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Stability of infinite-horizon optimal control with discoun ted cost

R. Postoyan, L. Busoniu, D. Nesi¢, and J. Daafouz

Abstract— We investigate the stability of general nonlinear continuous-time case.g.,[21], [23], while, in the dynamic
discrete-time systems controlled by an optimal sequence of programming field, the analysis is usually tailored to the
inputs that minimizes an infinite-horizon discounted cost.We specific cost function considered or the specific algorithm

first provide conditions under which a global asymptotic sta .
bility property is ensured for the corresponding undiscourted used, see for instance [1], [5], [22]. To the best of our

problem. We then show that this property is semiglobally Knowledge, the stability properties in the general distedn
and practically preserved in the discounted case, where the case are not yet understood. The authors of [15] highlight
adjustable parameter is the discount factor. We then focus  the difficulties remaining even in the linear case. The main
a scenario where the stage cost is bounded and we explain difficulty comes from the impact of the value of on the

how our framework applies to guarantee stability in this ca®. t tability. We will show that f imole i
Finally, we provide sufficient conditions, including bouncedness System stability. VWve will Show that even for a simple linear

of the stage cost, under which the value function, which sees example,y needs to be sufficiently close tb to ensure
as a Lyapunov function for the analysis, is continuous. As stability.

already shown in the literature, the continuity of the Lyapunov Motivated by this insight, we develop a stability analy-
function is crucial to ensure some nominal robustness for & gis for discounted optimal control with general nonlinear
closed-loop system. . . .
dynamics and stage costs, building on the undiscounted
|. INTRODUCTION problem ¢ = 1) as a nominal case. Contrary to most

Optimal control selects control inputs so as to minimiz@forgmentloned.references, we mvestlgatg global .a?sytmp_to
a cost incurred during the system operation ([14]). In thigtabmty properties. Furthermore, we define stabilityngsi

paper, we focus on optimal control in discrete time over aff ger|1er|g rr;easu_:% as in [9], Wh;:_? allows one tol address
infinite horizon, with general nonlinear system dynamics a&'€ classical equilibrium point stability as a particulase,
ut also set stability for instance. We first provide suffitie

well as general stage costs. In this general setting, obtim% giti lobal . bil ot
control is a very powerful framework ([3]), able to addres$On |t|o_nsto ensure a globa as_ymptotlc stability prop
decision-making problems not only in control engineerin the undiscounted problem, like in [16]. Then, our main resul

but also in artificial intelligence, operations researatgre guarantees thf'ﬂ this stability prop_erty is preserved slqhmg
omy, medicine, etc. Indiscountedoptimal control, stage ally and practically where the adjustable parametey. it

costs are weighted by an exponentially decreasing termh_e?wodrd_s, fﬁ_r atr:y l_aasm"of attraction, the syst.errr:bsolfl]stlo |
~F. where v & (0.1) is the discount factor and; is Mitialized in this basin will converge to any neighborhoo

the time step. The discounted setting is popular in man th? target set provided. is_sufficiently close tol. We._
fields, such as reinforcement learning [24], [25], [6] an nly impose standard continuity and compactness condition

dynamic programming [17]. For example, a novel class ¢f"" the problem ([3], [10]), together with a controllability

predictive optimistic algorithms [18], which provides arye Property of the system as in [9]. Our analysis is inspired

useful relationship between computation invested and-ned®y [91. where the undiscounted finite-horizon case was

optimality, only makes sense in the discounted case. considered. i )
A core practical question is whether the discounted op- Often, the stage cost is taken bounded, see for instance

timal control law stabilizes the system. Some results exi:H‘S]' [24]’_[25]' [6] and Chapter 4 of [3]. This has impor-
in the economy literature, showing local stability in thetant practlcal advantages, such_ as ensuring bounded value
functions, as well as a contraction property that guarantee
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and stating the problem in Section Ill, we provide theand with the input sequenaeas¢(k,x,u|;), whereu|y :=
nominal, undiscounted analysis in Section IV. Stabilitgtwi (uo,...,ui—1) is the truncation ofu to the firstk € Z-¢
discount is studied in Section V, while Section VI speciediz steps, and we use the conventip(), =, uly) = x. We focus

the analysis to bounded stage costs, and Section VII shows the scenario where the sequence of control inputs is given
the continuity of the Lyapunov function. Conclusions ardyy the solution to an optimization problem. In particulag w

given in Section VIII. consider thecost function
Il. _PRELIMINARIES J(z,u) = kafw(k,:v,ulk),wg), @)
LetR = (—o0,0), R := R U {—=00, 0}, R>g = [0, 0), k=0
R0 = (0,00), Z>o = {0,1,2,. } Z>o ={1,2,...}. For where/: W — R is thestage costand~ € (0,1) is the
(z,y) € R™™™, (x,y) stands fOf[ y*T. A function x :  discount factor The objective is to minimize the cosk.

R — Rsg is of classk if it is contlnuous zero at zero When inf J(z,u) is well-defined (which is assumed to be
and strictly increasing, and it is of cla&s, if in addition it the case in this study), we call it theptimal value function
is unbounded. A continuous function: R, — Rx>¢ is of 19 we denote it
classCL if for eacht € R>o, x(-, 1) is of classK, and, for .
eachs € R, x(s,-) is deEreasing to zero. We denote by Viw) = H&f J(z,w). ©)
the Banach space of bounded real functiondRgnwith the  Further, when the infimum in (3) is achieved by an infinite-
infinity norm ||v|| = sup,cgn |v(z)]. length input sequence, we denote this sequarige) and

The definitions below can be found in [20]. A functioncall it the optimal solutionat statez. Thus, V(z) =
[+ R* — R is lower semicontinuousat z € R" if  J(z,u*(x)).
liminff( ) = gin%[ 1nf f( )] = f(z), where B(z, ) The objective of this study is to infer about the stability
is the closed bakoﬁ%n centered at of radiuss >0.We Property of system (1) when controlled by the optimal
say thatf is lower semicontinuous o C R”, when it is Seduencer”(z) (which may be non-unique), when the latter

exists. Our approach consists in considering, as a nominal

lower semicontinuous at any € X. Note that whenf is ) _
continuous. it is also lower Semicontinuous. case, the corresponding undiscounted probiesnwhen the
’ cost function is given by (2) withy = 1

Let S : R" = R™ denote a set-valued mapping.

The domain of S is defined by dony := {z ¢
R" : S(z) # 0}. We recall the notions of outer : ZE ¢k, @, ulk), ur), (4)
and inner limits of S at £ € R™ limsupS(z) := _
T T and the optimal value functlon % (2) := inf J(x,u). In
s Hantnezso Huntnezs, Stan = T, un = u this undiscounted setting, we can guarantee the stability
W|th un € S(zp)} and hmme( ) = of the system with an optimal sequence of inputyz)

) _ (which will be ensured to exist), defined as a sequence
{u P H{@ntnezs, St T S 30 € N FHugin bnezo so thatV(z) = J(z,u*(x)). We then study under which
s.t. Ug(n) U with u,, € S(a:n)}, where N is the set conditions it is possible to (approximately) maintain this
of strictly increasing functions fronZso to Zs,. When Stability property in the discounted case, whes (0, 1).

hmsup S(z) = hmlnf S(z), we write the limit ashm S(z). Our approach is motivated by the study of a simple
example which shows thagtindeed needs to be appropriately

selected to preserve stability.
Example 1:Consider the scalar system(k + 1) =
2z(k) + u(k) and the discounted quadratic coBtr,u) =

The set-valued mapplng‘ is continuousat & € R" when
S(z) — S(z) asz — Z, and it is continuous oX C R"
when it is continuous at any € X. Define the image of
a setV under the mapping by S(V) = U,y S(z). The
mappingS : R” = R™ is locally boundedwhen for any 27 (k)2 +u(k)2), wherey € (0,1) and u is an
z € R, for some neighborhoow of z, the setS(V) C R™

is bounded. |nf|n|te-length sequence of inputs. The optimal solution

is given by the feedback law* = Kux }Nith K =

-1
—2(1+2 (57 —1+/GBy=1)2+ 47) (see Sec-

tion 4.2 in [2]). The origin of the closed-loop system is
x(k+1) = f(a(k),u(k)) (1) globally exponentially stable if and only #+ K € (—1,1),
which is equivalent toy € (y*,1) wherey* = % Hence,
~ needs to be large enough, otherwise the optimal feedback

Saw does not stabilize the system. O

IIl. PROBLEM STATEMENT
Consider the system

with statexz € R™ and inputu € U(z) C R™, wherel{(x)

is a non-empty set of admissible inputs associated to stat
(as in [10], [11] for instance), and, m € Z~o. Let W =
{(z,u) : € R™ andu € U(z)}. Define an infinite-length V. PRELIMINARIES ON THE UNDISCOUNTED PROBLEM
sequence of control inputs = (ug,us1,...), in which the We make the following assumption on the undiscounted
control input at timek € Z>( is given byu(k) = ux. We  problem, which guarantees the existence of an optimal solu-
denote the solution to (1) at thé"-step starting at state  tion according to [11].



Assumption 1:The following holds. detectability property can be relaxed as in SA3 in [9]; we
(i) f is continuous o and/ is lower semicontinuous Will address this extension in future work.

and nonnegative oh. The theorem below formalizes the existence of an achiev-
(i) For any compact se€, the set{(z,u) € W : z € C} able sequence which minimizes the cost function in (4) (item

is compact. (a)) and states a global asymptotic stability property for
(iiiy For any = € R", there exists an admissible sequencéystem (1) when this sequence is applied (item (b)).

of inputsu such that/(z, u) is bounded. 0 Theorem 1:Consider system (1), the cost functiohin

Assumption 1 corresponds to the conditions of Theoredf): and suppose Assumptions 1-2 hold. Then the following
1 in [11]. Item (ii) of Assumption 1 is satisfied.g.,when holds. _ .
U(z) = U for any z € R™ with U compact; more general (a) For anyx € R™ there exists an optimal sequence of

conditions are given in Theorem 2 in [11]. Item (iii) of inputs* ().
Assumption 1 is verified for instance whehsatisfies a  (b) There exists3 € KL such that for anyr € R™ and
general exponential controllability property introduced k € Z>o, o(p(k, 2,0 (2)[x)) < Blo(2), k). O

Definition 3 in [9], as will be formalized in the lemma below. Proof. Assumption 1 allows us to directly apply Theorem 1
This property is stated with respect to a generic continuout§ [11] which ensures the satisfaction of item (a) of Theorem
positive definite functionr : R — R, which will serve 1. Letz € R™ and considet”(z). According to the Bellman
later as a state measure (as in [9]). The functionan be eduation,
definede.g.,as| - |, | - |? or by the distance to a set. V(z)
Lemma 1:Consider system (1) and suppose tHais
globally exponentially controllable to zero with respeot

= o, w) +V(e(l,z, @ (2)h). (@)
+ Hence, in view of Assumption 2,

o : R" — Rsg, i.e. there existM,\ > 0 such that V(¢(1,z, 0" (2))1)) —V(z) = —(x, uo)i —p(o(z))
for any © € R" there exists an admissible infinite-length < —poa Y(V(z)).
control input sequencer such thatl(¢(k, x,uly), ur) < (8)
Mo (x)e=?F for anyk € Z~,. Then item (jii) of Assumption We obtain by induction, for an§ € Zxo,
1 holds. O 74 — 7 o
. V(o(k + 1, 2,0 (2) k1)) — V(o(k, 2,0 (2)]1))

n — 9

Proof. Let z € R and take the sequencethat satisfies the < —poa ' (V(p(k,z,a* (z)|))). 9)

condition of Lemma 1. It then holds that, for af\y € Z+, .
As a consequence, according to [19], there exjstsc

oM KL such that for anyk € Z-g, V(p(k,z,a*(z)|r)) <

Zé (k, 2, ulk), up) < ZMU (5) B(V(z), k). Using the fact thatﬁ(o—gxg) < ZE:U,)LE;))) <
Mo(:c) V(z) < a(o(x)) in view of Assumption 2, we deduce

e that item (b) of Theorem 1 holds with(s, k) = 7 1lo

(B(@(s), k)) for any s, k € R>q. [ |

Since the inequalities above hold for any € Z.,,

they also hold whenN — oo, and J(z,u) = Item (b) of Theorem 3 is equivalent to the usyald)-

definition of global asymptotic stability and is standardtie

Zg ok, z,ulp), u) < Mo(z )A which implies the sat- nonlinear systems literature. It means that the state resmai
l—e within a region that depends on the magnitude of the initial
|sfact|on of item (iii) of Assumption 1. B state, but shrinks with time.

The conditions below come from [9] where the stability
of model predictive control problems with finite-horizon V. ANALYSIS OF THE DISCOUNTED PROBLEM
undiscounted cost is investigated. These same conditionsEven in the discounted case, Assumption 1 ensures the
will allow us to guarantee a global asymptotic stabilityeXistence of an optimal sequence of inputs for any initial
property for system (1) when the cost is infinite-horizon angondition, according to the proposition below.
undiscounted, similarly to [16]. Proposition 1: Consider system (1), the cost function

Assumption 2iLet o : R* — R-, be continuous and N (2), and suppose Assumption 1 holds. For ang R"

positive definite. There exisp,@ € K., such that the there exists an optimal sequence of inputgz). O
following holds for any(z, u) € W Proof. Lety € (0, 1). As before, conditions a)-d) of Theorem

- 1 in [11] are verified in view of items (i)-(ii) of Assumption

V(r) <a(o(z)) and {(z,u) >p(o(x)). (6) 1.Letz € R™. According to item (iii) of Assumption 1, there
o existsu such that/(z,u) is finite. Hence, since € (0,1)

and ¢ is nonnegative in view of item (i) of Assumption 1,

The first inequality in (6) is verified.g.,when/ is globally for any N € 7
>0

exponentially controllable to zero with respectdo R" —
R>¢. Indeed, in that case, we have thatz) < @(o(z))

k — _
with @(o(z)) = f{z@ in view of the proof of Lemma 1. 0 < 27 U (k, 2, alx), ar)
The second inequality in (6) is a detectability propertysof M0 (10)
from ¢ (see Definition 1 in [9]), which is satisfied for instance <

Zé(gf)(/{, Ivﬁ|k)vﬂk) < j(Ivﬁ)'
k=0

when/ is quadratic in its first argument and-) = |- |. This



Since these inequalities hold for any, they also hold as thatV(z") <

N — oco. We deduce that/(z,u) € [0,.J(z,u)]. Hence,

J(z,u) is bounded and condition e) of Theorem 1 inConsequentlyyV (z") < a(o(z)) +v(@—p)(o(x
[11] holds. We apply Theorem 1 in [11] to conclude thaby using this expression in (17), we halVdz™"
the infimum in (3) is well-defined and achievable for any—p(o(z)) +

r € R™. [ |

([—poa ' )(V(x ))-_UsingV( ) < a(o(z))
from Assumption 2, we deduce thE(z ") < (@—p)(o(x)).
)). Then,

) = V(x)
1 - "ale@) + @ - p)a()
—p(o(@) + (7 = 1)(2a(o(x) - plo(x))), where

~~1 > 1 was used to obtain the last inequality. We assume

INIA 3

The theorem below gives Lyapunov-based properties, fromithout loss of generality thela — 5 € K (we can always
which we will later deduce a stability property for systemupper-boun®@a@ — p by a classk function if this is not the

(1) when applying an optimal sequence of inputs.
Theorem 2:Consider system (1) and the cost functidn
in (2). The following holds under Assumptions 1-2.

(a) For anyz € R™ and anyy € (0, 1),
plo(x) < V(r) < d(o(z)). (11)

(b) For any~,, € (0,1), there existsl',, € KL such that
foranyx € R, v € (v, 1), andk € Z>¢

V(z(k+1)) = V(x(k) < —plo(z(k)))
+T'7m( ( (k))7 1— 'Y)
(12)
where z(k) = ¢(k,z,u*(z)|x) with z € R" and
u*(x) the associated optimal sequence. O

Proof. Let v € (0,1), x € R", V(z) is well-defined
and there exists an optimal sequencdz) = (ug,uj,...)

according to Proposition 1. Sin¢es nonnegative according fq anyy € (v*,1) andz € {z € R"

to item (i) of Assumption 1 and (6) holds,

V(z) > Uzuf) > plo(). (13)
On the other hand, since e (0, 1),
V(z) = ir&vakf(qﬁ(k,x,uM),uk)
= (14)
< inf ) U@k, @ ul),ur) = V(@)
k=0
and according to Assumption 2,
V(z) < V(z) < a(o(x)). (15)

case by following Lemma 4.3 in [13] as this function is
zero at zero, nonnegative and Continuous). We also note that
0<~y'—1=min{y '-1,7,' -1} sincey € (ym,1). By
induction on the time, we deduce that item (b) of Theorem
2 holds withY, (s, t) = min{t~*,~,,' = 1} (2a(s) — p(s))

for any s,t > 0. [ |

The following theorem means that, if the optimal solution
for the undiscounted cost globally asymptotically staleii
the system (in the sense that item (b) of Theorem 1 holds),
then the discounted optimal solution will also stabilize th
system but semiglobally and practically, where the adplsta
parameter igy.

Theorem 3:Consider system (1), the cost functiohin
(2), and suppose Assumptions 1-2 hold. There existsKCL
such that for any, A > 0, there existgy* € (0, 1) such that
: o(z) < A}, the
solution ¢ to system (1) with initial conditionz and the
optimal sequence of inpuis* (z) satisfies

o(p(k, z,u*(x)]k)) < max{B(c(z),k),d} Vk € Z>o.

(18)

O

Proof. We want to use similar arguments as in the proof
of Corollary 1 in [9] to obtain the desired result. For that
purpose, we need to consider an autonomous system. For any
x € R™, take the optimal sequenag (z). We write system
(1) with input sequencer*(z) as z(k + 1) = f(xz(k), k).
Adding the timek as an extra variable, we obtain the
autonomous system: = F(z) wherez = (x,k) and

From (13) and (15), we have that item (a) of Theorem #(&) = (f(z,k),k + 1). We defineV (i) := V(x) and

holds.

We now prove that item (b) of Theorem 2 holds. het €
(0,1), v €
denoteg(1, z, u*(z)|1) = f(z,ui(x)) asz™ for the sake of
convenience. According to the Bellman equation,

V(z) = z,u})+~V(zt), (16)

therefore
V@) -V(z) = —Llu)+(1-7)V(h). (17)
Let 7+ := f(z,m(x)) wherew(z) = (w3(2),}(2),...)

is an optimal sequence of mputs for the und|scounte

costt. We note thatV(z) = infyJ(z,u) <
J(z, (@y(x),u* (")) = {l(z,uy) + V(). From
(16), 7V (x") < Lz, up) + 9V (@ ) < Uz, 75) + 9V (@).

HenceyV (z") < a(o(z)) + 7V (T

U(z,ay) < V(z) < @lo(x)). From (9), it follows directly

(vm, 1), z € R™ anduf be defined as above. We

*) from (15) and since

o(z) := o(x) for any & = (z, k). From Theorem 2, it holds

that, for anyy,, € (0,1), ¥ € (ym, 1), T € R**L,
pE(E) < V(@) < al6@). (19)
and, for anyk € Zx,
V(b(k +1,8) = V(o(k, 7)) < —p(5(5(k, 7))
+71,,(5(9(k, 7)), 125),
) (20)
whereg(k, Z) is the solution to systeni(k + 1) = F(z) at

time k, with initial conditionz. Like in the proof of Corollary
%Lln [9], we then derive that for any, A > 0, there exists

€ (vm,1) such that for anyy € (v*,1) andz € {Z €
. 5(2) < A}, the solutiong to systemi(k + 1) =
F(z) with initial condition z satisfies

5(o(k, 7)) < max{B(5(%),k),0}

Rn+1

Vk € Zzo.
(21)



Sinced (z) = o(x) for anyz = (z, k), we deduce from (21) wherep’ € K is such thaty’(o’(z)) < ¢/(x,u) for any
that (18) holds. B (z,u) € W (such a function exists since Assumption 2 is
This theorem is one of the main results of the paper. It iassumed to hold when the cost function is given76),1 We
interesting to note the analogy with the results in [9] wherelenote the undiscounted cost function with stage éos$
the finite horizon\V takes the place of=- in the infinite- J. The proposition below states that Assumptions 1-2 hold
horizon discounted problem. Informally, quantiﬁf);fj—7 can for system (1) with cost functio/. Hence, the results of
be thought of as an ‘effective horizon’ of the discountedSection IV apply in this case with the state measuren
problem. Thus, while [9] shows stability for horizon§ (23). The proof is omitted due to space limitations.

greater than some lower bound*, we show it fory > ~*, Proposition 2: Suppose the following holds.
and thus for effective horizons larger thaf—-. (@) Assumptions 1-2 are verified for system (1) with cost
The value functiorl/ is used in this section as a Lyapunov function 7.

function to analyse stability. In practice, it is essential (b) Assumption 3 is verified.
work with a Lyapunov function which is continuous in order. . .
. Then Assumptions 1-2 are guaranteed for system (1) with
to guarantee some nominal robustness for the system (s[ e o= ) i
. e € cost function/ and the conclusions of Theorems 1-3
[12]). The assumptions made so far do not a priori allow USold with o defined in (23) .
to assert thal” is continuous. In Section VII, we will provide In view of Proposition 2‘ the state measurdn (23) is
conditions Wh'Ch V.V'” allow us to prove the continuity of. ensured to semiglobally practically converge to the origin
These conditions include the boundedness of the stage caost . : .
! L : ..~ 1n the discounted case (since the conclusions of Theorem 3
so we first explain, in Section VI below, how our stability

N
guarantees can be applied to the case of bounded stage CO%?QW)- As a consequence, so dqeer’) sinces becomes

S A L . equal to p'(¢’) as it approaches the origin, when is
which is also of practical importance in its own right. selected smaller than in Theorem 3. We therefore see

VI. BOUNDED STAGE COST that the semiglobal practical convergencesGfequivalently

/ / / H 1
In many cases, the stage cost is taken bounded, see fhrr'(0') @sp’ € Ko, is preserved when saturating the

instance Chapter 4 in [3] as well as [6], [18] to mention Stage cost functio’. That means for instance that, when

paadl . .
few. We explain how the results of the previous sections cah (") = ||, the system solution converges to a neighborhood

be applied when the stage cdsis obtained by saturating a of the origin, yvhich can be _rendered as small as desire_d by
stage cost’ which verifies the assumptions of Section IV. decreasing (i.e. by increasingy), when the stage cost is

We thus consider an a priori unbounded stage ¢bst saturated as in (22). The main difference appears for the
W — R and a state measure : R" — R-,. We denote stability. Indeed, to saturaté does not allow us to bound

— / i 1( : .
the undiscounted cost function with stage c6sas 7. We ¢ (equivalentlyp’(c”)) for all time by a classk, function

R ;s
focus on the scenario where Assumption 1-2 hold for syste its initial value. quever, we know tha:F 1S bou_nded as

. L " It converges to a neighborhood of the origin as time grows,
(1) with cost functionJ . In addition, we assume that the " O
properties below are verified which may be sufficient in many problems.

Assumption 3: VIl. CONTINUITY OF THE VALUE FUNCTION V'

(i) There existM, A > 0 such that for anyz € R" there
exists an infinite-length control input sequencesuch
that ¢/ (¢(k, z,0'|), u},) < Mo’ (z)e=** for any k €
Zsyp.

(i) For anyp > 0 there exists:, € Z>( such that for any
x € R™ there exists an infinite-length control input

The purpose of this section is to provide conditions under
which V' is ensured to be continuous. In addition, we
will guarantee the existence of a stationary, state-feeldba
optimal control law.

Assumption 4:The stage cost functiohis continuous on
W and bounded,e. there exists’ > 0 such that/(z,u) < v
sequences** such thatf!(¢(k, =, u*|x), ui) < p for for any (z,u) € W. Furthermore, the set-vallged znapping

an)_/k € Z>0 W'th. k2 k. . ¢ — U(x) is continuous and locally bounded. O
Item (i) of Assumption 3 corresponds to the exponentla@\/

- . . e are ready to state the main result of this section.
controllability property considered in Lemma 1. Item (b) Proposition 3: Consider system (1), the cost functioh
of Proposition 2 is an uniform finite-time controllability . P ' y '

o . . .~ in (2) with any~ € (0, 1), and suppose Assumptions 1 and
property of ¢’. It is likely possible to relax this condition o .
to hold semigloballyj.e. to makek,, depend on the ball of 4 are satisfied. Then the following holds.

initial conditions; this extension is left for future work. (2) The optimal value functiol” is continuous orR™.
We now saturaté’ by an arbitrary constant > 0. Inthat ~ (P) There exists an optimal solution which is given by
way, the stage cost becomes a stationary, state-feedback laig. there existsk :
R™ — R™ such that anyr € R", x(z) € U(z) and
l(z,u) = min{l(z,u),v}  V(z,u)eW. (22) the optimal sequence*(z) = (uj,u%,...) can be
In this case, we no longer consider the state measubmit constructed as followszj, = r(¢(k, z, u*(z)[x)), for
any k € Z>y. ]

o which s defined as Proof. We begin by observing that the boundedness of the

o(x) = min{p'(¢'(x)),v} Vo € R", (23) stage cost from Assumption 4, its nonnegativity from item



(i) of Assumption 1, and the existence of an optimal solution[2]
from Proposition 1, ensure the satisfaction of Assumption C[3]
of [3] (the contraction assumption) by Proposition 4.10 of
[3]. This assumption in turn allows us to apply Propositions[4]
4.1, 4.2, and 4.3 of [3], which are essential to this proof.

We define the Bellman mapping : B — B, where 5]
[T(0)(@) = miney@)f(@u) + yo(f(z,u)]. Item (c)
of Proposition 4.1 in [3] shows thaf' is a contraction of
modulus~y, i.e. that |T(v) — T (v")]] < v|v—'| for any
v,v" € B, recalling also that|-|| denotes the infinity norm.
Due to item (a) of Proposition 4.2 in [3], we obtain that
the optimal value functior’/ is the unique fixed point of
this mapping,i.e. V = T(V). By item (c) of Proposition
4.2 in [3], the repeated application @f converges toV,
that is, the sequencey = 0, v,41 = T(v,) satisfies
limy, o0 |V — vyl = 0, With n € Z>o.

Using these facts, the following standard result also holdsl®]
by an immediate inductio|V — v,|| < 4™ ||V — | =

(6]

(8]

~™ [V||, so that the convergence of,, n € Z>o, to V is  [10]
uniform We now prove by induction that, is continuous
for any n € Zxo. This assertion is true fon = 0 since (11
vo = 0, suppose then that it holds for somee Z>,. We
havev, 1 : = — min)[ﬂ(w,u) + yun(f(x,u))]. Since 12

u€U (x

is continuous, locally bounded (in view of Assumption 4),
domi = R™ (by assumption), and + ~v,, iS continuous,
we apply Lemma 2 given in the Appendix to conclude thaf4)
vnpy1 IS continuous. Consequently,, is continuous for
any n € Zs>o. Hence, we have a sequence of continuous®!
functions that converges uniformly 46, which allows us to
reach our final conclusion that is continuous, according
to the uniform limit theorem. [

[17]
VIII. CONCLUSIONS [18]

We have shown that the solutions of a discounted optimal
control problem preserves in a certain sense the stabilifyg
properties of the undiscounted solution, by adjusting the
discount factor. Further, the stability guarantees renaaliu 20]
for a type of bounded stage costs, and the Lyapunov vaILEe
function can be shown to be continuous when the stage coftg]
are bounded, under mild assumptions.

An immediate line of future work is relaxing the de-[p
tectability condition on the stage cost in (6) along thediire
[9], and the finite-time controllability condition as exjrlad 23]
after Assumption 3. A second direction is motivated by
the fact that practical algorithms rarely achieve exadily t [24]
optimal solution, ensuring instead only some bounded neetE-S]
optimality. Further, methods originating in artificial @tfi-
gence often require the inputs to be discretized, see [24],
[25], [6]. It would therefore be interesting to take into
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APPENDIX

account these sources of errors, aiming to ensure stability The following lemma is needed to prove Proposition 3. Its

for a wide class of practical algorithms.
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