Salam Hajjar

Emil Dumitrescu

Laurent Pietrac

Eric Niel

A Design Method for Synthesizing Control-Command Systems out of Reusable Components

Keywords: Formal verification, discrete controller synthesis, COTS, simulation, embedded systems, control-command

This paper investigates an industrial design issue related to code reusability: building control-command systems out of Commercial off the shelf (COTS) components. The design method proposed uses in synergy the formal verification (FV) and the discrete controller synthesis (DCS) techniques. COTS are formally specified using temporal logic and/or executable observers, and coded according to their formal specification. New functions are built by assembling COTS together. The COTS assembly operation is not error free: the resulting assembly may not achieve the desired function it is supposed to. For these reasons, COTS assemblies need to be formally verified and if errors are found, they must be corrected using DCS. The resulting system is ready for hardware (e.g. FPGA) implementation.

INTRODUCTION

Due to design constraints bounding delays, costs and engineering resources, component re-usability has become a key issue in embedded design. The expertise of the design process has been shifted from code writing to the efficient management of Commercial off the Shelf (COTS) libraries. By assembling adequately COTS components, new functions can be quickly built. Paradoxically, the brute force application of this method has lead to important design and maintenance costs, far from the theoretically expected gains. This is caused by an antagonism between the genericity expected for a COTS, and the contextspecific needs which fail to be handled correctly by that COTS. Indeed, by assembling COTS which have been separately designed, the resulting interactions cannot be entirely anticipated. Thus, unwanted behaviors may occur, although each component taken separately is considered free of errors. Ensuring a safe behavior of the COTS-based system is an important challenge. It calls for safe design methods and techniques, ensuring functional correctness. Besides simulation, the model checking technique [START_REF] Clarke | 25 years of model checking[END_REF] is vital for discovering subtle bugs, which are very difficult to uncover by simulation. Even though this technique has become mature, the designer must correct errors manually, which is an error-prone task: by attempting to manually correct an error, another error is introduced, which creates a vicious circle. This situation emphasizes the need to complete the automatic error detection, by an automatic error correction. This work advocates the use of the Discrete Controller Synthesis (DCS) technique [START_REF] Marchand | Synthesis of discrete-event controllers based on the signal environment[END_REF] in order to generate correct-by-construction design code.

The design method proposed in this paper highlights the synergy and the interdependence between these formal tools for achieving control-command COTS-based design.

The development of component-based design has been dependent on the growing maturity of formal techniques. [START_REF] Addy | Formal specification of cots-based software: a case study[END_REF] have proposed the formalization of the COTS interface, in order to facilitate their composition. A similar formalization is proposed by [START_REF] De Alfaro | Interface automata[END_REF] with the interface automata, capturing compositional aspects such as environment assumptions. Interface generation is also considered by [START_REF] Roop | Specification enforcing refinement for convertibility verification[END_REF], in order to solve mismatches between interacting protocols. A formalization of the COTS behavior has been proposed by [START_REF] Guerrouat | A componentbased specification approach for embedded systems using FDTs[END_REF], using extended finite state automata. On a more practical point of view [START_REF] Abts | Cots-based systems (cbs) functional density -a heuristic for better cbs design[END_REF] show that COTS-based design faces in general exponential blowup of maintenance costs. This phenomenon is due to the lack of control on the COTS behaviors, which are handled as black box components. [START_REF] Xie | Component-based hardware/software co-verification for building trustworthy embedded systems[END_REF] show the importance of the model checking technique, together with the assume-guarantee reasoning in COTS-based design. The DCS has been suggested by [START_REF] Altisen | Using controller-synthesis techniques to build property-enforcing layers[END_REF] to synthesize properties-enforcing layers, on the composition of local robot controllers. A contract-based modular design approach has also been proposed by [START_REF] Delaval | Contracts for modular discrete controller synthesis[END_REF]. This approach also relies on DCS and provides a toolchain able to build controlled systems automatically. This paper takes over the issues presented by [START_REF] Hajjar | Safe design method of embedded control systems : Case study[END_REF], and tackles two context-specific concerns related to the application of DCS. On the one hand, hardware target implementations require a particular representation of the synthesized controller. On the other hand, the existence of interfaces between control-command components, requires additional care: sometimes, generated controllers become part of the interface between two or more COTS and their behavior should not contradict the behavior expected for that interface. As it is shown in the sequel, this requirement cannot be handled by DCS alone. The control solution needs to be formally verified. These are the specificities of this work, compared to other existing propositions, namely [START_REF] Delaval | Contracts for modular discrete controller synthesis[END_REF]. The validity of this approach is demonstrated on an industrial case study concerning a train control-command system.

The rest of the paper is organized as follows: section 2 recalls the backgrounds of the models and techniques used throughout the method proposed in this paper. Section 3 highlights the structural issues in applying DCS to hardware designs. Section 4 presents a variant of the DCS technique, taking into account environment assumptions. The COTS-based design method is presented in section 5. Section 6 presents the controller validation issues. Section 7 illustrates this design method on an industrial design.

BACKGROUND AND DEFINITIONS

The Boolean Finite State Machine (BFSM). This model is very useful in our context because it is structurally and dynamically close to the hardware control-command systems we handle. Indeed, these are composed of Boolean variables, implementing either inputs, states or outputs. Thus the Boolean FSM is defined as a tuple M = q 0 , X, Q, δ, P ROP, λ , where q 0 designates the initial state, X a set of Boolean inputs, Q is the set of states of M , δ : Q × X → Q is the transition function, P ROP is a set of atomic Boolean propositions, and λ : Q → B |P ROP | is a labelling function modeling the outputs of M . This formal model is automatically extracted from design code written in VHDL, or in a similar proprietary framework. These programs feature systematically a hardware clock, which triggers all the transitions of the design, and which is considered to be common to the whole design. Under these circumstances, the clock representation can be left implicit inside the formal model.

Formal Requirement Specifications.

Formal specifications are expressed either logically, as temporal logic formulae, written in the PSL (IEEE, 2005) standard language, or operationally, as a "program" modeled formally by a BFSM and referred to as a monitor.

Control-command COTS are the basic building blocks considered in this work. A stand-alone COTS component C is defined as a 4-tuple C = I C , M C , A C , G C , where I C is the COTS' input-output interface, M C is the behavioral model of the COTS expressed as a BFSM, A C is a set of assumptions on the expected behavior of the environment of C and G C is a set of guarantees on the behavior M C of C. Both the assumptions and the guarantees are expressed formally, either as PSL formulae or as monitors. A COTS C satisfies a guarantee g ∈ G C provided an assumption a ∈ A C holds. This is denoted:

M C , a |= g A COTS is considered rather a "mature" component than a "perfect" one; it probably has hidden bugs, and building designs out of existing COTS elements also amounts to mixing unwanted behaviors from each building block. The COTS's behavior is expressed as design code, using a standard and/or proprietary framework. All the components handled in this work are automatically translatable into BFSMs.

COTS assembly. This is the act of composing COTS components together, in order to produce a new behavior. This operation produces a new component which is not considered as a COTS until its maturity is assessed. The assembly operation produces new sets of assumptions and guarantees: assumptions can be implied by newly added guarantees and need not be assumed anymore. They can also be contradicted by newly added guarantees, in which case they cannot be assumed anymore. These issues are not developed in this paper. The behavior of a COTS assembly is given by the synchronous composition operation, denoted ||, between their corresponding behavioral models.

The discrete controller synthesis (DCS)

This technique enforces the satisfaction of a safety requirement P on a given BFSM model M by attempting to make invariant the greatest subset of states of M which satisfy P . The input set of M is divided into two disjoint subsets: controllable X c and uncontrollable X uc inputs. The target set satisfying P is made invariant by disabling all the transitions of M leading out of it. This is achieved by generating a supervisor, which assigns adequate values to the controllable inputs X c .

The DCS proceeds in two steps [START_REF] Marchand | Synthesis of discrete-event controllers based on the signal environment[END_REF]:

(1) computation of the invariant under control (IU C) set and (2) computation of the supervisor. The computation of IU C calls recursively a basic step: finding the set of controllable predecessors of a given set of states E ⊆ Q. This step is implemented by the CP RED operator:

CP RED(E, δ) = {q ∈ Q | ∀x uc ∈ B |Xuc| , ∃x c ∈ B |Xc| ,
∃q ∈ E : q = δ(q, x uc , x c)} In other words, the state q is a controllable predecessor of a state q ∈ E iff for any uncontrollable value x uc , there exists a controllable value x c such that the transition function δ leads to q .

The resulting invariant under control set IUC is the fixed point of the equation:

IU C 0 = {q | P is true in q} IU C i+1 = IU C i ∩ CP RED(IU C i , δ)
A supervisor does not exist if the IUC set is empty or if it does not contain q 0 . When it exists, the supervisor is defined as: SU P = {(q, x uc , x c) | δ(q, x uc , x c) ∈ IU C}.

DCS FOR HARDWARE DESIGN

The supervisor provided by DCS is implemented as a characteristic function:

SUP : Q × B |Xuc| × B |Xc| → B defined as:
SUP(q, x uc , x c) = 1 iff (q, x uc , x c) ∈ SU P The actual control of M requires solving the equation SUP(q, x uc , x c) = 1 continuously, for each reaction of M , considering X c as unknown variables. However, a hardware (FPGA) implementation of this control loop requires that the value of each controllable variable x c be computed by an appropriate expression, for each reaction of M . The supervisor decomposition technique presented in [START_REF] Dumitrescu | A supervisor implementation approach in discrete controller synthesis[END_REF] is used in order to obtain systematically the control architecture presented in Figure 1. Let exp| x←0/1 denote the negative/positive co-factor of a Boolean expression exp with respect to a variable x. The supervisor SUP is recursively decomposed according to the rule: The resulting controller is a vector Ĉ of m Boolean functions, where m is the number of controllable variables:

f i = ¬SUP i | xci←0 ∧ SUP i | xci←1 ∨ x env ci ∧ SU P i | xci←0 ∧ SUP i | xci←1 where SUP 0 = SUP and SUP i = SUP i-1 | xci-1←fi-1 . System Controller Ĉ xuc PROP q xc x env c
Ĉ =    f 1 (q, x uc , x env c1 , f 2 , . . . , f m) f 2 (q, x uc , x env c2 , f 3 , . . . , f m) f m (q, x uc , x env cm)   
This decomposition process associates each controllable variable x ci with an auxiliary variable x env ci . The action of Ĉ is similar to filtering: at each moment, depending on the current state q and on x uc , x ci is assigned either x env ci or ¬x env ci . The auxiliary variables x env c are meant to be driven from outside M || Ĉ in order to specify desired values for x c . This is why they are referred to as environment variables.

It is worth noting that this control paradigm is totally opposite to the one developed by the supervisory control theory [START_REF] Ramadge | The control of discrete event systems[END_REF]. Indeed, unlike conventional supervisors, the control architecture presented above interferes with the environment by filtering if needed the values of the controllable inputs. Obviously, this situation is globally undesirable but acceptable for control reasons; however, this issue induces additional design constraints, developed in Section 5.

A DCS illustrative example

Consider the statebased design illustrated in Fig 2 . Let a property P = always¬(E 1 ∨ E 2) be the target requirement to enforce using DCS, by controlling the input variable go. The IU C computation algorithm gives the following results:

IU C 0 = {A, B, C}, IU C 1 = {A, C}, IU C 2 = {A, C} . The final IU C set is {A, C}.
The generated controller Ĉ assigns the controllable variable go, so that the controlled system always remains inside the set of states IUC, as illustrated in Figure 3.

THE ENVIRONMENT-AWARE DCS (EDCS)

In the context of COTS-based design, environment assumptions are of great importance. It often happens that Fig. 2. A 5-states design to be controlled using DCS Fig. 3. The controlled 5-states system the environment of a given COTS consists of a collection of other COTS. Thus, a direct connection between a COTS and the "physical world", made of sensors and of actuators, may not always exist. In this situation, unlike a physical environment, the environment of a COTS must feature a precise behavior so that the COTS at hand can fulfill its function.

The conventional DCS algorithm used in this work does not support the specification of environment assumptions. In order to handle this additional information, a variant of the DCS algorithm is proposed, called environment aware DCS (EDCS). It redefines the computation of the controllable predecessors, by assuming that at each step, the uncontrollable inputs satisfy the environment assumptions. Each assumption is modeled as a safety property a C ∈ A C concerning the uncontrollable inputs. It is translated into an invariant A : Q × B |Xuc| → B, defined as the set of all the transitions of M satisfying a c : A(q, x uc) = {∃x c : a c is true in state δ(q, x c , x uc)} which is supposed to be always true. The computation of the environment-ware controllable predecessors is defined as follows:

CP RED env (E, δ, A) = {q ∈ Q | ∀x uc ∈ B |Xuc| , ∃x c ∈ B |Xc| , ∃q ∈ Q : (q = δ(q, x uc , x c) ∧ A(q, x uc)) → q ∈ E}
The recursive application of CP RED env produces an invariant under control set under an environment assumption. This rule is less "pessimistic" with respect to the uncontrollable input variables, and thus less restrictive. The resulting IUC set is often larger than the one obtained with conventional DCS.

EDCS illustrative example

For a sample environment assumption stating that the uncontrollable req must be asserted when the system is in state B: always(B → req), the EDCS application computes the invariant under control IU C = {A, B, C}. Unlike conventional DCS, state B is not pruned, as req is supposed to be asserted whenever this state is active, and thus, due to this assumption, the error state E 1 is not reached.

THE SAFE COTS-BASED DESIGN METHOD

The method proposed relies on the conjunction between traditional design techniques, such as simulation and for- The DCS application occurs after the failure of the formal verification (step 2) applied to a safety requirement. The most delicate operation here, is the construction of the controllable input set, intended to be assigned by the controller. The controllable candidates are supplied by the model-checking counterexample. The designer chooses among these candidates, but should avoid controlling inputs driven by sensors, or inputs carrying data.

The formal verification of the controlled system occurs at step 4. It has two main motivations. As the generated controller interferes with the environment of the controlled system, it can be in contradiction with the environment assumptions of this system. Safety environment assumptions can be taken into account by EDCS, but liveness environment assumptions cannot. Thus, the first objective of this verification step is to ensure that the liveness environment assumptions are not broken, and thus, that the liveness guarantees are preserved. Second, it must be ensured that the controller satisfies application-specific requirements. These are developed in the next section. Even though the general control loop architecture presented in Section 3 fills the structural specific needs of hardware design, there remain specific behavioral constraints that need to be guaranteed, and which cannot be handled by (E)DCS.

Controllable inputs with soft reactive constraints. Consider the 4-phase handshake protocol, which is both a generic and representative mechanism, widely used for data exchange and synchronization between hardware components. It is implemented by a pair of Boolean signals: a request and an acknowledge. The handshake protocol starts when the request is activated. The acknowledge is then activated, followed by the request de-activation, and finally by the acknowledge deactivation. This sequence is called a transaction; it achieves a synchronisation between two components. Typically, transactions have an arbitrary delay. It is only required that they last a finite time. For this specific case, the desired control should implement The "event invention" phenomenon. The signal activation and deactivation notions need to be associated to actual Boolean values, usually 1 for the active value and 0 for the inactive value. However, a controller which acts upon the request controlled input is not aware of the notions of activation or deactivation, but only manipulates the values 1 or 0 of this input. At some moments, the value 1 can be forbidden (and thus the value 0 is forced), or viceversa. However, these two situations are not symmetric: in the first case, the transaction may not start, while in the second, the transaction is forced, or "invented"! This is illustrated in figure 7 a. Usually, transactions also carry data, and hence such a situation does not make sense. Obviously, this is unacceptable. This requires to make sure a posteriori that the controller never "invents" transactions, and if it does, invalidate the control solution.

Hence it is vital to formally ensure the absence of "eventinvention" phenomena. The expression of this requirement for a controllable variable x needs to mention systematically x env , which is generated by (E)DCS, as explained in Section 3. However, the variable x env does not exist at the moment DCS starts. It is not possible mention its name to express requirements over the resulting controller. This is why the event invention phenomenon cannot be forbidden, but only detected by model checking.

Detection of "event inventions". This behavior is simply checked by the PSL property: ∧ ¬request env) In complement, it must also be established that the controller is not too restrictive, by delaying transactions forever. Thus, once a transaction starts, it must be acknowledged within finite time:

F IN IT E T RAN SACT ION = always(request env → eventually acknowledge) In order to prove these requirements, it can be needed to assume that once the environment asserts the input request request env , it is held until it is acknowledged:

REQU EST ST ABLE : always(request env → next (stable(request env) until acknowledge)) where stable is a built-in PSL operator: stable(x) evaluates to true in every cycle where variable x did not change its value with respect to the previous cycle.

If this verification step is successful, the resulting controlled COTS can be considered as valid.

INDUSTRIAL APPLICATION

The method proposed above has been applied on a train passenger access control-command system, featuring two COTS: the Door and the Filling gap, as shown in figure 8. This case study has been provided by Bombardier Transport, and has been used during the FerroCOTS project [START_REF] Jadot | Ferrocots, from cable to chip[END_REF]. The Door COTS Model is 4-tuple M

d , a d 1 , a d 3 |= g d 1 M d , a d 2 , a d 4 |= g d 2
The Filling gap COTS is modeled similarly: C f g = I f g , M f g , A f g , G f g . Its function consists in deploying and retracting the physical filling gap according to the requests sent by the conductor via the inputs req deploy and req withdraw.

The door/filling-gap assembly C d ||C f g is modeled as follows: This paper has presented a safe design method for COTSbased hardware embedded systems. This method uses in synergy the Discrete Controller Synthesis and formal verification techniques in order to produce correct by construction COTS-based systems. Specific issues related to the use of DCS in the hardware design context have been identified and addressed: the structural compatibility between the controller and the system to control, the integration of environment assumptions in solving the DCS problem, and the behavioral validation of the controller. Future directions of this work aim at using DCS for interface generation, as well as handling liveness requirements enforcement.

I asm = {I d ∪ I f g }, A asm = {A d ∪ A f g }, G asm = {G d ∪ G f g }, M asm = M d ||M f g .

Fig. 1 .

 1 Fig. 1. Target control architecture for hardware designs

Fig. 4 .

 4 Fig. 4. Controller synthesis using EDCS

Fig. 5 .

 5 Fig. 5. Safe design flow

Fig

 Fig. 6. Controlling transactions System

Fig. 7 .

 7 Fig. 7. The event "invention" phenomenon clock request env request controlled acknowledge (a) Transaction "invention" by the controllerN O EV EN T IN V EN T ION : always¬(request controlled ∧ ¬request env) In complement, it must also be established that the controller is not too restrictive, by delaying transactions forever. Thus, once a transaction starts, it must be acknowledged within finite time:F IN IT E T RAN SACT ION = always(request env → eventually acknowledge) In order to prove these requirements, it can be needed to assume that once the environment asserts the input request request env , it is held until it is acknowledged:REQU EST ST ABLE : always(request env → next (stable(request env) until acknowledge)) where stable is a built-in PSL operator: stable(x) evaluates to true in every cycle where variable x did not change its value with respect to the previous cycle.

Fig. 8 .

 8 Fig. 8. The COTS and their physical environment

 Fig. 10. Monitor M P asm modeling P asm

Finite

 Fig. 11. The controlled passengers' access system

Fig. 12 .

 12 Fig. 12. Simulation of the controlled system