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ABSTRACT

In this paper we propose to use the Eikonal equation on graphs

for generalized data clustering. We introduce a new potential

function that favors the creation of homogeneous clusters to-

gether with an iterative algorithm that place seeds vertices at

smart locations. Oversegmentation application shows the ef-

fectiveness of our approach and gives results comparable to

the state-of-the-art methods.

Index Terms— Graphs, Eikonal equation, Seeds posi-

tioning, Oversegmentation.

1. INTRODUCTION AND CONTEXT

With the increasing amount of available data, and the need

for fast and accurate processings, the simplification or clus-

tering of data becomes a crucial point for many applications.

A convenient way to address this task is to consider that orga-

nized or non-organized data can be modeled by a graph that

inherently handle interactions between vertices. Exhibiting

clusters of this graph leads to a simplification of the domain

and decreases the size of the problem.

Many graph-based clustering techniques have been proposed

in the litterature, such as cut-based, spectral or random walks

methods (see [1, 2] for a review of these techniques).

Recent works try to adapt well-known signal processing tools

to the discrete domain of the graphs [3, 4]. Recently, [5] in-

troduces an adaptation to graphs of the Eikonal equation that

generalizes front propagation methods to data of arbitrary di-

mensions. In this paper, we propose to use this Eikonal-based

framework for data clustering, and more particularly for im-

age oversegmentation. Together with a new potential func-

tion, we propose an iterative algorithm that automatically pro-

duces a desired number of clusters. Oversegmentation com-

parisons with state-of-the-art dedicated methods show the ef-

fectiveness of our approach.

Notations and context. We assume that any discrete domain

can me modeled by a weighted graph. Let G = (V,E,w) be

a weighted graph composed of a finite set V = {v1, . . . , vn}
of n vertices and E ⊂ V × V a set of weighted edges. An

edge (u, v) ∈ E connects two adjacent vertices u and v and

is weighted by the function w : V × V → R
+. In the

following such a weight is denoted by wuv . We denote by

Nv the number of neighbors of v, i.e. the subset of ver-

tices that share an edge with v. The degree δv of the ver-

tex v is the sum of the weights of the edges connected to v:

δv =
∑

u∈V |(u,v)∈E wuv .

Let f : V → R be a real-valued function that assigns a real

value f(u) to each vertex u ∈ V . We denote by H(V ) the

Hilbert space of such functions. Graphs are assumed to be

simple, connected and undirected, implying that the function

w is symmetric.

The Eikonal equation transposed on graph makes use of

the Partial difference Equations (PdE) framework [6] and can

be written as:
{

‖(∇−
wf)(u)‖p = P (u) ∀u ∈ V

f(u) = φ(u) ∀u ∈ V0
(1)

where P is a positive function, φ is an initialization function

(see [5] and references therein for details), and V0 is the set of

initial seeds. Solving this equation for a graph gives for each

vertex v ∈ V \V0 the geodesic distance U(v) to the closest

seed vertex u ∈ V0.

The term ‖(∇−
wf)(u)‖p denotes the Lp norm of the weighted

morphological gradient at a vertex u and is defined as:

‖(∇−
wf)(u)‖p =





∑

v|(u,v)∈V

wp/2
uv |(Df(u))−|p





1/p

with (Df(u))− = −min(f(u)− f(v), 0).

Given a set of seed vertices V0, the solution of Eq.1 pro-

cessed by the adaptation of the Fast Marching algorithm [7]

on graphs leads to a graph-based clustering of the datas.

2. CONTRIBUTIONS

Our contributions are twofold : First, we extend our previous

work [8] by considering the adaptation of the Eikonal-based

Region Growing Clustering (ERGC) algorithm on graphs.

Given a set of seeds, ERGC processes to a label diffusion via

a dynamic potential function. Second, we propose a greedy

algorithm that adds iteratively labeled seeds at specific lo-

cations. The only parameter of this algorithm is the desired



Fig. 1. Top: Comparison of the behaviors of the diffusion

on a synthetic image. Geodesic distances map with a heat

color map for the gradient-based potential function (middle),

and the proposed one (right). The initial seed is depicted on

the left figure by the white dot. Bottom: Segmentation result

from a set of seeds (depicted in black) with the gradient-based

potential function (left) and the proposed one (right).

number of clusters. Let Fv ∈ R
n be the data attached to v,

and F̂Ci
the mean feature vector of a subset Ci of V .

Proposed potential function. Classical potential functions

are based on the gradient of the graph computed at each ver-

tex [5]. In case of graph-based image segmentation, the re-

sults using this static potential function heavily depend on the

location of the seeds. Fig. 1 (top middle) shows the geodesic

distances computed with such a potential function: the front

propagates on the white square before having recovered all

the black area. Then, a good segmentation of the square based

on these geodesic distances cannot be obtained. Such a bad

result is shown in Fig. 1 (bottom left) that presents important

leaks. In this work, we propose a dynamic potential func-

tion that favors the grouping of perceptually and adjacent ver-

tices. Given a vertex v belonging to the evolving front, its

local potential is computed as the distance between its feature

Fv and the mean feature vector F̂Cj
of the adjoining cluster

Cj : P (v, Cj) = ‖Fv − F̂Cj
‖2. Each time a vertex vi is in-

corporated to a cluster Cj , its mean feature F̂Cj
is updated:

{

F̂Cj
←

F̂Cj
×Card(Cj)+Fv

Card(Cj)+1

Card(Cj) ← Card(Cj) + 1

This potential function is clearly dynamic since it relies on

continuously updating of the cluster features. It also favors

the diffusion of the front to vertices whose features are close

to the mean features of the expanding cluster. Fig. 1 (top

right) shows the geodesic distances computed with this poten-

tial function: the front recovers entirely the black area before

propagating through the white square. Applied to image, it

favors the grouping of perceptually and adjacent pixels, while

preserving much more the contours, see Fig. 1 (bottom right).

Algorithm 1: Automatic seeds positioning

Data: A Graph G, n the number of desired clusters.

V0 ← argminv∈V (δv/Nv);
Solve Eq. 1 with V0 as the seed vertices set;

Save geodesic distances U0;

it = 1;

while it < n do
V0 ← V0 ∪ argmaxv∈V (Uit(v));
Solve Eq. 1 with V0;

it← it+ 1;

Save geodesic distances Uit;

Automatic seeds positioning. The set V0 of initial seeds

vertices is a critical aspect for many front propagation algo-

rithms. As shown in Fig. 1, a not carefully well-chose lo-

cation for seeds leads to important leaks and results in a bad

clusterings. Together with our dynamic potential function, we

propose a simple scheme (similar to the Farthest point seed-

ing method [9]) that iteratively adds new seeds at smart loca-

tions. First, one proceeds to a complete diffusion with an ini-

tial first seed located at the vertex of minimal normalized de-

gree V0 ← argminv∈V (δv/Nv). From the resulting geodesic

distances map, one places a new seed at the location of the

highest geodesic distance, and proceeds to a new diffusion.

One iterates until a predefined stopping criterion is reached.

In our experiments described in the sequel, the stopping cri-

terion is simply be the final number of desired clusters. This

procedure is summarized in Algorithm 1.

Fig. 2 illustrates the process: the first seed vertex (de-

picted in red) is located in the flat area of the sky, and the

corresponding geodesic distance map exhibit high values in

the non-sky areas. Two seeds (depicted in green and blue) are

then successively added to the locations of highest geodesic

distance (shown with a heat color map).

3. IMAGE OVERSEGMENTATION

This paper focuses on the image oversegmentation applica-

tion of our proposal. In the following color images are consid-

ered in the Lab colorspace; so for a given vertex v correspond-

ing to a pixel p, Fv reduces to [l, a, b]
T

. The proposed over-

segmentation scheme makes use of both contributions of the

paper. Although the iterative process described above could

be applied directly on the whole image domain via a 4-grid

graph, it is very time consuming in practice since the dimen-

sion is large (i.e. the number of pixels). We then proceed

to an initial oversegmentation of the image domain that re-

duces drasticaly the dimension of the graph. This initial over-

segmentation is performed by considering a small number of

seeds (1% of the number of pixels) placed on a regular grid,

and the L2 norm is used to weight the edges. The iterative

algorithm proposed above is then applied on the underlying

Region Adjacency Graph (RAG) of the initial oversegmenta-



Fig. 2. Illustration of our automatic seeds positioning scheme on graph. First column: the image and the initial dense overseg-

mentation. Then from left to right, 3 seeds are added iteratively on the RAG (depicted in red, green and blue respectively), and

the corresponding geodesic distance map are shown with a heat color map.

tion that contains far much less vertices than the number of

pixels of the image. The feature vector Fv attached to a ver-

tex v corresponding to a region Ci is the mean color (in the

Lab colorspace) of this region. As for the 4-grid graph, the

L2 norm is used to weight the edges of the RAG. Throughout

the experiments, the stopping criterion of the iterative pro-

cess is simply the desired number of final clusters in order to

provide fair comparisons with other oversegmentation algo-

rithms with equal number of clusters.

We compare our algorithm to state-of-the-art methods Simple

Linear Iterative Clustering [10] (SLIC), Entropy Rate Super-

pixels [11] (ERS), and SEEDS [12]. Some oversegmentation

results obtained with these algorithms are shown in Fig. 4.

The Berkeley dataset [13] is used as a benchmark and con-

tains 500 images of size 481× 321 (or 321× 481) and about

2700 ground truth manual segmentations. All the experiments

have been computed from scratch on these images with the

code of state-of-the-art methods available on their respective

authors webpage. Our method has an approximate complex-

ity of O(n log n) with an appropriate heap to sort the pix-

els/vertices according to their distances. Despite this theorical

complexity, the proposed algorithm is very fast in practice,

and nearly linear in time. It oversegments an image of this

dataset in less than half a second. This processing times are

comparable to SEEDS and SLIC algorithms, ERS being quite

slower (abour 2s per image). Figure 3 plots comparative re-

sults on 4 metrics, namely Boundary Recall, (Corrected) Un-

dersegmentation Error, Achievable Segmentation Accuracy,

and the additional proposed metric Contour Coverage.

• Boundary Recall measures the fraction of segmented edges

that is also present in the ground truth segmentation within a

distances threshold t. t has been fixed to 2 (as in [10, 12, 11])

to deal with sometimes approximate manual segmentations.

• (Corrected) Undersegmentation Error proposed in [14] tries

to overcome and unify the different definitions [10, 11] of Un-

Fig. 3. Comparison of state-of-the-art methods with ours on

several metrics: Boudary Recall, Undersegmentation Error,

Achievable Segmentation Accuracy, and Contour Coverage.

dersegmentation Error. It measures the fraction of clusters

bleeding into another cluster according to the ground truth:

UE =

∑

k |Ck − gmax(Ck)|
∑

i |gi|

where gmax(Ck) indicates the matching ground truth segment

gj of Ck with the largest overlap, and | · | denotes the size (in

pixels) of an element.



Fig. 4. Visual comparison between algorithms with 100 clusters per oversegmentation. From top to bottom: SLIC [10], ERS

[11], SEEDS [12], and our algorithm. Important leaks for SLIC, ERS and SEEDS can be seen on the muzzle of the bear

(left column), on the horse’s mane or on the belly foal (middle column), and on the bear cubs (right column). High Contour

Coverage of SEEDS is also highlighted (third row).

• Achievable Segmentation Accuracy (ASA) is a segmenta-

tion upperbound measure that gives the best segmentation ac-

curacy that can be obtained by using the clusters as units:

ASA =

∑

k maxi |Ck ∩ gi|
∑

i gi

•We introduce the Contour Coverage metric (CC) in addition

to traditional ones in order to measure the fraction of contour

pixels present in the segmentation according to the whole size

of the image. Low Contour Coverage values reflect high com-

pacity of the clusters of an oversegmentation.

As shown in Fig. 3, over 200 clusters our algorithm out-

performs state-of-the-art algorithms on UE and ASA metrics,

and is competitive with the best algorithm (i.e. SEEDS) on

the BR metric. This last result has to be appreciated under

the light of Contour Coverage measures, for which SEEDS

presents the worst results. The third row of Fig. 4 illustrates

such high Contour Coverage values of SEEDS results.

4. CONCLUSION

In this paper we have presented a new dynamic potential func-

tion for the Eikonal equation on graphs. A simple iterative

algorithm was also proposed to deal with the critical step of

seeds placement. These two contributions applied to image

oversegmentation leads to results comparable to those obtain

with dedicated state-of-the-art methods. Further works will

investigate the usability of our approach on meshes overseg-

mentation, automatic databases and point clouds clustering.
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