγ = 1

J(x,u) :=

∞
∑

k=0

ℓ(φ(k, x,u|k), uk), (4)

and the optimal value function isV (x) := inf
u

J(x,u). In
this undiscounted setting, we can guarantee the stability
of the system with an optimal sequence of inputsu

∗(x)
(which will be ensured to exist), defined as a sequence
so thatV (x) = J(x,u∗(x)). We then study under which
conditions it is possible to (approximately) maintain this
stability property in the discounted case, whenγ ∈ (0, 1).

Our approach is motivated by the study of a simple
example which shows thatγ indeed needs to be appropriately
selected to preserve stability.

Example 1:Consider the scalar systemx(k + 1) =
2x(k) + u(k) and the discounted quadratic costJ(x,u) =
∞
∑

k=0

γk
(

x(k)2 + u(k)2
)

, where γ ∈ (0, 1) and u is an

infinite-length sequence of inputs. The optimal solution
is given by the feedback lawu∗ = Kx with K =

−2

(

1 + 2
(

5γ − 1 +
√

(5γ − 1)2 + 4γ
)−1

)−1

(see Sec-

tion 4.2 in [2]). The origin of the closed-loop system is
globally exponentially stable if and only if2+K ∈ (−1, 1),
which is equivalent toγ ∈ (γ⋆, 1) whereγ⋆ = 1

3 . Hence,
γ needs to be large enough, otherwise the optimal feedback
law does not stabilize the system. �

IV. PRELIMINARIES ON THE UNDISCOUNTED PROBLEM

We make the following assumption on the undiscounted
problem, which guarantees the existence of an optimal solu-
tion according to [11].



Assumption 1:The following holds.

(i) f is continuous onW and ℓ is lower semicontinuous
and nonnegative onW .

(ii) For any compact setC, the set{(x, u) ∈ W : x ∈ C}
is compact.

(iii) For any x ∈ R
n, there exists an admissible sequence

of inputsu such thatJ(x,u) is bounded. �

Assumption 1 corresponds to the conditions of Theorem
1 in [11]. Item (ii) of Assumption 1 is satisfiede.g.,when
U(x) = U for any x ∈ R

n with U compact; more general
conditions are given in Theorem 2 in [11]. Item (iii) of
Assumption 1 is verified for instance whenℓ satisfies a
general exponential controllability property introducedin
Definition 3 in [9], as will be formalized in the lemma below.
This property is stated with respect to a generic continuous,
positive definite functionσ : R → R≥0, which will serve
later as a state measure (as in [9]). The functionσ can be
definede.g.,as | · |, | · |2 or by the distance to a set.

Lemma 1:Consider system (1) and suppose thatℓ is
globally exponentially controllable to zero with respect to
σ : R

n → R≥0, i.e. there existM,λ > 0 such that
for any x ∈ R

n there exists an admissible infinite-length
control input sequenceu such thatℓ(φ(k, x,u|k), uk) ≤
Mσ(x)e−λk for anyk ∈ Z>0. Then item (iii) of Assumption
1 holds. �

Proof. Let x ∈ R
n and take the sequenceu that satisfies the

condition of Lemma 1. It then holds that, for anyN ∈ Z>0,

N
∑

k=0

ℓ(φ(k, x,u|k), uk) ≤
N
∑

k=0

Mσ(x)e−λk

≤
Mσ(x)

1− e−λ
.

(5)

Since the inequalities above hold for anyN ∈ Z>0,
they also hold whenN → ∞, and J(x,u) =
∞
∑

k=0

ℓ(φ(k, x,u|k), uk) ≤
Mσ(x)

1− e−λ
, which implies the sat-

isfaction of item (iii) of Assumption 1. �

The conditions below come from [9] where the stability
of model predictive control problems with finite-horizon
undiscounted cost is investigated. These same conditions
will allow us to guarantee a global asymptotic stability
property for system (1) when the cost is infinite-horizon and
undiscounted, similarly to [16].

Assumption 2:Let σ : R
n → R≥0 be continuous and

positive definite. There existρ, α ∈ K∞ such that the
following holds for any(x, u) ∈ W

V (x) ≤ α(σ(x)) and ℓ(x, u) ≥ ρ(σ(x)). (6)

�

The first inequality in (6) is verifiede.g.,whenℓ is globally
exponentially controllable to zero with respect toσ : Rn →
R≥0. Indeed, in that case, we have thatV (x) ≤ α(σ(x))

with α(σ(x)) = Mσ(x)
1−e−λ in view of the proof of Lemma 1.

The second inequality in (6) is a detectability property ofσ

from ℓ (see Definition 1 in [9]), which is satisfied for instance
whenℓ is quadratic in its first argument andσ(·) = | · |. This

detectability property can be relaxed as in SA3 in [9]; we
will address this extension in future work.

The theorem below formalizes the existence of an achiev-
able sequence which minimizes the cost function in (4) (item
(a)) and states a global asymptotic stability property for
system (1) when this sequence is applied (item (b)).

Theorem 1:Consider system (1), the cost functionJ in
(4), and suppose Assumptions 1-2 hold. Then the following
holds.

(a) For anyx ∈ R
n there exists an optimal sequence of

inputsu∗(x).
(b) There existsβ ∈ KL such that for anyx ∈ R

n and
k ∈ Z≥0, σ(φ(k, x,u∗(x)|k)) ≤ β(σ(x), k). �

Proof. Assumption 1 allows us to directly apply Theorem 1
in [11] which ensures the satisfaction of item (a) of Theorem
1. Letx ∈ R

n and consideru∗(x). According to the Bellman
equation,

V (x) = ℓ(x, u∗
0) + V (φ(1, x,u∗(x)|1)). (7)

Hence, in view of Assumption 2,

V (φ(1, x,u∗(x)|1))− V (x) = −ℓ(x, u∗
0) ≤ −ρ(σ(x))

≤ −ρ ◦ α−1(V (x)).
(8)

We obtain by induction, for anyk ∈ Z≥0,

V (φ(k + 1, x,u∗(x)|k+1))− V (φ(k, x,u∗(x)|k))
≤ −ρ ◦ α−1(V (φ(k, x,u∗(x)|k))).

(9)

As a consequence, according to [19], there existsβ ∈
KL such that for anyk ∈ Z>0, V (φ(k, x,u∗(x)|k)) ≤
β(V (x), k). Using the fact thatρ(σ(x)) ≤ ℓ(x, u∗

0) ≤
V (x) ≤ α(σ(x)) in view of Assumption 2, we deduce
that item (b) of Theorem 1 holds withβ(s, k) = ρ−1 ◦
(β(α(s), k)) for any s, k ∈ R≥0. �

Item (b) of Theorem 3 is equivalent to the usual(ε, δ)-
definition of global asymptotic stability and is standard inthe
nonlinear systems literature. It means that the state remains
within a region that depends on the magnitude of the initial
state, but shrinks with time.

V. A NALYSIS OF THE DISCOUNTED PROBLEM

Even in the discounted case, Assumption 1 ensures the
existence of an optimal sequence of inputs for any initial
condition, according to the proposition below.

Proposition 1: Consider system (1), the cost functionJ
in (2), and suppose Assumption 1 holds. For anyx ∈ R

n

there exists an optimal sequence of inputsu
∗(x). �

Proof. Let γ ∈ (0, 1). As before, conditions a)-d) of Theorem
1 in [11] are verified in view of items (i)-(ii) of Assumption
1. Letx ∈ R

n. According to item (iii) of Assumption 1, there
existsu such thatJ(x,u) is finite. Hence, sinceγ ∈ (0, 1)
and ℓ is nonnegative in view of item (i) of Assumption 1,
for anyN ∈ Z>0

0 ≤
N
∑

k=0

γkℓ(φ(k, x,u|k), uk)

≤
N
∑

k=0

ℓ(φ(k, x,u|k), uk) ≤ J(x,u).

(10)



Since these inequalities hold for anyN , they also hold as
N → ∞. We deduce thatJ(x,u) ∈ [0, J(x,u)]. Hence,
J(x,u) is bounded and condition e) of Theorem 1 in
[11] holds. We apply Theorem 1 in [11] to conclude that
the infimum in (3) is well-defined and achievable for any
x ∈ R

n. �

The theorem below gives Lyapunov-based properties, from
which we will later deduce a stability property for system
(1) when applying an optimal sequence of inputs.

Theorem 2:Consider system (1) and the cost functionJ

in (2). The following holds under Assumptions 1-2.

(a) For anyx ∈ R
n and anyγ ∈ (0, 1),

ρ(σ(x)) ≤ V (x) ≤ α(σ(x)). (11)

(b) For anyγm ∈ (0, 1), there existsΥγm
∈ KL such that

for any x ∈ R
n, γ ∈ (γm, 1), andk ∈ Z≥0

V (x(k + 1))− V (x(k)) ≤ −ρ(σ(x(k)))
+Υγm

(σ(x(k)), γ
1−γ

),
(12)

where x(k) = φ(k, x,u∗(x)|k) with x ∈ R
n and

u
∗(x) the associated optimal sequence. �

Proof. Let γ ∈ (0, 1), x ∈ R
n, V (x) is well-defined

and there exists an optimal sequenceu
∗(x) = (u∗

0, u
∗
1, . . .)

according to Proposition 1. Sinceℓ is nonnegative according
to item (i) of Assumption 1 and (6) holds,

V (x) ≥ ℓ(x, u∗
0) ≥ ρ(σ(x)). (13)

On the other hand, sinceγ ∈ (0, 1),

V (x) = inf
u

∞
∑

k=0

γkℓ(φ(k, x,u|k), uk)

≤ inf
u

∞
∑

k=0

ℓ(φ(k, x,u|k), uk) = V (x)

(14)

and according to Assumption 2,

V (x) ≤ V (x) ≤ α(σ(x)). (15)

From (13) and (15), we have that item (a) of Theorem 2
holds.

We now prove that item (b) of Theorem 2 holds. Letγm ∈
(0, 1), γ ∈ (γm, 1), x ∈ R

n andu∗
0 be defined as above. We

denoteφ(1, x,u∗(x)|1) = f(x, u∗
0(x)) asx+ for the sake of

convenience. According to the Bellman equation,

V (x) = ℓ(x, u∗
0) + γV (x+), (16)

therefore

V (x+)− V (x) = −ℓ(x, u∗
0) + (1− γ)V (x+). (17)

Let x+ := f(x, u∗
0(x)) whereu∗(x) = (u∗

0(x), u
∗
1(x), . . .)

is an optimal sequence of inputs for the undiscounted
cost. We note that V (x) = infu J(x,u) ≤
J(x, (u∗

0(x),u
∗(x+)) = ℓ(x, u∗

0) + γV (x+). From
(16), γV (x+) ≤ ℓ(x, u∗

0) + γV (x+) ≤ ℓ(x, u∗
0) + γV (x+).

HenceγV (x+) ≤ α(σ(x)) + γV (x+) from (15) and since
ℓ(x, u∗

0) ≤ V (x) ≤ α(σ(x)). From (9), it follows directly

thatV (x+) ≤ (I− ρ ◦ α−1)(V (x)). UsingV (x) ≤ α(σ(x))
from Assumption 2, we deduce thatV (x+) ≤ (α−ρ)(σ(x)).
Consequently,γV (x+) ≤ α(σ(x)) + γ(α− ρ)(σ(x)). Then,
by using this expression in (17), we haveV (x+)− V (x) ≤
−ρ(σ(x)) + (1 − γ)

(

γ−1α(σ(x)) + (α − ρ)(σ(x))
)

≤
−ρ(σ(x)) + (γ−1 − 1)

(

2α(σ(x)) − ρ(σ(x))
)

, where
γ−1 ≥ 1 was used to obtain the last inequality. We assume
without loss of generality that2α − ρ ∈ K (we can always
upper-bound2α− ρ by a class-K function if this is not the
case by following Lemma 4.3 in [13] as this function is
zero at zero, nonnegative and continuous). We also note that
0 ≤ γ−1−1 = min{γ−1−1, γ−1

m −1} sinceγ ∈ (γm, 1). By
induction on the time, we deduce that item (b) of Theorem
2 holds withΥγm

(s, t) = min{t−1, γ−1
m − 1}

(

2α(s)−ρ(s)
)

for any s, t ≥ 0. �

The following theorem means that, if the optimal solution
for the undiscounted cost globally asymptotically stabilizes
the system (in the sense that item (b) of Theorem 1 holds),
then the discounted optimal solution will also stabilize the
system but semiglobally and practically, where the adjustable
parameter isγ.

Theorem 3:Consider system (1), the cost functionJ in
(2), and suppose Assumptions 1-2 hold. There existsβ ∈ KL
such that for anyδ,∆ > 0, there existsγ⋆ ∈ (0, 1) such that
for any γ ∈ (γ⋆, 1) and x ∈ {z ∈ R

n : σ(z) ≤ ∆}, the
solution φ to system (1) with initial conditionx and the
optimal sequence of inputsu∗(x) satisfies

σ(φ(k, x,u∗(x)|k)) ≤ max{β(σ(x), k), δ} ∀k ∈ Z≥0.

(18)
�

Proof. We want to use similar arguments as in the proof
of Corollary 1 in [9] to obtain the desired result. For that
purpose, we need to consider an autonomous system. For any
x ∈ R

n, take the optimal sequenceu∗(x). We write system
(1) with input sequenceu∗(x) as x(k + 1) = f̃(x(k), k).
Adding the time k as an extra variable, we obtain the
autonomous system̃x = F (x̃) where x̃ = (x, k) and
F (x̃) = (f̃(x, k), k + 1). We defineṼ (x̃) := V (x) and
σ̃(x̃) := σ(x) for any x̃ = (x, k). From Theorem 2, it holds
that, for anyγm ∈ (0, 1), γ ∈ (γm, 1), x̃ ∈ R

n+1,

ρ(σ̃(x̃)) ≤ Ṽ (x̃) ≤ α(σ̃(x̃)). (19)

and, for anyk ∈ Z≥0,

Ṽ (φ̃(k + 1, x̃))− V (φ̃(k, x̃)) ≤ −ρ(σ̃(φ̃(k, x̃)))

+Υγm
(σ̃(φ̃(k, x̃)), γ

1−γ
),

(20)
whereφ̃(k, x̃) is the solution to system̃x(k + 1) = F (x̃) at
timek, with initial conditionx̃. Like in the proof of Corollary
1 in [9], we then derive that for anyδ,∆ > 0, there exists
γ⋆ ∈ (γm, 1) such that for anyγ ∈ (γ⋆, 1) and x̃ ∈ {z̃ ∈
R

n+1 : σ̃(z̃) ≤ ∆}, the solutionφ̃ to systemx̃(k + 1) =
F (x̃) with initial condition x̃ satisfies

σ̃(φ̃(k, x̃)) ≤ max{β(σ̃(x̃), k), δ} ∀k ∈ Z≥0.

(21)



Sinceσ̃(x̃) = σ(x) for any x̃ = (x, k), we deduce from (21)
that (18) holds. �

This theorem is one of the main results of the paper. It is
interesting to note the analogy with the results in [9] where
the finite horizonN takes the place of γ

1−γ
in the infinite-

horizon discounted problem. Informally, quantityγ1−γ
can

be thought of as an ‘effective horizon’ of the discounted
problem. Thus, while [9] shows stability for horizonsN
greater than some lower boundN⋆, we show it forγ > γ⋆,
and thus for effective horizons larger thanγ

⋆

1−γ⋆ .
The value functionV is used in this section as a Lyapunov

function to analyse stability. In practice, it is essentialto
work with a Lyapunov function which is continuous in order
to guarantee some nominal robustness for the system (see
[12]). The assumptions made so far do not a priori allow us
to assert thatV is continuous. In Section VII, we will provide
conditions which will allow us to prove the continuity ofV .
These conditions include the boundedness of the stage cost,
so we first explain, in Section VI below, how our stability
guarantees can be applied to the case of bounded stage costs,
which is also of practical importance in its own right.

VI. B OUNDED STAGE COST

In many cases, the stage cost is taken bounded, see for
instance Chapter 4 in [3] as well as [6], [18] to mention a
few. We explain how the results of the previous sections can
be applied when the stage costℓ is obtained by saturating a
stage costℓ′ which verifies the assumptions of Section IV.

We thus consider an a priori unbounded stage costℓ′ :
W → R and a state measureσ′ : Rn → R≥0. We denote
the undiscounted cost function with stage costℓ′ asJ

′
. We

focus on the scenario where Assumption 1-2 hold for system
(1) with cost functionJ

′
. In addition, we assume that the

properties below are verified.
Assumption 3:

(i) There existM,λ > 0 such that for anyx ∈ R
n there

exists an infinite-length control input sequenceu
′ such

that ℓ′(φ(k, x,u′|k), u′
k) ≤ Mσ′(x)e−λk for any k ∈

Z>0.
(ii) For anyµ > 0 there existskµ ∈ Z≥0 such that for any

x ∈ R
n there exists an infinite-length control input

sequenceuµ such thatℓ′(φ(k, x,uµ|k), u
µ
k) ≤ µ for

any k ∈ Z≥0 with k ≥ kµ. �

Item (i) of Assumption 3 corresponds to the exponential
controllability property considered in Lemma 1. Item (b)
of Proposition 2 is an uniform finite-time controllability
property of ℓ′. It is likely possible to relax this condition
to hold semiglobally,i.e. to makekµ depend on the ball of
initial conditions; this extension is left for future work.

We now saturateℓ′ by an arbitrary constantν > 0. In that
way, the stage cost becomes

ℓ(x, u) := min{ℓ′(x, u), ν} ∀(x, u) ∈ W . (22)

In this case, we no longer consider the state measureσ′ but
σ which is defined as

σ(x) := min{ρ′(σ′(x)), ν} ∀x ∈ R
n, (23)

whereρ′ ∈ K∞ is such thatρ′(σ′(x)) ≤ ℓ′(x, u) for any
(x, u) ∈ W (such a function exists since Assumption 2 is
assumed to hold when the cost function is given byJ

′
). We

denote the undiscounted cost function with stage costℓ as
J . The proposition below states that Assumptions 1-2 hold
for system (1) with cost functionJ . Hence, the results of
Section IV apply in this case with the state measureσ in
(23). The proof is omitted due to space limitations.

Proposition 2: Suppose the following holds.

(a) Assumptions 1-2 are verified for system (1) with cost
functionJ

′
.

(b) Assumption 3 is verified.

Then Assumptions 1-2 are guaranteed for system (1) with
the cost functionJ and the conclusions of Theorems 1-3
hold with σ defined in (23). �

In view of Proposition 2, the state measureσ in (23) is
ensured to semiglobally practically converge to the origin
in the discounted case (since the conclusions of Theorem 3
apply). As a consequence, so doesρ′(σ′) sinceσ becomes
equal to ρ′(σ′) as it approaches the origin, whenδ is
selected smaller thanν in Theorem 3. We therefore see
that the semiglobal practical convergence ofσ′, equivalently
of ρ′(σ′) as ρ′ ∈ K∞, is preserved when saturating the
stage cost functionℓ′. That means for instance that, when
σ′(·) = | · |, the system solution converges to a neighborhood
of the origin, which can be rendered as small as desired by
decreasingδ (i.e. by increasingγ), when the stage cost is
saturated as in (22). The main difference appears for the
stability. Indeed, to saturateℓ′ does not allow us to bound
σ′ (equivalentlyρ′(σ′)) for all time by a class-K∞ function
of its initial value. However, we know thatσ′ is bounded as
it converges to a neighborhood of the origin as time grows,
which may be sufficient in many problems.

VII. C ONTINUITY OF THE VALUE FUNCTION V

The purpose of this section is to provide conditions under
which V is ensured to be continuous. In addition, we
will guarantee the existence of a stationary, state-feedback
optimal control law.

Assumption 4:The stage cost functionℓ is continuous on
W and bounded,i.e. there existsν > 0 such thatℓ(x, u) ≤ ν

for any (x, u) ∈ W . Furthermore, the set-valued mapping
x 7→ U(x) is continuous and locally bounded. �

We are ready to state the main result of this section.
Proposition 3: Consider system (1), the cost functionJ

in (2) with anyγ ∈ (0, 1), and suppose Assumptions 1 and
4 are satisfied. Then the following holds.

(a) The optimal value functionV is continuous onRn.
(b) There exists an optimal solution which is given by

a stationary, state-feedback law,i.e. there existsκ :
R

n → R
m such that anyx ∈ R

n, κ(x) ∈ U(x) and
the optimal sequenceu∗(x) = (u∗

0, u
∗
1, . . . ) can be

constructed as follows:u∗
k = κ(φ(k, x,u∗(x)|k)), for

any k ∈ Z≥0. �

Proof. We begin by observing that the boundedness of the
stage cost from Assumption 4, its nonnegativity from item



(i) of Assumption 1, and the existence of an optimal solution
from Proposition 1, ensure the satisfaction of Assumption C
of [3] (the contraction assumption) by Proposition 4.10 of
[3]. This assumption in turn allows us to apply Propositions
4.1, 4.2, and 4.3 of [3], which are essential to this proof.

We define the Bellman mappingT : B → B, where
[T (v)](x) := minu∈U(x)[ℓ(x, u) + γv(f(x, u))]. Item (c)
of Proposition 4.1 in [3] shows thatT is a contraction of
modulusγ, i.e. that ‖T (v)− T (v′)‖ ≤ γ ‖v − v′‖ for any
v, v′ ∈ B, recalling also that‖·‖ denotes the infinity norm.
Due to item (a) of Proposition 4.2 in [3], we obtain that
the optimal value functionV is the unique fixed point of
this mapping,i.e. V = T (V ). By item (c) of Proposition
4.2 in [3], the repeated application ofT converges toV ,
that is, the sequencev0 = 0, vn+1 = T (vn) satisfies
limn→∞ ‖V − vn‖ = 0, with n ∈ Z≥0.

Using these facts, the following standard result also holds,
by an immediate induction‖V − vn‖ ≤ γn ‖V − v0‖ =
γn ‖V ‖, so that the convergence ofvn, n ∈ Z≥0, to V is
uniform. We now prove by induction thatvn is continuous
for any n ∈ Z≥0. This assertion is true forn = 0 since
v0 = 0, suppose then that it holds for somen ∈ Z≥0. We
havevn+1 : x 7→ min

u∈U(x)
[ℓ(x, u) + γvn(f(x, u))]. SinceU

is continuous, locally bounded (in view of Assumption 4),
domU = R

n (by assumption), andℓ + γvn is continuous,
we apply Lemma 2 given in the Appendix to conclude that
vn+1 is continuous. Consequently,vn is continuous for
any n ∈ Z≥0. Hence, we have a sequence of continuous
functions that converges uniformly toV , which allows us to
reach our final conclusion thatV is continuous, according
to the uniform limit theorem. �

VIII. C ONCLUSIONS

We have shown that the solutions of a discounted optimal
control problem preserves in a certain sense the stability
properties of the undiscounted solution, by adjusting the
discount factor. Further, the stability guarantees remainvalid
for a type of bounded stage costs, and the Lyapunov value
function can be shown to be continuous when the stage costs
are bounded, under mild assumptions.

An immediate line of future work is relaxing the de-
tectability condition on the stage cost in (6) along the lines in
[9], and the finite-time controllability condition as explained
after Assumption 3. A second direction is motivated by
the fact that practical algorithms rarely achieve exactly the
optimal solution, ensuring instead only some bounded near-
optimality. Further, methods originating in artificial intelli-
gence often require the inputs to be discretized, see [24],
[25], [6]. It would therefore be interesting to take into
account these sources of errors, aiming to ensure stability
for a wide class of practical algorithms.
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APPENDIX

The following lemma is needed to prove Proposition 3. Its
proof is omitted due to space constraints.

Lemma 2:Let ϕ : R
n+m → R≥0 be continuous and

the set-valued mappingU : domU ⇉ R
m be continuous

and locally bounded and domU = R
n. Then W : x 7→

inf
u∈U(x)

ϕ(x, u) is continuous. �


