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ABSTRACT

In this work, we first provide iteration–complexity bounds

(pointwise and ergodic) for the inexact Krasnosel’skiı̆–Mann

iteration built from nonexpansive operators. Moreover, un-

der an appropriate regularity assumption on the fixed point

operator, local linear convergence rate is also established.

These results are then applied to analyze the convergence

rate of various proximal splitting methods in the litera-

ture, which includes the Forward–Backward, generalized

Forward–Backward, Douglas–Rachford, ADMM and some

primal–dual splitting methods. For these algorithms, we

develop easily verifiable termination criteria for finding an

approximate solution, which is a generalization of the ter-

mination criterion for the classical gradient descent method.

We illustrate the usefulness of our results on a large class of

problems in signal and image processing.

Index Terms— Convex optimization, Proximal splitting,

Convergence rates, Inverse problems.

1. INTRODUCTION

Problem statement and overview Many convex optimiza-

tion problems in image and signal processing can be solved

via the inexact Krasnosel’skiı̆–Mann iteration which is de-

fined by

xk+1 = xk + λk(Tx
k + εk − xk), (1.1)

where T : H → H is a nonexpansive operator on a Hilbert

space H, (λk)k∈N ∈]0, 1[, and for xk ∈ H, εk ∈ H is the

error when computing Txk.

One simple instance of such an algorithm is that of relaxed

inexact gradient descent for solving

min
x∈H

f(x),

where f is proper convex and has β−1–Lipschitz continuous

gradient, in which case T = Id−γ∇f , for γ ∈]0, 2β[. In this

scenario, the error εk is that when evaluating ∇f at xk.

Many structured convex optimization problems boil down

to implementing an iteration that can be cast in the form

This work has been supported by the ERC project SIGMA-Vision and

l’Institut Universitaire de France.

of (1.1) for an appropriate T . Consider for example

min
x∈H

{

Φ(x) = f(x) +
∑n

i=1hi ◦ Li(x)
}

, (1.2)

where f ∈ Γ0(H) has β−1–Lipschitz continuous gradient,

hi ∈ Γ0(H), Li is a bounded linear operator, Γ0(H) is the

class of lower semicontinuous, proper, convex functions from

H to ] − ∞,+∞]. Assume that some appropriate domain

qualification conditions are verified for (1.2) to be well–

posed. Problem (1.2) has been considered in e.g. [1, 2, 3],

who proposed iterative schemes in the form (1.1).

In the last decades, based on the notion of the proxim-

ity operator [4], and assuming that the functions hi are sim-

ple (i.e. their proximity operators are easily computable), a

wide range of proximal splitting algorithms have been pro-

posed to solve problems of the form (1.2). One can cite for

instance the Forward–Backward splitting method (FBS) [5]

valid for n = 1 and L1 = Id, the Douglas–Rachford split-

ting method (DRS) [6] that applies for f = 0 and Li = Id,

generalized Forward–Backward splitting method (GFB) [3]

when Li = Id, or primal–dual splitting methods. See [7] for

a comprehensive account.

Contributions In this paper, we first establish iteration

complexity bounds of the inexact relaxed fixed point iteration

(1.1). Under a regularity assumption on Id− T , a local linear

convergence rate is established. We then build upon these

results to provide rates for several proximal splitting algo-

rithms, from which an easily verifiable termination criterion

for finding an approximate solution will be given. For space

limitations, the proofs of the results can be found in the long

version of the paper [8].

2. ITERATION COMPLEXITY BOUNDS

Denote T ′ = Id− T , fixT is the set of fixed points of T , and

ek = T ′xk.

Let d0 be the distance from a starting point x0 to the solu-

tion set fixT . Denote τk = λk(1 − λk), τ = infk∈N τk, τ =
supk∈N τk, ν1 = 2 supk∈N ||Tkx

k − x⋆|| + supk∈N λk||εk||,
ν2 = 2 supk∈N ||ek − ek+1||, where x⋆ ∈ fixT . Denote ℓ1+ the

set of summable sequences in [0,+∞[.



Theorem 2.1 (Pointwise iteration complexity bound). As-

sume that

(a) fixT 6= ∅;

(b) 0 < infk∈N λk ≤ supk∈N λk < 1;

(c)
(

(k + 1)||εk||
)

k∈N
∈ ℓ1+.

Let C1 = ν1
∑

j∈N
λj ||εj || + ν2τ

∑

ℓ∈N
(ℓ + 1)||εℓ|| < +∞,

then

||ek|| ≤
√

d20 + C1

τ(k + 1)
.

Remark 2.2. When the fixed point iteration (1.1) is exact, we

get

||ek|| ≤ d0
√

∑k

j=0τj

,

which recovers the result of [9, Propositon 11].

Next we present the ergodic iteration complexity bound

of (1.1), define Λk =
∑k

j=0 λj , and ēk = 1
Λk

∑k
j=0 λje

j .

Theorem 2.3 (Ergodic iteration complexity bound). As-

sume that condition (a) in Theorem 2.1 holds, and C3 =
∑

j∈N
λj ||εj || < +∞. Then,

||ēk|| ≤ 2(d0 + C3)

Λk

.

If infk∈N λk > 0, then Λk = c(k + 1) for some constant

c > 0, and we get O(1/k) rate.

A special class of nonexpansive operators is the α–

averaged operators [7] for α ∈]0, 1[. The above two com-

plexity bounds obviously apply, where now λk ∈]0, 1
α
[ and

condition Theorem (b) is changed accordingly.

3. LOCAL LINEAR RATE

We now turn to a local convergence analysis of (1.1).

Definition 3.1 (Metric subregularity [10]). A set–valued

mapping F : H → 2H is called metrically subregular at x̃
for ũ ∈ F (x̃) if there exists κ ≥ 0 along with neighbourhood

X of x̃ such that

d(x, F−1ũ) ≤ κ d(ũ, Fx), ∀x ∈ X . (3.1)

The infimum of κ for which this holds is the modulus of met-

ric subregularity, denoted by subreg(F ; x̃|ũ). The absence of

metric regularity is signaled by subreg(F ; x̃|ũ) = +∞.

Metric subregularity implies that, for any x ∈ X , d(ũ, Fx)
is bounded below. The metric (sub)regularity of multifunc-

tions plays a crucial role in modern variational analysis and

optimization. These properties are a key to study the stabil-

ity of solutions of generalized equations, see the dedicated

monograph [10].

Let’s specialize this definition to the operator T ′ and ũ =
0. T ′ is single–valued and T ′−1(0) = fixT . Thus if T ′ is

metrically subregular at some x⋆ ∈ fixT for 0, then from

(3.1) we have

d(x, fixT ) ≤ κ||T ′x||, ∀x ∈ X .

Metric subregularity implies that (3.1) gives an estimate for

how far a point x is from being the fixed point set of T in

terms of the residual ||x − Tx||. This is the rationale behind

using such a regularity assumption on the operator T ′ to quan-

tify the convergence rate on d(xk, fixT ). Thus, starting from

x0 ∈ H, and by virtue of Theorem 2.1, one can recover a

O(1/
√
k) rate on d(xk, fixT ). In fact, we can do even bet-

ter as is shown in the following result. We use the shorthand

notation dk = d(xk, fixT ).

Theorem 3.2 (Local linear rate). Assume that conditions

(a)-(b) in Theorem 2.1 hold, and T ′ is metrically subregular

at x⋆ ∈ fixT for 0, with κ > subreg(T ′;x⋆|0). If C3 is suffi-

ciently small and there exists a ball Ba(x
⋆) such that

B(a+C3)(x
⋆) ⊆ X .

Then, for any starting point x0 ∈ Ba(x
⋆), there holds:

(i)
(

d2k
)

k∈N
∈ ℓ1+ and

d2k+1 ≤ ζk d
2
k + ck,

where ζk =

{

1− τk
κ2 , if τk/κ

2 ∈]0, 1]
κ2

κ2+τk
, otherwise

∈ [0, 1[, ck =

ν1λk||εk||.
(ii) If εk = 0, then lim

k→+∞

k
√
dk < 1.

(iii) If fixT = {x⋆} and εk = 0, then xk converges linearly

to x⋆.

Remark 3.3. For simplicity, suppose the iteration is exact,

and let x⋆ ∈ fixT such that dk = ||xk − x⋆||. Then we have

||ek||2 = ||xk − x⋆ + Tx⋆ − Txk||2 ≤ 4d2k ≤ 4ζkd20,

which means that locally, ||ek|| also converges linearly to 0.

Again, if T is α–averaged, then we can afford λk ∈]0, 1
α
[

and all statements of Theorem 3.2 remain valid with ζk =
κ2/

(

κ2 + αλk(1− αλk)
)

.

Since metric regularity [10] implies metric subregularity,

equivalent characterizations of the latter and its modulus can

be given, for instance in terms of derivative criteria. In par-

ticular, as T ′ is single–valued, its metric regularity holds if it

is differentiable on a neighbourhood of x⋆ with nonsingular

derivatives at x around x⋆, and the operator norms of their in-

verses are uniformly bounded and serve as an estimate of the

(sub)regularity modulus κ [11, Theorem 1.2]. Computing κ
in practice is however far from obvious in general even in for

the differentiable case and these details will be left to a future

work.



4. APPLICATIONS TO PROXIMAL SPLITTING

FBS Suppose that n = 1 and L1 = Id in (1.2). Then FBS

with a fixed step–size corresponds to T = Proxγh1
◦ (Id −

γ∇f), γ ∈]0, 2β[, λk ∈]0, 4β−γ
2β [, and εk is the error when

evaluating both the proximity operator and the gradient. In

this case, setting gk = 1
γ
(xk−1 − xk) − ∇f(xk−1), it then

follows from Theorem 2.1 that

gk ∈ ∂h1(x
k), and ||gk +∇f(xk)||2 = O(1/k).

In plain words, this means that O(1/ǫ) iterations are needed

to find a pair
(

x, g ∈ ∂h1(x)
)

with the termination criterion

||g+∇f(x)||2 ≤ ǫ. This is the best–known complexity bound

possessed by first–order methods to solve general non-linear

problems (e.g. the gradient descent method [12]). From The-

orem 2.3, this iteration–complexity improves to O(1/
√
ǫ) in

ergodic sense for the same termination criterion.

GFB Consider now n > 1 and Li = Id in (1.2). [3] pro-

posed a generalization in a product space Hn of the FBS

scheme to solve (1.2). For the GFB method, T takes a more

intricate form, omitted here for space limitation, and εk ab-

sorbs the error when computing both the proximity opera-

tors Proxγhi
and the gradient. Let γ and λk be chosen as

for FBS. One can show that O(1/ǫ) iterations are needed

to find a pair
(

(ui)1≤i≤n, g
)

with the termination criterion

||g +∇f(
∑

iui/n)||2 ≤ ǫ, where g ∈ ∑n
i=1 ∂hi(ui), see [8]

for details. Again, ergodic iteration complexity is O(1/
√
ǫ).

DRS, ADMM When f = 0 and n = 2, (1.2) can be solved

by DRS for L1 = L2 = Id, or the Alternating Direction

method of Multipliers (ADMM) [13] if e.g. L1 = Id. ADMM

is known to be equivalent to DRS applied to the dual problem

[14]. It can be shown that in at most O(1/ǫ) iterations, DRS

finds a subgradient g of h1 + h2 at x with ||g||2 ≤ ǫ.

Other splitting schemes Similar complexity bounds can be

established for several primal–dual splitting methods, e.g. [1],

for solving (1.2) (and even more general). One crucial prop-

erty of these methods, is that they can be reformulated into

the form of (1.1), and the corresponding fixed point operator

is α–averaged; see [8] for details.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the obtained convergence re-

sults on two applications, the nonnegative matrix completion

(NMC) problem [15], and the principal component pursuit

(PCP) problem [16].

5.1. Nonnegative matrix completion

Suppose we observe measurements y ∈ R
p of a low rank

matrix X0 ∈ R
m×n with nonnegative entries

y = A(X0) + w

where A : Rm×n → R
p is a measurement operator, and w

is the noise. In our experiment here, A selects p entries of

its argument uniformly at random. The matrix completion

problem consists in recovering X0, or an approximation of it,

by solving a convex optimization problem, namely the mini-

mization of the nuclear norm [17, 18, 15]. In penalized form,

the problem reads

min
X∈∈Rm×n

1
2 ||y −A(X)||2 + µ||X||∗ + ι+(X), (5.1)

where ι+ is the indicator function of the nonnegative orthant

to account for the nonnegativity constraint, and µ is a regu-

larization parameter chosen proportional to the noise level.

Identifying f(X) = 1
2 ||y − A(X)||2, h1(X) = µ||X||∗

and h2(X) = ι+(X), (5.1) is nothing but an instance

of (1.2). Both h1 and h2 are simple, since Proxγh1
(X)

amounts to soft–thresholding the singular values of X , and

Proxγh2
(X) =

(

max(Xij , 0)i,j
)

is the projector on the non-

negative orthant. Thus, (5.1) can be solved using e.g. GFB or

the primal-dual (PD) scheme of [1].
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Fig. 1: Observed convergence curve (solid blue) of ||ek|| for

GFB (left) and PD (right) to solve (5.1), theoretical global

bound (solid red), and fitted local linear curve.

Fig. 1 displays the observed pointwise convergence rate

of ||ek|| and the theoretical bound computed from Theo-

rem 2.1 for GFB and PD. Note that the first half of the plot is

in log–log scale while the second one is log scale on the ordi-

nate. As expected, O(1/
√
k) convergence rate is observed on

the first half. For sufficiently high iteration counter, a linear

convergence regime takes over as clearly seen from the sec-

ond half of the plot. This local behaviour is in consistent with

the result of Theorem 3.2. Let us mention that the local linear

convergence curve (dashed line) was fitted to the observed

one, since the regularity modulus necessary to compute the

theoretical rate in Theorem 3.2 is not easy to estimate.



5.2. Principal component pursuit

In this part, we consider the PCP problem [16], and apply it

to decompose a video sequence into its background and fore-

ground components. The rationale behind this is that since

the background is virtually the same in all frames, if the latter

are stacked as columns of a matrix, it is likely to be low–

rank (even of rank 1 for perfectly constant background). On

the other hand, moving objects appear occasionally on each

frame and occupy only a small fraction of it. Thus the corre-

sponding component would be sparse.

Assume that a real matrix M can be written as

M = Xl,0 +Xs,0 +W,

where a Xl,0 is low–rank, Xs,0 is sparse and W is a pertur-

bation matrix that accounts for model imperfection. The PCP

proposed in [16] attempts to provably recover (Xl,0, Xs,0),
to a good approximation, by solving a convex optimization.

Here, toward an application to video decomposition, we also

add a non-negativity constraint to the low–rank component,

which leads to the convex problem (‖ · ‖F is the Frobenius

norm)

min
Xl,Xs

1
2‖M −Xl−Xs‖2F +µ1‖Xs‖1+µ2‖Xl‖∗+ ι+(Xl),

(5.2)

One can observe that for fixed Xl, the minimizer of (5.2) is

X⋆
s = Proxµ1‖·‖1

(M −Xl). Thus, (5.2) is equivalent to

min
Xl

1(µ1‖ · ‖1)(M −Xl) + µ2‖Xl‖∗ + ι+(Xl), (5.3)

where 1(µ1‖ · ‖1)(M − Xl) = minZ
1
2‖M − Xl − Z‖2F +

µ1‖Z‖1 is the Moreau Envelope of µ1‖ · ‖1 of index 1. Since

the Moreau envelope is differentiable with a 1–Lipschitz con-

tinuous gradient [19], (5.3) is a special instance of (1.2) and

can be solved using GFB and PD schemes.

We first used a synthetic example to illustrate the conver-

gence property of GFB and PD. Fig. 2 displays the observed

pointwise convergence rate of ||ek|| and the theoretical one

predicted by Theorem 2.1. Both the global and local conver-

gence behaviours are similar to those observed in Fig. 1.

Now we consider a video sequence introduced in [20],

whose resolution is 128 × 160, each frame is stacked as a

column of the matrix M and 300 frames in total. Hence M is

of size 20480 × 300. We then solve (5.3) to decompose the

video into its foreground and background.

Fig. 3 displays the observed pointwise convergence rate

and the one predicted by Theorem 2.1 but only for GFB for

space limitation. Fig. 4 demonstrates the decomposition re-

sult of the method. The first column shows 3 frames from

the video, the second and third column are the corresponding

columns of low–rank component Xl and the sparse compo-

nent Xs. Notice that Xl correctly recovers the background,

while Xs correctly identifies the moving pedestrians or the

change of illumination.

‖e
k
‖

k
10

0

10
2

10
−10

10
−5

10
0

10
5

180 200 220 240    
 

 

gl ob al 1/
√
k

l o c al fi t t e d

p r ac t i c al

10
0

10
2 800 1000

10
−10

10
−5

10
0

10
5

 

 

gl ob al 1/
√
k

l o c al fi t t e d

p r ac t i c al

Fig. 2: Observed convergence curve (solid blue) of ||ek|| for

GFB (left) and PD (right) to solve (5.3) with synthetic data,

theoretical global bound (solid red), and fitted local linear

curve.
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Fig. 3: Observed convergence curve (solid blue) of ||ek|| for

the GFB to solve (5.3) with a real video sequence, theoretical

global bound (solid red), and fitted local linear curve.

Fig. 4: Left: Original frames of a video sequence (300

frames). Middle and Right: recovered background (low–

rank) and foreground (sparse) components.
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