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QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS ON

DELAUNAY TRIANGULATIONS

ARNAUD ROUSSELLE‡

Abstract. We consider simple random walks on Delaunay triangulations generated by point
processes in R

d. Under suitable assumptions on the point processes, we show that the random
walk satisfies an almost sure (or quenched) invariance principle. This invariance principle
holds for point processes which have clustering or repulsiveness properties including Poisson
point processes, Matérn cluster and Matérn hardcore processes. The method relies on the
decomposition of the process into a martingale part and a corrector which is proved to be
negligible at the diffusive scale.
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quenched invariance principle; isoperimetric inequalities.

AMS 2010 Subject Classification : Primary: 60K37, 60D05; secondary: 60G55; 05C81,
60F17.

1. Introduction

Let us first describe the model. Given an infinite locally finite subset ξ of Rd, the Voronoi
tessellation associated with ξ is the collection of the Voronoi cells:

Vorξ(x) := {x ∈ R
d : ‖x− x‖ ≤ ‖x− y‖, ∀y ∈ ξ}, x ∈ ξ.

The point x is called the nucleus or the seed of the cell. The Delaunay triangulation DT(ξ)
of ξ is the dual graph of its Voronoi tiling. It has ξ as vertex set and there is an edge between
x and y in DT(ξ) if Vorξ(x) and Vorξ(y) share a (d − 1)-dimensional face. Another useful
characterization of DT(ξ) is the following: a simplex ∆ is a cell of DT(ξ) iff its circumscribed
sphere has no point of ξ in its interior. Recall that this is a well defined triangulation when
ξ is in general position. In the sequel, we denote by N (resp. N0) the set of infinite locally
finite subsets of Rd (resp. the set of infinite locally finite subsets of Rd containing 0).

Given a realization ξ of a suitable point process with law P, we consider the variable speed
nearest-neighbor random walk (Xt)t≥0 on the Delaunay triangulation of ξ, that is the Markov
process with generator:

Lξf(x) :=
∑

y∈ξ

cξx,y (f(y)− f(x)) , x ∈ ξ, (1)
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2 A. ROUSSELLE

where cξx,y is the indicator function of ‘y ∼ x in DT(ξ)’. We denote by P ξ
x the law of the walk

starting from x ∈ ξ and by Eξ
x the corresponding expectation. We study for almost every

realization of the point process the behavior of the random walk at the diffusive scale and we
prove the following theorem.

Theorem 1. Assume that ξ is distributed according to a simple, stationary, isotropic point
process with law P a.s. in general position, satisfying assumptions (V), (SD), (Er) and
(PM) (see Subsection 1.1).

For P−a.e. ξ, for all x ∈ ξ, under P ξ
x , the rescaled process (Xε

t )t≥0 = (εXε−2t)t≥0 converges
in law as ε tends to 0 to a Brownian motion with covariance matrix σ2I where σ2 = σ2VSRW

is positive and does not depend on ξ.

Note that the assumptions of Theorem 1 are satisfied by Poisson point processes, Matérn
hardcore processes and Matérn cluster processes. The same result holds for the discrete-time
nearest-neighbor random walk (Xn)n∈N with diffusion coefficient σ2DTRW related with σ2VSRW
by the formula:

σ2VSRW = E0
[
degDT(ξ0)(0)

]
σ2DTRW,

where E0 denotes the expectation w.r.t. the Palm measure P0 associated with the (stationary)
point process with law P.

The main idea for proving such results is to show that the random walk behaves like a
martingale up to a correction which is negligible at the diffusive scale. Actually, well-known
arguments (see e.g. [CFP13, §3.3.1], [BP07, p. 1340-1341] or [BB07, §6.1 and §6.2]) show that
the last claim follows from Theorem 2.

Theorem 2. Under the assumptions of Theorem 1, there exists a so-called corrector χ :
N0 × R

d 7−→ R
d such that for:

(1) ϕ(ξ0, x) := x− χ(ξ0, x) is harmonic at 0 for P0 − a.e. ξ0, i.e.:
∑

x∈ξ0

cξ
0

0,x‖ϕ(ξ0, x)‖ <∞ and Lξ0ϕ(ξ0, 0) = 0 for P0 − a.e. ξ0;

(2) χ is a.s. sublinear:

max
x∈ξ0∩[−n,n]d

∥∥χ
(
ξ0, x

)∥∥

n

P0−a.s.−−−−−→
n→∞

0.

The arguments to deduce Theorem 1 from Theorem 2 are rather standard. We have chosen
not to do develop the arguments which can be found in the references cited above and we
only indicate the main lines of the proof in Section 10.2. Various methods to prove quenched
invariance principle for random walks among random conductances on Z

d or related models
were developed during the last ten years (see [SS04,BB07,BP07,MP07,BZ08,Mat08,Bis11,
GZ12, ZZ13, BD14]). Theorem 2 is proved by adapting the approach developed in [BP07].
Actually, we first prove the sublinearity of the corrector restricted to a suitable subgraph of
the Delaunay triangulation and extend it by harmonicity. Let us note that this method was
also successfully used in the context of random walks on complete graphs generated by point
processes with jump probability which is a decreasing function of the distance between points
in [CFP13].

Recurrence and transience results for random walks on Delaunay triangulations generated
by point processes were obtained in [Rou13] and an annealed invariance principle was proved
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in [Rou14]. In [FGG12], the existence of an harmonic corrector was recently established
by a different (constructive) method. Nevertheless, the authors of this paper obtained the
sublinearity of the corrector only in dimension 2. In order to extend the quenched invariance
principle in higher dimensions, they suggested to prove full heat-kernel bounds similar to the
one obtained by Barlow in [Bar04] in the setting of random walks on supercritical percolations
clusters. This approach would require much more sophisticated arguments and a better
control of the regularity of the full graph than the one used in the present paper. It is worth
noting that, as in [Rou13,Rou14], the arguments given in the sequel can be used to obtain
quenched invariance principles for random walks on other graphs constructed according to
the geometry of a realization of a point process.

1.1. Conditions on the point process. In this section, we list the assumptions on the
point process needed to obtain the quenched invariance principle.

We assume that ξ is distributed according to a simple and stationary point process with
law P. In the sequel, we will denote by E the expectation with respect to P. We suppose that
P is isotropic and almost surely in general position (see [Zes08]): there are no d + 1 points
(resp. d + 2 points) in a (d − 1)-dimensional affine subspace (resp. in a sphere). We also
assume that the point process satisfies:

(V) there exists a positive constant c1 such that for L large enough:

P
[
#
(
[0, L]d ∩ ξ

)
= 0
]
≤ e−c1Ld

.

In order to prove the sublinearity of the corrector, we need to restrict the study to a
subgraph of the Delaunay triangulation of ξ which has good regularity properties. To this
end, we will define a notion of ‘good boxes’ that in particular allows us to bound the maximal
degree of vertices in an infinite subgraph of the Delaunay triangulation of ξ. Precise definitions
and assumptions are given below.

1.1.1. Good boxes, good points and the stochastic domination assumption. For s ∈ N
∗, let us

divide R
d into boxes of side K := ⌈3

√
d⌉s:

Bz = BK
z := Kz+

[
− K

2
,
K

2

]d
, z ∈ Z

d.

Each box Bz is then subdivided into smaller sub-boxes bzi , i = 1, . . . , ⌈3
√
d⌉d of side s.

A box Bz, z ∈ Z
d, is called (α-)nice if each sub-box bzi of side s in Bz satisfies 1 ≤

#(ξ ∩ bzi ) ≤ αsd. A box Bz is then said to be (α-)good if Bz′ is α-nice for each z′ ∈ Z
d with

‖z′ − z‖∞ ≤ 1. Writing psitec (Zd) for the critical probability for site percolation in Z
d, the

stochastic domination hypothesis is the following.

(SD) For any psitec (Zd) < p < 1, if α and s0 are well chosen, for any s ≥ s0 the process
of good boxes X := {Xz = 1Bz is good, z ∈ Z

d} dominates an independent site

percolation process Y := {Yz, z ∈ Z
d} on Z

d with parameter p.

If (SD) is satisfied, we can find a coupling PK,p of the processes X and Y such that Bz is
good when Yz = 1. With a slight abuse of notation, we will omit the superscript and denote

by P the probability measure PK,p on N̂ := N × {0, 1}Zd
whose marginal distributions are

respectively the law of the point process ξ and the law of the independent site percolation
process Y with parameter p being fixed large enough. The precise value of p is not stated
explicitely but we assume that it is large enough to ensure that all the percolation results we

need are satisfied. A generic element of N̂ is denoted by ξ̂ = (ξ, (yz)z∈Zd).
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Let us denote by G(L) (resp. G∞) the largest (‖ · ‖1-)connected component of Y contained

in [−L,L]d∩Zd (resp. the a.s. unique infinite component of Y). We then define G(L) = G(L)(ξ̂)

(resp. G∞ = G∞(ξ̂)) as the set of points of ξ whose Voronoi cell intersects a K−box with
index in G(L) (resp. G∞). The points of G∞ are called good points. Let us note that G(L) and
G∞ are connected in the Delaunay triangulation of ξ.

We claim that good points have their degrees uniformly bounded. More precisely:

Lemma 3. There exists D = D(d,K, α) such that for every x ∈ ξ with Voronoi cell inter-
secting an α-good box:

degDT(ξ)(x) ≤ D.

Remark 4. As it appears in the following proof, D is also an upper bound for the maximal
number of Voronoi cells which intersect a good box. It will be used to bound these two quantities
throughout the paper.

Proof. Let x ∈ ξ be such that its Voronoi cell intersects an α-good box Bz. By definition,
each box B′

z with ‖z′ − z‖∞ ≤ 1 is α-nice. Since any sub-box of side s that belongs to a nice
box contains at least one point of ξ, the points in nice boxes are whithin a distance at most√
ds from the nucleus of their Voronoi cell. In particular, x is whithin a distance at most√
ds from Bz. Similarly, the nuclei of the Voronoi cells which share a face with Vorξ(x) are in

Bz + B2(0, 3
√
ds) ⊂ Bz :=

⋃
z′:‖z′−z‖∞≤1Bz′ . Hence, degDT(ξ)(x) is generously bounded by

#
(
ξ ∩Bz

)
≤ D := α(3K)d. �

1.1.2. The ergodicity assumption. As in [CFP13], we have an ergodicity assumption but we
make more explicit the use of the coupling. We will use it to adapt the method developed
in [BB07, §4] for proving the sublinearity of the corrector along coordinate directions.

(Er) For each (K, p) such that (SD) holds and each e, P = PK,e is ergodic with respect
to the transformation:

τ = τK,e : (ξ, (yz)z∈Zd) −→ (τKeξ, (yz+e)z∈Zd).

Note that τ is invertible and P is invariant with respect to τ due to the stationarity of the
point process.

1.1.3. Polynomial moments. We also make the following assumption:

(PM) the number of points in a unit cube admits a polynomial moment of order 2 under
P and degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ admit respectively a moment of order 2
and 4 under the Palm distribution P0 associated with the point process.

1.1.4. The case of point processes with a finite range of dependence. We verify that, when
the point process has a finite range of dependence, assumption (Er) is always satisfied, and
assumptions (SD) and (PM) are implied by assumptions (V), (D), (V’) and (EM) which
are described below.

Let us check that (Er) is satisfied if the point process has a finite range of dependence. Let
A be a measurable set such that τA = A. Fix ε > 0 and B with P(A∆B) ≤ ε which depends
only on ξ restricted to a compact subset of Rd and on finitely many yzs. It is thus possible
to find n such that B and τnB are independent. Then, P[B ∩ τnB] = P[B]2 by invariance of
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P w.r.t. τ . Hence,
∣∣P[A]− P[A]2

∣∣ ≤
∣∣P[A]− P[B ∩ τnB]

∣∣+
∣∣P[B ∩ τnB]− P[A]2

∣∣
≤ P[A∆(B ∩ τnB)] +

∣∣P[B]2 − P[A]2
∣∣

≤ P[(A∆B) ∪ (A∆τnB)] +
(
P[B] + P[A]

)∣∣P[B]− P[A]
∣∣

≤ P[A∆B] + P[A∆τnB] + 2ε

≤ P[τnA∆τnB] + 3ε

= P[A∆B] + 3ε ≤ 4ε

Since ε is arbitrary, this implies that P[A] is 0 or 1.

Since deciding if a box is good depends only on the behavior of the point process ξ in a
neighborhood of the box, the process of good boxes X is a Bernoulli process on Z

d with a
finite range of dependence when the point process has itself a finite range of dependence. In
this case, if P[Xz = 1] is as close to 1 as we wish for s and α large enough, [LSS97, Theorem
0.0] ensures that (SD) holds. One can easily bound P[Xz = 1] from below when the point
process satisfies (V) and

(D) there exist positive constants c2, c3 such that for L large enough:

P
[
#
(
[0, L]d ∩ ξ

)
≥ c2L

d
]
≤ e−c3Ld

.

In Lemma 31, we prove that degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ admit exponential mo-
ments when the point process has a finite range of dependence and satisfies:

(V’) there exists a positive constant c4 such that for L large enough:

P0

[
#
(
ξ0 ∩ CL

)
= 0
]
≤ e−c4Ld

, ∀CL cube of side L,

and

(EM) there exist a positive constant c5 and a positive function f(ρ) which goes to 0 with ρ
such that for L large enough:

E0
[
eρ#(ξ0∩[−L,L]d)

]
≤ c5e

f(ρ)Ld

.

Let us finally note that these assumptions are in particular satisfied by homogeneous Pois-
son point processes, Matérn cluster processes and type I or II Matérn hardcore processes.
Indeed, these point processes have finite range of dependence and it is quite classical to check
assumptions (V), (D), (V’) and (EM) for these processes (see [Rou14, Appendix]).

1.2. Outline of the paper. As announced at the beginning of the introduction, the crux
is to prove Theorem 2 and we follow the approach of [BP07]. The main steps of the proof
are stated explicitly in Theorem 2.4 of that paper. We prove the existence of the corrector in
Section 2. Next, we verify that the corrector grows at most polynomially in Section 3 and at
most linearly in each coordinate direction in Section 4. The sublinearity on average is treated
in Section 5 while diffusive bounds for a related random walk are proved in Sections 7 and 8.
In Section 9, we prove the a.s. sublinearity of the corrector in the set of ‘good points’. The
proofs of Theorems 1 and 2 are finally completed in Section 10.
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2. Construction of the corrector and harmonic deformation

Let us define the measure µ on N0 × R
d by:∫

udµ := E0
[ ∑

x∈ξ0

cξ
0

0,xu(ξ
0, x)

]
,

where cξ
0

0,x = 10∼x in DT(ξ0). This measure has total mass E0[degDT(ξ0)(0)] which is finite

thanks to assumption (PM). We denote by (·, ·)µ the scalar product in L2(µ).

2.1. Weyl decomposition of L2(µ). As in [MP07], [BB07] or [CFP13], we work with the or-
thogonal decomposition of L2(µ) in the subspaces of square integrable potential and solenoidal
fields. This decomposition is quite standard (see e.g. [LP14, Chap. 9]) and generally called
Weyl decomposition. Let us denote by (τx)x∈Rd the group of translations in R

d which acts
naturally on N0 as follows: τxξ

0 =
∑

y∈ξ0 δy−x.

Definition 5. For ψ : N0 → R, the gradient field ∇ψ : N0 × R
d −→ R is defined for x ∈ ξ0

by:
∇ψ(ξ0, x) := ψ(τxξ

0)− ψ(ξ0)

and by 0 if x 6∈ ξ0.

Note that gradients of measurable bounded functions on N0 are elements of L2(µ) thanks
to assumption (PM).

Definition 6. The space L2
pot(µ) of potential fields is defined as the closure of the subspace

of gradients of measurable bounded functions on N0. Its orthogonal complement is the set of
solenoidal (or divergence-free) fields and is denoted by L2

sol(µ).

Let us recall some additional definitions:

Definition 7. A function u : N0 × R
d −→ R is called:

(1) antisymmetric if

u(ξ0, x) = −u(τxξ0,−x), ∀ξ0 ∈ N0, ∀x ∈ ξ0;

(2) shift-covariant if

u(ξ0, x) = u(ξ0, y) + u(τyξ
0, x− y), ∀ξ0 ∈ N0, ∀x, y ∈ ξ0;

(3) curl-free if it satisfies the following co-cycle relation: for any ξ0 ∈ N0, any n ∈ N
∗,

and any collection of points x0, . . . , xn ∈ ξ0 with x0 = xn, one has

n−1∑

i=1

u(τxi
ξ0, xi+1 − xi) = 0. (2)

A function of L2(µ) is called antisymmetric (resp. shift-covariant, curl-free) if it is antisym-
metric (resp. shift-covariant, curl-free) for P0-a.a. ξ

0. In each case, it admits a representative
wich satisfies the corresponding property everywhere. By taking x = y = 0 in the definition,
one can see that any shift-covariant function u must satisfy u(ξ0, 0) = 0 for any ξ0 ∈ N0.
Next proposition lists simple but useful links between definitions above:

Proposition 8. Let u ∈ L2(µ).

(1) If u ∈ L2
pot(µ), then it is curl-free.
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(2) If u is curl-free, then it is also antisymmetric and shift-covariant.

Proof.

(1) Gradients fields are clearly curl-free. The general case is obtained by a standard
approximation argument.

(2) The case n = 2, x0 = x2 = 0 and x1 = x in (2) gives the antisymmetry of u. By (2)
with n = 3, x0 = x3 = 0, x1 = y and x2 = x, one has:

u(ξ0, y) + u(τyξ
0, x− y) + u(τxξ

0,−x) = 0.

The shift-covariance of u then follows from its antisymmetry.

�

We can now define the divergence of an integrable field and derive an integration by parts
formula.

Definition 9. The divergence of u ∈ L1(µ) is defined by:

div u(ξ0) :=
∑

x∈ξ0

cξ
0

0,xu(ξ
0, x), ξ0 ∈ N0.

Triangle inequality clearly implies that divergences of L1(µ) functions are in L1(P0). More-
over, if u ∈ L1(µ) is a positive function, we have the equality:

‖u‖L1(µ) = ‖ div u‖L1(P0). (3)

We derive the following integration by parts formula:

Lemma 10. Let ψ be a bounded measurable function on N0 and let u ∈ L2(µ) be an anti-
symmetric field. It holds that:

(u,∇ψ)µ = −2E0[ψ div u]. (4)

Proof. Observe that:

cξ
0

0,x = cτxξ
0

0,−x.

Due to the antisymmetry of u, one has:

(u,∇ψ)µ = E0
[∑

x∈ξ0

cξ
0

0,xu(ξ
0, x)ψ(τxξ

0)

]
− E0

[∑

x∈ξ0

cξ
0

0,xu(ξ
0, x)ψ(ξ0)

]

= −E0
[∑

x∈ξ0

cτxξ
0

0,−xu(τxξ
0,−x)ψ(τxξ0)

]
− E0[ψ div u].

By Neveu exchange formula (see [SW08, Theorem 3.4.5] in the special case where X = Y ),
one has for any integrable function f on N0 × R

d:
∫

N0

∑

x∈ξ0

f(τxξ
0, x)P0(dξ

0) =

∫

N0

∑

x∈ξ0

f(ξ0,−x)P0(dξ
0).

The conclusion is then obtained by applying the identity above with:

f(ξ0, x) := cξ
0

0,−xu(ξ
0,−x)ψ(ξ0).

�

This lemma implies the immediate following corollary.
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Corollary 11. An antisymmetric field u ∈ L2(µ) is solenoidal if and only if div u(ξ0) = 0
for P0-a.e. ξ

0.

2.2. Construction of the corrector. In [FGG12], the authors relied on an Harness-type
process to obtain the existence harmonic deformations of Delaunay triangulations which corre-
sponds to the existence of the corrector. Here, we recall how the decomposition of L2(µ) allows
us to derive the existence of the corrector by following the construction of [MP07,CFP13].

For i = 1, . . . , d, ξ0 ∈ N0 and x ∈ R
d, set ui(ξ

0, x) := xi the i
th coordinate of x. Note that

ui is clearly antisymmetric in the sense of Definition 7 and that ui ∈ L2(µ). Actually, by the
Cauchy-Schwarz inequality and assumption (PM), one obtains:
∫

|ui|2dµ = E0
[∑

x∈ξ0

cξ
0

0,x|xi|2
]
≤ E0

[(
max

x∼0 in DT(ξ0)
‖x‖
)2

degDT(ξ0)(0)
]

≤ E0
[(

max
x∼0 in DT(ξ0)

‖x‖
)4] 1

2E0
[(

degDT(ξ0)(0)
)2] 1

2
<∞.

Consider now the orthogonal decomposition of the form ui = χi + ϕi with χi ∈ L2
pot(µ)

and ϕi ∈ L2
sol(µ). Since χi ∈ L2

pot(µ), it is antisymmetric and ϕi also (as a difference of
antisymmetric functions). Hence, it follows from Corollary 11 that ϕi is harmonic at 0.

The corrector field is the vector-valued function on N0 × R
d defined by χ = (χ1, . . . , χd).

It admits a shift-covariant representative and its norm ‖χ‖ is in L2(µ). We denote by ϕ =
(ϕ1, . . . , ϕd) the harmonic function (ξ0, x) −→ x− χ(ξ0, x). From the harmonicity of ϕ(ξ0, ·)
at 0 for P0-a.a. ξ

0 and [CFP13, Lemma B.2], one deduces that, for P-a.a. ξ, for any x ∈ ξ:
∑

y∈ξ

cξx,y‖ϕ(τxξ, y − x)‖ <∞ and
∑

y∈ξ

cξx,yϕ(τxξ, y − x) = 0. (5)

Let us define

M ξ
n := ϕ(τX0ξ,Xn −X0) =

n∑

i=1

ϕ(τXi
ξ,Xi+1 −Xi).

It follows from (5) that (M ξ
n)n∈N is a martingale under P ξ

x .

3. Polynomial growth

Let us define:
Rn = Rn(ξ) := max

x, y ∈ ξ

Vorξ(x) ∩ [−n, n]d 6= ∅
Vorξ(y) ∩ [−n, n]d 6= ∅

∥∥χ(τxξ, y − x)
∥∥. (6)

Proposition 12. For every β > d+ 1, one has:

Rn

nβ
P−a.s.−−−−−→
n→∞

0.

Proof. For n fixed, let us cover [−2n, 2n]d with disjoint boxes of side log n and denote by
An the event ‘each of these boxes contains at least one point of ξ’. Note that, thanks to
assumption (V), P[Ac

n] = O(n−2). Let d+ 1 < β′ < β. Since

P[Rn ≥ nβ
′
] ≤ P[Rn1An ≥ nβ

′
] + P[Ac

n],

we only need to show that
∑

n P[Rn1An ≥ nβ
′
] < ∞. The result then follows using the

Borel-Cantelli lemma.
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Let x,y ∈ ξ with Vorξ(x) ∩ [−n, n]d 6= ∅ and Vorξ(y) ∩ [−n, n]d 6= ∅ be such that Rn =
‖χ(τxξ,y − x)‖. Consider the simple Delaunay-path (x0, . . . , xm) from x0 = x to xm = y
obtained by connecting the nuclei of successive Voronoi cells which intersect the line segment
[x,y]. Observe that, on An, any point of [−2n, 2n]d is within a distance at most

√
d log n

from the nucleus of its Voronoi cell. In particular, (x0, . . . , xm) is contained in [−2n, 2n]d.
Recall that the corrector χ is shift-covariant. Hence, for i = 0, . . . ,m− 1, one has:

χ(τxi
ξ, xi+1 − xi) = χ(τxξ, xi+1 − x)− χ(τxξ, xi − x),

and using that χ(τxξ, 0) = 0:

χ(τxξ,y − x) =

m−1∑

i=1

χ(τxi
ξ, xi+1 − xi).

We deduce that on An:

Rn ≤
m−1∑

i=1

‖χ(τxi
ξ, xi+1 − xi)‖

≤
∑

x∈ξ∩[−2n,2n]d

∑

y∈ξ

cξx,y‖χ(τxξ, y − x)‖

=
∑

x∈ξ∩[−2n,2n]d

div ‖χ‖(τxξ).

Together with Markov inequality and Campbell formula, the inequality above leads to:

P[Rn1An ≥ nβ
′
] ≤ E [Rn1An ]

nβ′

≤ n−β′

∫

N

∑

x∈ξ∩[−2n,2n]d

div ‖χ‖(τxξ)P(dξ)

≤ cnd−β′∥∥ div ‖χ‖
∥∥
L1(P0)

Since β′ > d+ 1 and div ‖χ‖ ∈ L2(P0), this completes the proof. �

4. Sublinearity along coordinate directions in G∞(ξ̂)

In this section, we adapt the arguments of [CFP13, §7.2] which consist in an adaptation of
the ‘lattice method’ developed in [BB07,BP07].

Given a unit vector e in the direction of one of the coordinate axes of Rd and ξ̂ ∈ N̂ , let
us define:

n0(ξ̂) = ne0(ξ̂) := 0 and ni+1(ξ̂) = nei+1(ξ̂) := min{j > ni(ξ̂) : je ∈ G∞}.
Recall the definition of τ from assumption (Er) and consider the shift τ∗ induced on

N ∗ := {ξ̂ ∈ N̂ : 0 ∈ G∞} from τ , that is τ∗ : ξ̂ −→ τn1(ξ̂)ξ̂. Thanks to assumption
(Er) and the fact that P [0 ∈ G∞] > 0, standard arguments (see e.g. [CFP13, Lemma 7.3]
or [BB07, Theorem 3.2]) lead to:

Lemma 13. The probability measure P [·|0 ∈ G∞] is stationary and ergodic w.r.t. τ∗.

Next, for ξ̂ ∈ N ∗, we write wi for the point of ξ whose Voronoi cell contains the center of
the box B

ni(ξ̂)Ke
.
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Lemma 14. It holds that:

E
[
‖χ(τw0ξ, w1 − w0)‖

∣∣0 ∈ G∞

]
<∞ and E

[
χ(τw0ξ, w1 − w0)

∣∣0 ∈ G∞

]
= 0.

Proof. For ξ̂ ∈ N ∗, let d(ξ̂) ≥ n1(ξ̂) denote the chemical distance between 0 and n1(ξ̂)e in the

infinite cluster G∞. On the event {d(ξ̂) = j}, there exists a path z0 = 0, z1, . . . , zj = n1(ξ̂)e
in G∞. For i = 0, . . . , j − 1, thanks to the definition of the good boxes and assumption
(SD), the nuclei of the Voronoi cells intersecting the line segment [Kzi,Kzi+1] are within

a distance at most
√
ds from this line segment. By connecting the successive nuclei of the

Voronoi cells intersecting the broken line [Kz0,Kz1, . . . ,Kzj ], we obtain a simple path w0 =

x0, x1, . . . , xm = w1 between w0 and w1 in G∞(ξ̂) which is contained in [−K(j+ 1
2),K(j+ 1

2)]
d

and has length m ≤ (j + 1)D. Thanks to the shift-covariance of χ, as in the proof of
Proposition 12, one obtains:

‖χ(τw0ξ, w1 − w0)‖ ≤
m−1∑

i=1

‖χ(τxi
ξ, xi+1 − xi)‖

≤
∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

∑

y ∼
DT(ξ)

x

‖χ(τxξ, y − x)‖.

Together with the Cauchy-Schwarz inequality, this leads to:

E [‖χ(τw0ξ, w1 − w0)‖
∣∣0 ∈ G∞]

=

∞∑

j=1

E
[
‖χ(τw0ξ, w1 − w0)‖1d(ξ̂)=j

∣∣0 ∈ G∞

]

≤
∞∑

j=1

E
[ ∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

∑

y ∼
DT(ξ)

x

‖χ(τxξ, y − x)‖1
d(ξ̂)=j

∣∣∣0 ∈ G∞

]

≤
∞∑

j=1

{
E
[ ∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

∑

y ∼
DT(ξ)

x

‖χ(τxξ, y − x)‖2
∣∣∣0 ∈ G∞

] 1
2

× E
[( ∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

degDT(ξ)(x)

)
1
d(ξ̂)=j

∣∣∣0 ∈ G∞

] 1
2
}

≤ 1

P
[
0 ∈ G∞

] 3
4

∞∑

j=1

{
E
[ ∑

x ∈ ξ :
‖x‖∞ ≤ K(j + 1

2
)

div ‖χ‖2(τxξ)
] 1

2

× E
[( ∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

degDT(ξ)(x)

)2] 1
4

P
[
d(ξ̂) = j

∣∣0 ∈ G∞

] 1
4

}
. (7)
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It follows from Campbell formula and formula (3) that

E




∑

x∈ξ:‖x‖∞≤K(j+ 1
2
)

div ‖χ‖2(τxξ)


 ≤ cjd

∥∥ div ‖χ‖2
∥∥
L1(P0)

= cjd
∥∥‖χ‖

∥∥2
L2(µ)

.

Since points of G∞(ξ̂) have degrees bounded by D (see Lemma 3) and #(ξ ∩ [0, 1]d) admits a
moment of order 2, one has:

E
[( ∑

x ∈ G∞(ξ̂) :
‖x‖∞ ≤ K(j + 1

2
)

degDT(ξ)(x)

)2]
≤ D2E

[
#
(
ξ ∩

[
−K

(
j +

1

2

)
,K
(
j +

1

2

)]d)2]
≤ cjd.

Thanks to [BB07, Lemma 4.4], we know that P
[
d(ξ̂) = j

∣∣0 ∈ G∞

]
has an exponential

decay. Hence, collecting bounds, we obtain that the sum in the r.h.s. of (7) is finite.
Since χ ∈ L2

pot(µ), it is the L
2-limit of gradients of bounded measurable functions (gn)n∈N

defined on N0. Let us define χn := ∇gn. By the same arguments as above, one obtains that:

E
[
‖χ(τw0ξ, w1 − w0)− χn(τw0ξ, w1 − w0)‖

∣∣0 ∈ G∞

]
≤ c‖χ− χn‖2L2(µ) −−−−→n→∞

0.

Note that, for all i, wi is a deterministic function of ξ̂ and that w1(ξ̂) = w0(τ∗ξ̂)+n1(ξ̂)Ke.
The conclusion follows since, due to the stationarity of P[·|0 ∈ G∞] with respect to τ∗ applied
to the function

(
gn ◦ τw0(·)

)
(·), E

[
χn(τw0ξ, w1 − w0)

∣∣0 ∈ G∞

]
= 0. �

Combining Lemmas 13 and 14, one obtains the sublinearity along the direction e in G∞(ξ̂).

Proposition 15. For P[·|0 ∈ G∞]− a.a. ξ̂:

lim
k→∞

χ(τw0ξ, wk − w0)

k
= 0,

and

lim
k→∞

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

χ(τx0ξ, wk − x0)

k
= 0.

Proof. Thanks to the shift-covariance of the corrector, one has:

χ(τw0ξ, wk − w0)

k
=

1

k

k−1∑

j=0

(
χ(τw0ξ, wj+1 − w0)− χ(τw0ξ, wj − w0)

)

=
1

k

k−1∑

j=0

χ(τwj
ξ, wj+1 − wj). (8)

Observe that wj(ξ̂) = w0(τ
j
∗ ξ̂)+nj(ξ̂)Ke, wj+1(ξ̂) = w1(τ

j
∗ ξ̂)+n1(τ

j
∗ ξ̂)Ke and recall that, by

Lemma 13, P[·|0 ∈ G∞] is ergodic with respect to τ∗. Thanks to Birkhoff’s theorem, the last
expression in (8) converges to E [χ(τw0ξ, w1 − w0)|0 ∈ G∞] which is 0 by Lemma 14.

The second part of the lemma then follows from equality :

χ(τx0ξ, wk − x0) = χ(τw0ξ, wk − w0) + χ(τx0ξ, w0 − x0)

which is due to the shift-covariance of the corrector. �
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5. Sublinearity on average in G∞(ξ̂)

We derive the sublinearity on average of the corrector in G∞(ξ̂) from Lemma 15. Our
approach is close in spirit to [CFP13, §7.3].

Proposition 16. For every ε0 > 0, for P[·|0 ∈ G∞]− a.a. ξ̂ ∈ N̂ :

lim
L→∞

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

1

#ΛL

∑

x ∈ ξ :
∃z ∈ G∞ ∩ ΛL

Vorξ(x) ∩ BK
z

6= ∅

1‖χ(τx0ξ,x0−x)‖≥ε0L = 0, (9)

where ΛL := Z
d ∩ [−L,L]d.

Let us describe roughly the method which is an alternative to the one of [BB07, §5.2] and
relies on multiscale arguments. The first idea is to extend the directional sublinearity result
of Proposition 15 dimension by dimension. For ν ∈ {1, . . . , d}, we denote by Λν

L the set:

Λν
L :=

{
z = (z1, . . . , zd) ∈ Z

d : for 1 ≤ i ≤ ν, |zi| ≤ L, and for ν + 1 ≤ i ≤ d, zi = 0
}
.

Assume that we have a ‘good’ (sublinear) control of χ(τx0ξ, x− x0) for x0 whose Voronoi cell
intersects BK

0 and x whose Voronoi cell intersects BK
z for some z ∈ Λν

L ∩ G∞. Then, using
Proposition 15, one obtains a sublinear control on χ(τxξ, x

′ − x) for x whose Voronoi cell
intersects BK

z and x′ whose Voronoi cell intersects BK
z′

for any z′ ∈ Λν+1
L ∩G∞ which differs

from z only on the (ν + 1)-th coordinate. By the shift-covariance, this gives a control on
χ(τx0ξ, x

′ − x0). As noticed in [BB07], we can not deduce directly Proposition 16 from this
argument because G∞ covers only a fraction of order p = P [0 ∈ G∞] of the ν-dimensional
section Λν

L. The idea is then to work at a larger scale, say mK, m ≥ 1. The interest of using
the mK scale is that the process of good mK-boxes stochastically dominates a percolation
process with parameter as close to one as we wish for m large enough (recall assumption
(SD)). We follow this strategy at the mK scale and we show in Lemmas 18 and 19 that
it is possible to obtain a good control of the corrector for points in a large fraction of the
mK-boxes. Finally, we go back to the K scale by finding a K-box contained in a suitable
mK-box from which we can extend the control on the corrector.

In the rest of the section we add the superscripts K and mK to indicate the considered
scale.

Let us denote by e1, . . . , ed the vectors of the standard basis of Rd. In order to control the
behavior of the corrector at the scale mK, for fixed C,m, ε, let us define the mesurable sets:

AC,m,ε :=
{
ξ̂ ∈ N̂ : ∀i ∈ {1, . . . , d}, for e = ±ei, ∀N ∈ N

∗,

if j ∈ {1, . . . , N} is s.t. je ∈ G
mK
∞ (ξ̂) then:

∃x ∈ ξ with Vorξ(x) ∩BmK
je 6= ∅ s.t. ∀x0 ∈ ξ s.t. Vorξ(x0) ∩BmK

0 6= ∅
∥∥χ(τx0ξ, x− x0)

∥∥ ≤ C + εN
}
,

and

AC,m :=
{
ξ̂ ∈ N̂ : ∀x, x′ ∈ ξ with Vorξ(x) ∩BmK

0 6= ∅, Vorξ(x′) ∩BmK
0 6= ∅ one has:

∥∥χ(τxξ, x′ − x)
∥∥ ≤ C

}
.
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For ν ∈ {1, . . . , d}, n ∈ N
∗ and ξ̂ ∈ N̂ , let us also define:

ΓC,m,ε
n,ν :=

{
z ∈ Λν

n ∩G
mK
∞ : τmKzξ̂ ∈ AC,m ∩ AC,m,ε

}
,

and

ΓC,m,ε
n :=

d⋂

ν=1

{
z ∈ Λd

n : z(ν) ∈ ΓC,m,ε
n,ν

}
,

where z(ν) = (z1, . . . , zν , 0, . . . , 0).
We now prove three intermediary lemmas.

Lemma 17. For each δ, ε > 0, there are C and m such that for P − a.a. ξ̂, there exists

n0 = n0(ξ̂, C,m, ε, δ) <∞ such that:

#ΓC,m,ε
n

#Λd
n

≥ 1− δ, ∀n ≥ n0. (10)

Proof. Note that, thanks to the union bound, it suffices to show that for any ν ∈ {1, . . . , d}:
#ΓC,m,ε

n,ν

#Λν
n

≥ 1− δ

d

for n ≥ n0. Let δ
′ := δ/d.

Thanks to assumption (SD), one has for m large enough:

P
[
0 ∈ G

mK
∞

]
≥ 1− δ′

2
. (11)

Given δ′, ε and m such that the inequality above holds, using Proposition 15 at the scale mK,
we can find C large enough such that:

P
[
AC,m ∩ AC,m,ε

∣∣0 ∈ G
mK
∞

]
≥ 1− δ′

2
. (12)

Due to the ergodicity assumption (Er), (11) and (12), one has:

lim
n→∞

#ΓC,m,ε
n,ν

#Λν
n

= lim
n→∞

1

#Λν
n

∑

z∈Λν
n

1
τmKz

ξ̂∈(AC,m∩AC,m,ε∩{0∈GmK
∞ })

= P
[
AC,m ∩ AC,m,ε ∩ {0 ∈ G

mK
∞ }

]

= P
[
AC,m ∩ AC,m,ε

∣∣0 ∈ G
mK
∞

]
P
[
0 ∈ G

mK
∞

]

≥
(
1− δ′

2

)(
1− δ′

2

)
> 1− δ′.

This implies the result. �

Lemma 18. Given C,m, ε > 0 and ξ̂ ∈ N̂ , if x ∈ ξ is such that Vorξ(x)∩BmK
a 6= ∅ for some

a ∈ ΓC,m,ε
n , then there exists x1 ∈ ξ with Vorξ(x

1) ∩BmK
a(1) 6= ∅ satisfying:

∥∥χ(τxξ, x1 − x)
∥∥ ≤ (d− 1)

(
C + εn

)
. (13)

Proof. Since a ∈ ΓC,m,ε
n , a = a(d) ∈ ΓC,m,ε

n,d and a(d−1) ∈ ΓC,m,ε
n,d−1 ⊂ G

mK
∞ . In particular,

τmKaξ̂ ∈ AC,m,ε and we can write a(d−1) = a(d) + jed, |j| ≤ n. This implies that there exists

xd−1 ∈ ξ with Vorξ(x
d−1) ∩BmK

a(d−1) 6= ∅ satisfying:
∥∥χ(τxξ, xd−1 − x)

∥∥ ≤ C + εn.
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Let us write xd := x. One can construct in the same way and by induction xd, xd−1, . . . , x1

such that Vorξ(x
i−1) ∩BmK

a(i−1) 6= ∅ and satisfying:
∥∥χ(τxiξ, xi−1 − xi)

∥∥ ≤ C + εn, i = 2, . . . , d.

The shift-covariance of the corrector leads to:

χ(τxξ, x
1 − x) =

d∑

i=2

{
χ(τxξ, x

i−1 − x)− χ(τxξ, x
i − x)

}
=

d∑

i=2

χ(τxiξ, xi−1 − xi).

Hence,

∥∥χ(τxξ, x1 − x)
∥∥ ≤

d∑

i=2

∥∥χ(τxiξ, xi−1 − xi)
∥∥ ≤ (d− 1)

(
C + εn

)
.

�

Lemma 19. Let C,m, ε > 0, ξ̂ ∈ N̂ , x, y ∈ ξ with Vorξ(x)∩BmK
a 6= ∅ and Vorξ(y)∩BmK

b
6= ∅

for some a,b ∈ ΓC,m,ε
n . Then,

∥∥χ(τxξ, y − x)
∥∥ ≤ 2d

(
C + εn

)
.

Proof. Let x1, y1 ∈ ξ with Vorξ(x
1) ∩ BmK

a(1) 6= ∅ and Vorξ(y
1) ∩ BmK

b(1) 6= ∅ given by Lemma
18. Thanks to the shift-covariance and the antisymmetry of the corrector, one has:

χ(τxξ, y − x) = χ(τxξ, x
1 − x) + χ(τx1ξ, y1 − x1) + χ(τy1ξ, y − y1)

= χ(τxξ, x
1 − x) + χ(τx1ξ, y1 − x1)− χ(τyξ, y

1 − y).

Together with Lemma 18, this leads to:
∥∥χ(τxξ, y − x)

∥∥ ≤ 2(d− 1)(C + εn) +
∥∥χ(τx1ξ, y1 − x1)

∥∥. (14)

Since a(1) ∈ ΓC,m,ε
n,1 and b(1) ∈ G

mK
∞ , there exists a point ȳ ∈ ξ with Vorξ(ȳ) ∩ BmK

b(1) 6= ∅
satisfying: ∥∥χ(τx1ξ, ȳ − x1)

∥∥ ≤ C + 2εn. (15)

Moreover, τmKb(1) ξ̂ ∈ AC,m which implies that:
∥∥χ(τȳξ, y1 − ȳ)

∥∥ ≤ C. (16)

Bounds (14)-(16) and the shift-covariance of the corrector finally give that:
∥∥χ(τxξ, y − x)

∥∥ ≤ 2(d− 1)(C + εn) +
∥∥χ(τx1ξ, ȳ − x1)

∥∥+
∥∥χ(τȳξ, y1 − ȳ)

∥∥ ≤ 2d(C + εn).

�

Proof of Proposition 16. We must show that for each δ0, ε0 > 0, for P[·|0 ∈ G∞] − a.a.

ξ̂ ∈ N̂ , for any x0 ∈ ξ with Vorξ(x0) ∩BK
0 6= ∅:

1

#ΛL

∑

x ∈ ξ :

∃z ∈ G
K
∞

∩ ΛL

Vorξ(x) ∩ BK
z

6= ∅

1‖χ(τx0ξ,x−x0)‖≥ε0L ≤ δ0

for every L large enough. Let us define p := P
[
0 ∈ G

K
∞

]
and fix δ < min

(
p/2, δ0/(2D)

)
and

ε < ε0/(4d). We then choose C and m large enough such that the conclusion of Lemma 17
holds. Without loss of generality we restrict our attention to the case L = mn, n ∈ N. We
will work at both scales K and mK.
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By ergodicity
#
{
j ∈ Λ1

L : je1 ∈ G
K
∞

}

2L+ 1
−−−−−−−−→

L−→∞
p,

in particular, for L large enough

#
{
j ∈ Λ1

L : je1 ∈ G
K
∞

}
≥ (2L+ 1)p

2
. (17)

On the other hand, denoting by π(1) the projection along the first coordinate axis, one has

π(1)
(
ΓC,m,ε
n

)
⊂ ΓC,m,ε

n and

#
(
π(1)

(
ΓC,m,ε
n

))
≥ #ΓC,m,ε

n

(2n+ 1)d−1
≥ (1− δ)(2n+ 1)

by Lemma 17. It follows that

#

{
j ∈ Λ1

L :

⌊
j

m

⌋
e1 ∈ ΓC,m,ε

n

}
≥ (1− δ)(2n+ 1)m ≥ (1− δ)(2L+ 1). (18)

Due to the choice of δ, (1− δ)(2L+1)+ (2L+1)p/2 > (2L+1) = #Λ1
L which implies that

{
j ∈ Λ1

L : je1 ∈ G
K
∞

}
∩
{
j ∈ Λ1

L :

⌊
j

m

⌋
e1 ∈ ΓC,m,ε

n

}
6= ∅.

Fix j in the intersection above, thanks to the sublinearity in the direction e1 at scale K
(see Proposition 15), there exists x ∈ ξ with Vorξ(x) ∩BK

je1
6= ∅ satisfying:

∥∥χ(τx0ξ, x− x0)
∥∥ ≤ C + εL, ∀x0 ∈ ξ with Vorξ(x0) ∩BK

0 6= ∅.
Together with Lemma 19 applied with a = ⌊ j

m⌋e1 and the shift-covariance of the corrector,
this allows us to conclude that for any y ∈ ξ whose Voronoi cell intersects an mK-box with

index b in ΓC,m,ε
n , for any x0 ∈ ξ with Vorξ(x0) ∩BK

0 6= ∅:
∥∥χ(τx0ξ, y − x0)

∥∥ ≤
∥∥χ(τx0ξ, x− x0)

∥∥+
∥∥χ(τxξ, y − x)

∥∥
≤ C + εL+ 2d

(
C + εn

)
≤ (2d+ 1)

(
C + εL

)
.

Thanks to the choice of ε, the last quantity is smaller than ε0L when L is large enough. For
any x0 ∈ ξ with Vorξ(x0) ∩BK

0 6= ∅, one has for L large enough:

1

#ΛL

∑

x ∈ ξ :

∃z ∈ G
K
∞

∩ ΛL

Vorξ(x) ∩ BK
z

6= ∅

1‖χ(τx0ξ,x−x0)‖≥ε0L ≤ 1

#ΛL

∑

a∈Λn\Γ
C,m,ε
n

∑

z ∈ G
K
∞

:

BK
z

⊂ BmK
a

D

≤ mdD#
(
Λn \ ΓC,m,ε

n

)

#ΛL

≤ 2D

(
1− #

(
ΓC,m,ε
n

)

#Λn

)

≤ 2Dδ ≤ δ0

where we used that:
md#Λn

#ΛL
−−−−−−−→

n→∞
1

and Lemma 17. �
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6. Random walks on G∞(ξ̂)

In order to derive the strong sublinearity of the corrector in G∞(ξ̂) from its sublinearity on
average, we need to obtain heat-kernel estimates and bounds on the expected distance between
positions of the walker at time t and 0 (see equations (21) and (35)). Such estimates cannot
be obtained directly for the random walk on the (full) Delaunay triangulation generated by ξ

in which the degree is not bounded. Nevertheless, since G∞(ξ̂) has good regularity properties,
these bounds will be established in Sections 7 and 8 for restricted random walks described
below.

For ξ̂ ∈ N̂ , let us consider the Markov chain (Ŷn)n∈N = (Ŷ ξ̂
n )n∈N on G∞(ξ̂) induced from

the original (discrete time) random walk (Xn)n∈N on DT(ξ). In other words, (Ŷn)n∈N is the

time-homogeneous Markov chain on G∞(ξ̂) with jump probabilities given by:

ĉξ̂x,y := P ξ̂
[
Ŷk+1 = y

∣∣Ŷk = x
]
= P ξ

x

[
XT1 = y

]
, x, y ∈ G∞(ξ̂), (19)

where T1 := inf{j ≥ 1 : Xj ∈ G∞(ξ̂)}. Note that the holes (i.e. the (DT(ξ)-)connected

components of ξ \ G∞(ξ̂)) are a.s. finite. Hence, T1 is a.s. finite and (Ŷn)n∈N is well defined.

Moreover, for any z ∈ G∞(ξ̂), applying the optional stopping theorem to the martingale

(Xn − z − χ(τzξ,Xn − z))n∈N starting from z, it appears that, (Ŷn − z − χ(τzξ, Ŷn − z))n∈N
is a martingale.

We also consider a continuous-time version of the random walk defined above (Ŷt)t≥0 :=

(ŶN(t))t≥0 whereN(t) is the intensity 1 Poisson process on the half-line R+. It has infinitesimal
generator:

L̂ξ̂f(x) :=
∑

y∈G∞(ξ̂)

ĉξ̂x,y
(
f(y)− f(x)

)
, x, y ∈ G∞(ξ̂). (20)

It is not difficult to see that (Ŷt − z − χ(τzξ, Ŷt − z))t≥0 is also a martingale.

We denote by P ξ̂
x the (quenched) law of this walk starting from x. Note that this walk has

speed ‘at most 1’. Observe also that the measure degDT(ξ) is reversible w.r.t. both (Ŷn)n∈N

and (Ŷt)t≥0. Actually, standard computations show that the detailed balance condition:

degDT(ξ)(x)ĉ
ξ̂
x,y = degDT(ξ)(y)ĉ

ξ̂
y,x, x, y ∈ G∞(ξ̂),

is satisfied.

7. Heat-kernel estimates for (Ŷ ξ̂
t )t>0

The aim of this section is to prove the following heat-kernel bound.

Proposition 20. For a.a. ξ̂ ∈ N̂ :

sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

t
d
2P ξ̂

x

[
Ŷt = x

]
<∞ (21)

where (Ŷt)t≥0 is the continuous-time random walk on G∞(ξ̂) with generator (20).

The proof of this bound relies on isoperimetric inequalities and the technics developed
in [MP05]; it is completed in Subsection 7.4. Precise definitions are given in Subsection
7.1. Isoperimetric inequalities for random walks confined in large boxes are established in
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Subsection 7.2. Additional technical results are isolated from the proof of Proposition 20 and
given in Subsection 7.3.

7.1. Precise definitions. We will state isoperimetric inequalities for random walks confined
in large boxes. We need to introduce additional notations and random walks confined in
boxes of side L.

Recall the definitions of G(L) and G(L)(ξ̂) from the introduction and denote by G(L) the

complementary in Z
d of the unique unbounded (l1−)connected component of Zd \ G(L) and

by G(L)(ξ̂) the set of points of ξ whose Voronoi cell intersects a K-box with index in G(L).

In other words, G(L) is the union of G(L) with the (discrete) holes contained in [−L,L]d
and G(L)(ξ̂) is the union of G(L)(ξ̂) with the holes (for the DT(ξ) structure) contained in
[
−(L+ 1

2)K, (L+ 1
2)K

]d
. Then, we write

(
X

(L)
n

)
n∈N

for the random walk in the restriction

of DT(ξ) to G(L)(ξ̂). Denoting by T ∗
n the time of nth visit to G(L)(ξ̂) for this walk, we

consider the induced discrete-time random walk
(
Ŷ

(L)
n

)
n∈N

:=
(
X

(L)
T ∗
n

)
n∈N

on G(L)(ξ̂). We also

consider its continuous-time counterpart
(
Ŷ

(L)
t

)
t≥0

:=
(
Ŷ

(L)
N(t)

)
t≥0

where N(·) is an intensity

1 Poisson process on the half-line R
+. The random walk

(
Ŷ

(L)
t

)
t≥0

can be thought of as

the continuous-time random walk on G(L)(ξ̂) with speed at most 1 and which ‘jumps holes’

of G(L)(ξ̂). Let us denote by d̂eg
L,ξ̂

(·) the degree in the restriction of DT(ξ) to G(L)(ξ̂) and

write d̂eg
L,ξ̂

(A) :=
∑

x∈A d̂eg
L,ξ̂

(x), A ⊂ G(L)(ξ̂). Classical computations show that d̂eg
L,ξ̂

(·)
is reversible for both

(
X

(L)
n

)
n∈N

and
(
Ŷ

(L)
t

)
t≥0

. The conductance of the set A ⊂ G(L)(ξ̂)

w.r.t.
(
Ŷ

(L)
t

)
t≥0

is given by:

Î
(L)
A = Î

ξ̂,(L)
A :=

∑
x∈A

∑
y∈G(L)(ξ̂)\A

d̂eg
L,ξ̂

(x)P
ξ̂,(L)
x

[
X

(L)
T ∗
1

= y
]

d̂eg
L,ξ̂

(A)
, (22)

where P
ξ̂,(L)
x stands for the law of

(
X

(L)
n

)
n∈N

. The associated isoperimetric profile is:

ϕ̂(L)(u) := inf
{
Î
(L)
A : d̂eg

L,ξ̂
(A) ≤ ud̂eg

L,ξ̂

(
G(L)(ξ̂)

)}
, u ∈

]
0,

1

2

]
. (23)

The advantage of
(
Ŷ

(L)
t

)
t≥0

is that this walk coincides with
(
Ŷt

)
t≥0

as long as they do

not leave (the interior of) G(L)(ξ̂). Nevertheless, we are not able to obtain directly a bound
on the isoperimetric profile ϕ̂(L). In a similar way as in [BBHK08], we compare it with the

isoperimetric profile of the constant speed random walk on G(L)(ξ̂), that is the walk
(
Ỹ

(L)
t

)
t≥0

with generator:

L̃(L)

ξ̂
(x, y) :=





1x∼y in DT(ξ)

d̃eg
L,ξ̂

(x)
if x 6= y

−1 if x = y

, (24)
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where d̃eg
L,ξ̂

(·) denotes the degree in the restriction of DT(ξ) to G(L)(ξ̂). The measure

d̃eg
L,ξ̂

(·) is clearly reversible w.r.t.
(
Ỹ

(L)
t

)
t≥0

. The associated conductance of the set

A ⊂ G(L)(ξ̂) is given by:

Ĩ
(L)
A = Ĩ

ξ̂,(L)
A :=

∑
x∈A

∑
y∈G(L)(ξ̂)\A

1x∼y in DT(ξ)

d̃eg
L,ξ̂

(A)
, (25)

and the corresponding isoperimetric profile is:

ϕ̃(L)(u) := inf
{
Ĩ
(L)
A : d̃eg

L,ξ̂
(A) ≤ ud̃eg

L,ξ̂

(
G(L)(ξ̂)

)}
, u ∈

]
0,

1

2

]
. (26)

7.2. Isoperimetric inequality. The goal of this section is to obtain a lower bound on the
isoperimetric profile ϕ̂(L); it is stated in Corollary 24.

7.2.1. Comparison between ϕ̃(L) and ϕ̂(L). First, note that for x ∈ G(L)(ξ̂):

D ≥ degDT(ξ)(x) ≥ d̂eg
L,ξ̂

(x) ≥ d̃eg
L,ξ̂

(x) ≥ 1 ≥
d̂eg

L,ξ̂
(x)

D
≥

d̃eg
L,ξ̂

(x)

D
, (27)

and that for x, y ∈ G(L)(ξ̂)

P
ξ̂,(L)
x

[
X

(L)
T ∗
1

= y
]
≥ P

ξ̂,(L)
x

[
X

(L)
1 = y

]
1x∼y in DT(ξ) =

1x∼y in DT(ξ)

d̂eg
L,ξ̂

(x)
. (28)

Hence, for A ⊂ G(L)(ξ̂), we have:

∑

x∈A

∑

y∈G(L)(ξ̂)\A

d̂eg
L,ξ̂

(x)P
ξ̂,(L)
x

[
X

(L)
T ∗
1

= y
]
≥
∑

x∈A

∑

y∈G(L)(ξ̂)\A

1x∼y in DT(ξ).

With d̂eg
L,ξ̂

(A) ≤ Dd̃eg
L,ξ̂

(A), this implies that:

Î
(L)
A ≥ Ĩ

(L)
A

D
. (29)

Using (27) and (29), one deduces:

Lemma 21. For u ∈
]
0, 1

2D

]
:

ϕ̂(L)(u) ≥
ϕ̃(L)(Du)

D
. (30)

7.2.2. Lower bounds for ϕ̃(L). Our aim is to show the following bound on the isoperimetric

profile ϕ̃(L) associated with
(
Ỹ

(L)
t

)
t≥0

.

Proposition 22. There exists c = c(d,K, α) > 0 such that P − a.s. for L large enough:

ϕ̃(L)(u) ≥ cmin

{
1

u1/dL
,

1

log(L)
d

d−1

}
, u ∈

]
0,

1

2

]
.

As in [CF07], we use as much as possible an isoperimetric inequality for the percolation
cluster G(L).
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Proposition 23 (see [CF07], eq. (2.5)). There exists κ > 0 such that almost surely for L
large enough, for A ⊂ G(L) with 0 < #(A) ≤ 1

2#(G(L)):

#(∂A)

#(A)
≥ κmin

{
1

#(A)
1
d

,
1

log(L)
d

d−1

}
,

where ∂A = {x ∈ G(L) \ A : x ∼ y for some y ∈ A} is the (vertex external) boundary of the
set A in G(L).

This result can be proved by adapting the arguments given in [BBHK08, Appendix] to
the context of supercritical site percolation (see also the proof of [BM03, Lemma 2.6] for
p≫ psitec (Zd)).

We adapt the proof of [CF07, Theorem 1.1] to the present setting. It is worth noting
that the arguments of [CF07] can be used to derive isoperimetric bounds for the Delaunay
triangulation confined in cubic boxes at least when the underlying point process is a PPP. This
does not lead to sharp enough heat-kernel bounds for the random walk on the full Delaunay
triangulation due to the unboundedness of the degree.

Proof of Proposition 22. For A ⊂ G(L)(ξ̂), we define:

L(A) :=
{
z ∈ G(L) : ∃x ∈ A s.t. Vorξ(x) ∩Bz 6= ∅

}
.

Let us observe that, thanks to the definition of the good boxes, for any A ⊂ G(L)(ξ̂):

#L(A)

2d
≤ d̃eg

L,ξ̂
(A) ≤ #Amax

x∈A
degDT(ξ)(x) ≤ D2#L(A). (31)

In the first inequality, we used that, for x ∈ G(L)(ξ̂), Vorξ(x) does not intersect more than 2d

good boxes since the diameter of the cell is less than K.

From now on we assume that d̃eg
L,ξ̂

(A) ≤ 1
2 d̃egL,ξ̂(G(L)(ξ̂)). We are going to discuss

separately the cases when #(L(A)) is large or small with respect to #(G(L)). Roughly, if

#(L(A)) is large then #(L(G(L)(ξ̂) \ A)) is not too small and Ĩ
(L)
A is easily bounded from

below by some constant. When #(L(A)) is small, a bound is obtained using the isoperimetric
inequality for G(L) given in Proposition 23.

The case #(L(A)) >
(
1 − 1

2d+2D2

)
#(G(L)). Using the general bound (31) and inequality

d̃eg
L,ξ̂

(A) ≤ 1
2 d̃egL,ξ̂(G(L)(ξ̂)), one obtains:

#L(G(L)(ξ̂) \A) ≥
d̃eg

L,ξ̂
(G(L)(ξ̂) \A)
D2

≥
d̃eg

L,ξ̂
(G(L)(ξ̂))

2D2
≥

#G(L)

2d+1D2
.

It follows that L(A) and L(G(L)(ξ̂) \A) have a large intersection in this case:

#
(
L(A) ∩ L(G(L)(ξ̂) \A)

)
≥ #L(A)−#

(
G(L) \ L(G(L)(ξ̂) \A)

)

= #L(A)−#(G(L)) + #
(
L(G(L)(ξ̂) \A)

)

≥
(
1− 1

2d+2D2

)
#(G(L))−#(G(L)) +

1

2d+1D2
#(G(L))

=
1

2d+2D2
#(G(L)). (32)
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This allows us to bound from below the numerator in Ĩ
(L)
A as follows. If z ∈ L(A)∩L(G(L)(ξ̂)\

A), one can choose x ∈ A and y ∈ G(L)(ξ̂) \ A whose respective Voronoi cells intersect Bz.
Hence, connecting the nuclei of the Voronoi cells which intersect the line segment [x, y], it

is easy to find an edge between a point of A and a point of G(L)(ξ̂) \ A which is included

in Bz =
⋃

z′:‖z′−z‖∞≤1Bz′ thanks to the definition of good boxes. Since a specific edge is

associated to at most 3d boxes by this procedure, it follows using (32) that:

∑

x∈A

∑

y∈G(L)(ξ̂)\A

1x∼y in DT(ξ) ≥
#
(
L(A) ∩ L(G(L)(ξ̂) \A)

)

3d
≥

#(G(L))

4 · 6dD2
.

Since d̃eg
L,ξ̂

(A) ≤ D2#
(
L(A)

)
≤ D2#(G(L)), we obtain that:

Ĩ
(L)
A ≥ 1

4 · 6dD4
.

The case #(L(A)) ≤
(
1 − 1

2d+2D2

)
#(G(L)). Let us show that, in this case, the numerator in

Ĩ
(L)
A can be bounded from below in terms of #∂L(A) or #∂(G(L) \ L(A)). If Bz and Bz′

are two neighboring good boxes such that z ∈ L(A) and z′ ∈ G(L) \ L(A), there exists an

edge between a point of A and a point of G(L)(ξ̂) \ A contained in Bz ∪ Bz′ . To see this,

let us fix a point x ∈ A whose Voronoi cell intersects Bz and a point y ∈ G(L)(ξ̂) \ A whose
Voronoi cell intersects Bz′ . It then suffices to connect the consecutive nuclei of the Voronoi
cells which intersect the line segment [x, y] to find an edge between a point of A and a point

of G(L)(ξ̂) \ A. This edge is contained in Bz ∪ Bz′ thanks to the definition of good boxes. It
follows that there exists δ = δ(d) such that:

∑

x∈A

∑

y∈G(L)(ξ̂)\A

1x∼y in DT(ξ) ≥ δmax
{
#∂L(A),#∂(G(L) \ L(A))

}
.

Since d̃eg
L,ξ̂

(A) ≤ D2#L(A) ≤ D2(2d+2D2 − 1)#
(
G(L) \ L(A)

)
, we deduce that:

Ĩ
(L)
A ≥ δ

(2d+2D2 − 1)D2

#∂A

#A
,

for A = L(A) and A = G(L) \ L(A).
Choosing

A :=

{
L(A) if #L(A) ≤ 1

2#G(L)

G(L) \ L(A) otherwise
,

Proposition 23 then implies that almost surely for L large:

Ĩ
(L)
A ≥ κδ

(2d+2D2 − 1)D2
min

{
1

#(A)
1
d

,
1

log(L)
d

d−1

}

≥ κδ

(2d+2D2 − 1)D2
min

{
1

#(L(A))
1
d

,
1

log(L)
d

d−1

}
.
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Using that #L(A) ≤ 2dd̃eg
L,ξ̂

(A), we obtain that:

Ĩ
(L)
A ≥ κδ

2(2d+2D2 − 1)D2
min

{
1

d̃eg
L,ξ̂

(A)
1
d

,
1

log(L)
d

d−1

}
.

Since d̃eg
L,ξ̂

(G(L)(ξ̂)) ≤ D2#G(L) ≤ D2(2L+1)d, the conclusion of Proposition 22 follows.

�

Combining Lemma 21 and Proposition 22, we obtain:

Corollary 24. There exists c = c(d,K, α) > 0 such that P − a.s. for L large enough:

ϕ̂(L)(u) ≥ cmin

{
1

u1/dL
,

1

log(L)
d

d−1

}
, u ∈

]
0,

1

2D

]
.

7.3. Other technical results.

7.3.1. Volume growth for d̂eg
L,ξ̂

(
G(L)(ξ̂)

)
. We briefly check that there exist constants c and

C such that a.s. for L large enough:

cLd ≤ d̂eg
L,ξ̂

(
G(L)(ξ̂)

)
≤ CLd. (33)

The upper bound is very simple since it suffices to write:

d̂eg
L,ξ̂

(
G(L)(ξ̂)

)
≤ D#

(
G(L)(ξ̂)

)
≤ D max

z∈G(L)

# {x ∈ ξ : Vorξ(x) ∩Bz 6= ∅}#
(
G(L)

)

≤ D2#
(
[−L,L]d ∩ Z

d
)
≤ CLd.

Since any box with index in G(L) contains at least a point of G(L)(ξ̂) which has degree at
least 1:

d̂eg
L,ξ̂

(
G(L)(ξ̂)

)
≥ #

(
G(L)(ξ̂)

)
≥ #

(
G(L)

)
.

The lower bound follows by using that a.s. for L large enough:

#
(
G(L)

)
≥ cLd,

which is a consequence of the ergodic theorem.

7.3.2. Size of the holes and connectivity of G∞(ξ̂) in large boxes. In order to compare (Ŷt)t≥0

with (Ŷ
(L)
t )t≥0, we need to control the size of the holes (i.e. DT(ξ)-connected components of

ξ \ G∞(ξ̂)) and to establish connectivity properties of G∞(ξ̂) in large boxes. More precisely,
for C, γ > 1 and t > 0, let define the events:

At = At,γ,C :=

{
any hole contained in

[
−K

(
⌊tγ⌋+ 1

2

)
,K

(
⌊tγ⌋+ 1

2

)]d

has diameter smaller than C log t

}
,

and

Bt = Bt,γ,C :=
{
G∞(ξ̂) ∩Qt = G(⌊tγ⌋)(ξ̂) ∩Qt

}
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where:

Qt :=

[
− t

(
3C

2
log t+ 1

)
, t

(
3C

2
log t+ 1

)]d
.

We prove that:

Lemma 25. Assuming that K is large enough, for each γ > 1, there exists C <∞ such that
almost surely for t large enough At and Bt are realized.

Proof. First, observe that any DT(ξ)-connected component A of ξ \ G∞(ξ̂) is contained in
the union of K-boxes with indices in some discrete hole A (i.e. a connected component of
Z
d \G∞). Hence, in order to show that At holds almost surely, it suffices to verify that a.s.

any discrete hole contained in [−⌊tγ⌋, ⌊tγ⌋]d ∩Z
d has diameter at most C log t, for C suitably

chosen. Denote by Az the (possibly empty) hole at z ∈ Z
d for an independent percolation

process of parameter p. Recall that assumption (SD) ensures that the process of ‘good boxes’
dominates such a process with p as close to 1 as we wish whenever K is fixed large enough.
Assuming that p is large enough, a standard Peierls argument shows that there exists c6 > 0
such that:

P [diamA0 ≥ n] ≤ e−c6n.

Thus,

P
[
∃z ∈ [−n, n]d ∩ Z

d s.t. diamAz ≥ C log n
]
≤ (2n+ 1)de−c6C logn.

Our first claim then follows by the Borel-Cantelli lemma if C is well chosen.
As above, in order to show that Bt is a.s. realized for t large enough, we only need to check

the corresponding claim for the percolation process, that is: almost surely for t large enough,
G∞ ∩Qt = G(⌊tγ⌋) ∩Qt.

Let us justify that, almost surely for t large enough, G(⌊tγ⌋) coincides with the largest

connected component of G∞ ∩ [−⌊tγ⌋, ⌊tγ⌋]d. Thanks to [CF07, Lemma B.1] and the Borel-
Cantelli lemma, we know that there exists L0 a.s. finite such that, for L ≥ L0, the maximal
open cluster G(L) in [−L,L]d ∩ Z

d is the only open cluster in this box with diameter larger
than L/10 and crosses this box in every coordinate direction (see also [CF07, Remark 7]).
In particular, G(L) has diameter 2L ≥ (L + 1)/10 and is thus included in G(L+1). So, for
L′ ≥ L ≥ L0, G(L) is contained in G(L′). Hence, it is included in an open cluster with infinite
diameter which is G∞.

It remains to verify that any two vertices z and z′ of G∞ ∩ Qt are connected by an open

path whithin [−⌊tγ⌋, ⌊tγ⌋]d. Call B′
t this event and write dG∞(·, ·) for the graph distance in

G∞. Assume that B′
t fails for some large t and fix z, z′ ∈ G∞ ∩ Qt which are not connected

in [−⌊tγ⌋, ⌊tγ⌋]d. Considering a shortest path from z to z′ one can find z′′ in G∞ ∩Q3t \Q2t

such that dG∞(z′, z′′) ≥ ⌊tγ⌋ − t(3C log(t)/2 + 1). Hence, for any κ, for t large enough:

P
[
(B′

t)
c
]
≤
∑

z′∈Qt

∑

z′′∈Q3t\Q2t

P
[
z′, z′′ ∈ G∞, dG∞(z′, z′′) ≥ κ‖z′′ − z′‖

]
.

From [AP96], we know that P [z′, z′′ ∈ G∞, dG∞(z′, z′′) ≥ κ‖z′′ − z′‖] decreases exponen-
tially with ‖z′′ − z′‖ which implies that P [(B′

t)
c] decreases exponentially with t. One finally

concludes thanks to the Borel-Cantelli lemma. �
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7.4. Proof of Proposition 20. For t ≥ 0, let us denote by N̂(t) the number of jumps of

(Ŷs)s≥0 up to time t and by Ct the event: ‘N̂(t) ≤ 3t/2’. Since (Ŷs)s≥0 has speed at most 1,

N̂(·) is dominated by a Poisson process of intensity 1 on R
+ and P ξ̂

x [Cc
t ] ≤ c7 exp(−c8t) for

some c7, c8 > 0. This implies that, almost surely for t large enough, Ct is realized and we only
need to obtain the heat-kernel bound on this event.

Recall the definitions of At and Bt from the previous subsection. On At ∩Bt ∩ Ct, starting
from a point of G∞(ξ̂) ∩ [−t, t]d, (Ŷs)s≥0 does at most 3/2t jumps of length at most C log t

up to time t. In particular, it has visited only points of G(⌊tγ⌋)(ξ̂) ∩Qt and does not depend

on ξ \ G(⌊tγ⌋)(ξ̂) up to time t. Hence, we can find a coupling of (Ŷs)s≥0 and (Ŷ
(⌊tγ⌋)
s )s≥0 such

that these two coincide up to time t. Thus, for t large enough, we can write:

P ξ̂
x

[
Ŷt = y

]
= P ξ̂

x

[{
Ŷt = y

}
∩ At ∩ Bt ∩ Ct

]

= P ξ̂,(⌊tγ⌋)
x

[{
Ŷ

(⌊tγ⌋)
t = y

}
∩ At ∩ Bt ∩ Ct

]

= P ξ̂,(⌊tγ⌋)
x

[
Ŷ

(⌊tγ⌋)
t = y

]
.

It then remains to bound P
ξ̂,(⌊tγ⌋)
x

[
Ŷ

(⌊tγ⌋)
t = y

]
. To this end, we will rely on the isoperimetric

inequality stated in Corollary 24 and apply the strategy developed by Morris and Peres
in [MP05].

Theorem 26 (see [MP05, Theorem 13]). Let (Xt)t≥0 be an irreducible continuous-time
Markov chain on a finite state space X with reversible probability measure π and isoperi-
metric profile ϕ.

For all ε > 0 and all x, y ∈ X , if

t ≥
∫ 4/ε

4min(π(x),π(y))

8du

uϕ(u)2
(34)

then

Px [Xt = y] ≤ π(y) (1 + ε) .

Here the reversible probability measure is given by:

π̂⌊tγ⌋(·) := d̂eg
⌊tγ⌋,ξ̂

(·)/d̂eg
⌊tγ⌋,ξ̂

(G(⌊tγ⌋)(ξ̂)).

Choosing ε of the form ε = c9t
d(γ− 1

2
) (c9 will be chosen large enough), the conclusion of

Theorem 26 reads:

P ξ̂,(⌊tγ⌋)
x

[
Ŷ

(⌊tγ⌋)
t = y

]
≤

d̂eg
⌊tγ⌋,ξ̂

(y)

d̂eg
⌊tγ⌋,ξ̂

(G(⌊tγ⌋)(ξ̂))

(
1 + c9t

d(γ− 1
2
)
)
.

Using Lemma 3 and (33), one deduces that P
ξ̂,(⌊tγ⌋)
x

[
Ŷ

(⌊tγ⌋)
t = y

]
≤ c10t

− d
2 for t large enough.

It remains to check the validity of (34) with ε = c9t
d(γ− 1

2
) for t large enough when c9 is well

chosen.
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Assuming that t satisfies 4td(
1
2
−γ) ≤ c9/(2D), one obtains with Corollary 24 and inequality

(31) that:

∫ 4c−1
9 td(

1
2−γ)

4min(π̂⌊tγ⌋(x),π̂⌊tγ⌋(y))

8du

uϕ̂(⌊tγ⌋)(u)2

≤ 8

∫ 4c−1
9 td(

1
2−γ)

c11/tγd

du

uϕ̂(⌊tγ⌋)(u)2

≤ c12


(log t)

2d
d−1

∫ (log⌊tγ⌋)
d2

d−1 /⌊tγ⌋d

c11/tγd

du

u
+ t2γ

∫ 4c−1
9 td(

1
2−γ)

(log⌊tγ⌋)
d2
d−1 /⌊tγ⌋d

u
2
d
−1du




≤ c12

(
d

2

(
4

c9

) 2
d

t+ c13(log t)
2d
d−1 (log log t+ c14)

)
.

If c9 has been fixed large enough, the last expression is smaller than t for every t large
enough.

To summarize, we have just proved that for a.a. ξ̂, there exist c15 = c15(ξ̂) and T = T (ξ̂)

such that for any t ≥ T , for any x ∈ G∞(ξ̂) ∩ [−t, t]d and any y ∈ G∞(ξ̂):

P ξ̂
x

[
Ŷt = y

]
≤ c15

t
d
2

.

This implies the required result.

�

8. Expected distance bound for (Ŷ ξ̂
t )t>0

It is known that bounds on the expected distance between the position of the walk at time t
and its starting point can be derived from the heat-kernel estimate (21) as soon as the volume
grows regularly (see for example [Bas02,Bar04,BP07]). In this section, we use this strategy
to prove the following proposition.

Proposition 27. For a.a. ξ̂ ∈ N̂ :

sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

E ξ̂
x

[∥∥∥Ŷt − x
∥∥∥
]

√
t

<∞. (35)

Proof. Proposition 20 shows that the assumption of [BP07, Proposition 6.2] is satisfied in

the present setting. Hence, there exist constants c16 and c17 such that for a.a. ξ̂, for every

x ∈ G∞(ξ̂), for t large enough:

E ξ̂
x

[
d̂
(
Ŷt, x

)]

√
t

≤ c16 + c17 sup

0<s≤t−
1
2



s

d
∑

y∈G∞(ξ̂)

e−sd̂(x,y)



 , (36)

where d̂ (x, y) = d̂
G∞(ξ̂)

(x, y) denotes the ‘natural’ distance between x and y for (Ŷt)t>0 (i.e.

the minimal number of jumps that the random walk needs to do in order to go from x to y).
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At this point, we need to compare d̂ with the Euclidean distance and to check that the

r.h.s. of (36) is uniformly bounded. Let us denote by d̂′ = d̂′
G∞

the chemical distance in G∞

in which we add an edge between every two points on the boundary of a (shared) discrete

hole. For x ∈ G∞(ξ̂), we choose z(x) ∈ G∞ such that Vorξ(x) intersects Bz(x) to be the
minimal one in the lexicographic order. It is not difficult to see that the definitions of G∞

and G∞(ξ̂) imply that there are constants c18 and c19 such that:

c18d̂
′(z(x), z(y)) ≤ d̂(x, y) ≤ c19(d̂

′(z(x), z(y)) + 1), ∀x, y ∈ G∞(ξ̂). (37)

By the same arguments as in the proof of [BP07, Lemma 3.1], one obtains that:

P
[
z, z′ ∈ G∞, d̂

′(z, z′) ≤ c20‖z− z′‖
]
≤ e−c21‖z−z

′‖,

for suitable constants c20 and c21.
Using the estimate above and the Borel-Cantelli lemma, one deduces that there exists a

constant C such that, for n ≥ N = N(ξ̂), for all z ∈ G∞ ∩ [−n/K, n/K]d, for all z′ ∈ G∞

with ‖z′ − z‖ ≥ C log n:

d̂′(z, z′) ≥ c20‖z′ − z‖. (38)

Then, (36), (37) and (38) imply that for every x ∈ G∞(ξ̂) ∩ [−n, n]d, for t ≥ n ≥ N :

E ξ̂
x

[∥∥∥Ŷt − x
∥∥∥
]

√
t

≤ c22 + c23 sup

0<s≤t−
1
2



s

d
∑

y∈G∞(ξ̂)

e−sd̂(x,y)



 . (39)

Finally, observe that once 1/s ≥ t
1
2 ≥ n

1
2 ≫ C log n for any x ∈ G∞(ξ̂) ∩ [−n, n]d:

∑

y∈G∞(ξ̂)

e−sd̂(x,y) ≤
∑

z′∈G∞

∑

y ∈ ξ
Vorξ(y) ∩ B

z
′ 6= ∅

e−sd̂(x,y)

≤ D
∑

z′∈G∞

e−c18sd̂′(z(x),z′)

≤ c24


s

−d +
∑

z
′ ∈ G∞ :

‖z′ − z(x)‖ ≥ 1/s

e−c25s‖z′−z(x)‖




≤ c26s
−d.

The conclusion then follows thanks to (39). �

9. Almost sure sublinearity in G∞(ξ̂)

The aim of this section is to prove the ‘strong’ sublinearity of the corrector in G∞(ξ̂).

Proposition 28. For P[·|0 ∈ G∞]−a.a. ξ̂:

lim
n→∞

Rn

n
= 0, (40)

where
Rn = Rn(ξ̂) := max

x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

max
x∈G∞(ξ̂)∩[−n,n]d

‖χ(τx0ξ, x− x0)‖ .
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Following an idea attributed to Yuval Peres in [BP07] and [CFP13], it suffices to show the
recursive bound:

Lemma 29. For P[·|0 ∈ G∞]−a.e. ξ̂, for each ε, δ > 0, there exists n0 = n0(ξ̂, ε, δ) < ∞
such that:

Rn ≤ εn+ δR3n, ∀n ≥ n0. (41)

For the reader’s convenience, we recall how Proposition 28 can be deduced from the previous
lemma and Proposition 12 (see also [BP07, Proof of Theorem 2.4, p. 1337]). Assume that
the conclusion of Proposition 28 is false and choose 0 < c27 < lim supn→∞Rn/n, ε := c27/2
and δ := 1/3β+1 with β such that:

lim
n→∞

Rn

nβ
= 0. (42)

For infinitely many n’s, Rn ≥ c27n which implies by Lemma 29 that:

R3n ≥ Rn − εn

δ
≥ (c27 − ε)n

δ
≥ 3βc27n

when n ≥ n0. One then obtains by induction that R3kn ≥ c273
βkn which contradicts (42).

We now turn our attention to the proof of Lemma 29.
Proof of Lemma 29. We adapt the arguments given in [BP07, §5]. Let us define:

C1 = C1(ξ̂) := sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

t
d
2P ξ̂

x

[
Ŷt = x

]

and

C2 = C2(ξ̂) := sup
n≥1

max
x∈G∞(ξ̂)∩[−n,n]d

sup
t≥n

E ξ̂
x

[∥∥∥Ŷt − x
∥∥∥
]

√
t

.

Recall that these two quantities are a.s. finite thanks to Propositions 20 and 27.
For large n, we choose y0 = y0(n) with Vorξ(y0) ∩ B0 6= ∅ and y = y(n) ∈ [−n, n]d such

that Rn = ‖χ(τy0ξ, y − y0)‖ and we define the stopping time:

Sn := inf
{
t ≥ 0 :

∥∥∥Ŷt − y
∥∥∥ ≥ 2n

}
.

For n is large enough, holes have sizes of logarithmic order (see Lemma 25) and thus

‖Ŷt∧Sn − y‖ ≤ 3n for all t. Due to the harmonicity of ϕ, the optional stopping theorem gives:

E ξ̂
y

[
Ŷt∧Sn − y − χ

(
τyξ, Ŷt∧Sn − y

)]
= E ξ̂

y

[
ϕ
(
τyξ, Ŷt∧Sn − y

)]
= 0.

By the shift-covariance of the corrector, one has:

χ (τy0ξ, y − y0) = χ
(
τy0ξ, Ŷt∧Sn − y0

)
− χ

(
τyξ, Ŷt∧Sn − y

)
,

thus

χ (τy0ξ, y − y0) = E ξ̂
y

[
χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

]
.

It follows that:

Rn = ‖χ (τy0ξ, y − y0)‖ ≤ E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥
]
. (43)

Let us fix ε > 0 and define:

On :=
{
x ∈ G∞(ξ̂) ∩ [−3n, 3n]d : ∃x0 s.t. Vorξ(x0) ∩B0 6= ∅ and ‖χ (τx0ξ, x− x0)‖ ≥ ε

2
n
}
.
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Note that, by Proposition 16, #On = o(nd). Restricting our attention to t = t(n) ≥ 4n
(whose value will be specified at the end), we will decompose the expectation above as:

E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥
]
= E1 + E2,

with

E1 = E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn<t

]
,

and

E2 = E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn≥t

]
.

We first deal with the term E1. Since t ≥ 4n, Markov inequality shows that:

P ξ̂
y

[∥∥∥Ŷ2t − y
∥∥∥ ≥ 3

2
n

]
≤

2E ξ̂
y

[∥∥∥Ŷ2t − y
∥∥∥
]

3n
≤ 2

√
2tC2

3n
.

Observe that
{∥∥∥Ŷ2t − y

∥∥∥ ≤ 3n/2, Sn < t
}

⊂
{∥∥∥Ŷ2t − ŶSn

∥∥∥ ≥ n/2, Sn < t
}
. On {Sn < t},

since s := 2t− Sn ∈ [t, 2t], one has:

P ξ̂
z

[∥∥∥Ŷs − z
∥∥∥ ≥ 1

2
n

]
≤ 2

√
2tC2

n
,

with z = ŶSn , this implies by the strong Markov property that:

P ξ̂
y

[∥∥∥Ŷ2t − y
∥∥∥ ≤ 3

2
n, Sn < t

]
≤ 2

√
2tC2

n
.

Recall that
∥∥∥Ŷt∧Sn − z

∥∥∥ ≤ 3n for n large enough. It follows that:

E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn<t

]

≤ (R3n + 3n)P ξ̂
y [Sn < t]

≤ (R3n + 3n)

(
P ξ̂
y

[∥∥∥Ŷ2t − y
∥∥∥ ≥ 3

2
n

]
+ P ξ̂

y

[∥∥∥Ŷ2t − y
∥∥∥ ≤ 3

2
n, Sn < t

])

≤ 8
√
2tC2

3n
(R3n + 3n) . (44)

Thanks to the definitions of C2 and On and to the fact that t ≥ n, one has:

E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt∧Sn − y0

)
− Ŷt∧Sn + y

∥∥∥1Sn≥t

]

≤ E ξ̂
y

[∥∥∥Ŷt − y
∥∥∥1Sn≥t

]
+ E ξ̂

y

[∥∥∥χ
(
τy0ξ, Ŷt − y0

)∥∥∥1Sn≥t

]

≤ C2

√
t+ E ξ̂

y

[∥∥∥χ
(
τy0ξ, Ŷt − y0

)∥∥∥1Sn≥t,Ŷt 6∈On

]

+ E ξ̂
y

[∥∥∥χ
(
τy0ξ, Ŷt − y0

)∥∥∥1Sn≥t,Ŷt∈On

]

≤ C2

√
t+

ε

2
n+R3nP

ξ̂
y

[
Ŷt ∈ On

]
= C2

√
t+

ε

2
n+R3n

∑

z∈On

P ξ̂
y

[
Ŷt = z

]
. (45)
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But, using that degDT(ξ) is reversible w.r.t
(
Ŷs

)
s≥0

and bounded by D on G∞(ξ̂), we obtain

by the Markov property and the Cauchy-Schwarz inequality that:

P ξ̂
y

[
Ŷt = z

]2
=


 ∑

x∈G∞(ξ̂)

P ξ̂
y

[
Ŷ t

2
= x

]
P ξ̂
x

[
Ŷ t

2
= z
]



2

≤


 ∑

x∈G∞(ξ̂)

P ξ̂
y

[
Ŷ t

2
= x

]2



 ∑

x∈G∞(ξ̂)

P ξ̂
x

[
Ŷ t

2
= z
]2



≤


 ∑

x∈G∞(ξ̂)

P ξ̂
y

[
Ŷ t

2
= x

] degDT(ξ)(x)

degDT(ξ)(y)
P ξ̂
x

[
Ŷ t

2
= y
]



×


 ∑

x∈G∞(ξ̂)

degDT(ξ)(z)

degDT(ξ)(x)
P ξ̂
z

[
Ŷ t

2
= x

]
P ξ̂
x

[
Ŷ t

2
= z
]



≤ D2P ξ̂
y

[
Ŷt = y

]
P ξ̂
z

[
Ŷt = z

]
≤ D2C2

1

td
. (46)

Combining bounds (43)-(46), we get:

Rn ≤ 8
√
2tC2

3n
(R3n + 3n) + C2

√
t+

ε

2
n+

DC1#On

t
d
2

R3n

=

(
8
√
2tC2

3n
+
DC1#On

t
d
2

)
R3n +

(
8
√
2tC2

n
+
ε

2

)
n+ C2

√
t.

The conclusion then follows by choosing t = c28n
2 for some c28 = c28(ξ̂, ε, δ) small enough

and using that #On = o(nd). �

10. Proof of main results

10.1. Proof of Theorem 2. We first show that Proposition 28 and the control of the diam-

eter of the holes imply that for P [·|0 ∈ G∞]-a.a. ξ̂:

lim
n→∞

1

n
max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0ξ, x− x0)‖ = 0. (47)

Recall that, almost surely for n large enough, holes intersecting [−n, n]d have diameters
smaller than C log n (see Lemma 25). Let H ⊂ ξ be a hole intersecting [−n, n]d and denote

by ∂extH ⊂ G∞(ξ̂) its external boundary, that is the set of the points of ξ \ H which are
neighbors of a point of H in DT(ξ). We can assume that ∂extH is contained in [−2n, 2n]d.
Let us define S := inf{k ≥ 0 : Xk 6∈ H}. Thanks to the harmonicity of ϕ and the optional
stopping theorem, for x ∈ H, one has:

Eξ
x [XS − x− χ(τxξ,XS − x)] = 0.

But the shift-covariance of the corrector implies that for any x0 ∈ ξ:

χ(τxξ,XS − x) = χ(τx0ξ,XS − x0)− χ(τx0ξ, x− x0),
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and thus
χ(τx0ξ, x− x0) = Eξ

x [XS − x− χ(τx0ξ,XS − x0)] .

It follows that:

max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0ξ, x− x0)‖

≤ max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

max
x∈G∞(ξ̂)∩[−2n,2n]d

‖χ(τx0ξ, x− x0)‖+ C log n.

Together with Proposition 28, this implies that (47) holds for P [·|0 ∈ G∞]-a.a. ξ̂.
We now prove that (47) actually holds for P-a.a. ξ. Note that this is the step where we

eliminate the coupling. Observe that:

max
x0 ∈ τKe1

ξ :

VorτKe1
ξ(x0) ∩ BK

0
6= ∅

max
x∈τKe1

ξ∩[−n,n]d
‖χ(τx0τKe1ξ, x− x0)‖

= max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
−e1

6= ∅

max
x∈ξ∩[−n−K,n−K]×[−n,n]d−1

‖χ(τx0ξ, x− x0)‖

≤ max
x1 ∈ ξ :

Vorξ(x1) ∩ BK
0

6= ∅

max
x∈ξ∩[−2n,2n]d

‖χ(τx1ξ, x− x1)‖

+ max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
−e1

6= ∅

max
x1 ∈ ξ :

Vorξ(x1) ∩ BK
0

6= ∅

‖χ(τx1ξ, x0 − x1)‖ .

Hence, the event:

A :=





lim
n→∞

1

n
max
x0 ∈ ξ :

Vorξ(x0) ∩ BK
0

6= ∅

max
x∈ξ∩[−n,n]d

‖χ(τx0ξ, x− x0)‖ = 0





is shift invariant w.r.t. τ = τK,e1 . Thanks to the ergodicity assumption (Er), it is a 0-1 event
and we already know that P[A] ≥ P[0 ∈ G∞] > 0. Thus, (47) holds P-a.s..

In particular, (47) holds P[·|ξ ∩ B0 6= ∅]-a.s.. The conclusion then follows by using e.g.
[CFP13, Lemma 7.14] wich state that a P[·|ξ ∩ B0 6= ∅]-almost sure event is also P0-almost
sure.

10.2. From Theorem 2 to Theorem 1. Thanks to [CFP13, Lemma B.2], Theorem 1 is a
direct consequence of the following one which is a rewritting of Theorem 1 under P0.

Theorem 30. Under the assumptions of Theorem 1, for P0−a.e. ξ0, under P ξ0

0 , the rescaled
process (Xε

t )t≥0 = (εXε−2t)t≥0 converges in law as ε tends to 0 to a Brownian motion with
covariance matrix σ2I where σ2 is positive and does not depend on ξ.

As mentioned in the introduction, the arguments to deduce this result from Theorem 2
are now quite standard and we only sketch the main lines of the proof. The reader is refered
to [CFP13, §3.3], [BP07, p. 1340-1341] or [BB07, §6.1 and §6.2] for more details.

Recall that, for P0-a.e. ξ0, ϕ(ξ0, ·) is harmonic. Hence, (Mn)n∈N := (ϕ(ξ0, Xn))n∈N is

a martingale under P ξ0

0 . By the same arguments as in [BB07, pp. 108-109], one can show
that (Mn · ei)n∈N satisfies the assumptions of the Lindeberg-Feller theorem for martingales
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(see [Dur96, Theorem (7.3), p. 414]). It follows with the Cramér-Wold device (see [Dur96,
Theorem (9.5), p. 170]) that t → εM⌊ε−2t⌋ converges weakly to a Brownian motion with
explicit covariance matrix proportional to the identity due to the isotropy of the point process.
The diffusion coefficient does not depend on the particular realization ξ0 of the point process
and is positive. If it were zero, it would hold that x = χ(ξ0, x) for P0-a.e. ξ

0, for all x ∈ ξ0,
which contradicts the sublinearity of the corrector. The sublinearity of the corrector also

implies that maxk≤n ‖Xk − Mk‖ = maxk≤n ‖χ(ξ0, Xk)‖ = o(
√
n) in P ξ0

0 -probability. The
‘discrete time version’ of Theorem 30 then follows. One concludes in the continuous-time
case by arguing as in [CFP13, p. 666] and by showing that:

lim
t→∞

N(t)

t
= E0

[
degDT(ξ0)(0)

]
,

where N(t) denotes the number of jumps of (Xs)s≥0 up to time t. This also proves the relation
between σ2VSRW and σ2DTRW. One finally deduces Theorem 1 using [CFP13, Lemma B.2].

11. Bounds for moments of degDT(ξ0)(0) and maxx∼0 ‖x‖
The method developed in [Zuy92, §2] can be used to derive exponential moments for

degDT(ξ0)(0) and maxx∼0 in DT(ξ0) ‖x‖ when the point process has a finite range of depen-
dence. More precisely, we show the following lemma.

Lemma 31. Assume that P0 is isotropic and satisfies (V’), then there exists ρ1 > 0 such
that:

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
<∞, ∀ρ < ρ1, (48)

Assume moreover that P0 has a finite range of dependence m and satisfies (EM), then
there exists ρ2 > 0 such that:

E0
[
e
ρ degDT(ξ0)(0)

]
<∞, ∀ρ < ρ2. (49)

Proof. We use the method of [Zuy92, §2]. Let us recall some definitions, notations, and
facts from this article. The fundamental region of a point x ∈ ξ0 is the union of the balls
centered at the vertices of its Voronoi polygon and having the nucleus x on their boundaries.
Let Γ0 be the union of 2d open balls of radii 1 centered in points ±ei. Let Φ0

1, . . . ,Φ
0
2d

be the
intersection of exactly d such balls.

Let us fix β > 1 and consider the sequence of sets Γn,Φn
1 , . . . ,Φ

n
2d

obtained by the ho-

mothetic transformation of center 0 and coefficient βn from Γ0,Φ0
1, . . . ,Φ

0
2d
. The important

point is that simple geometric arguments show that:

Fact 32. If each d-faced lens Φn
i , i = 1, . . . , 2d, contains a point of ξ0, then the fundamental

region of the particle at 0 is fully included in Γn. In particular, any neighbor of 0 in DT(ξ0)
is in Γn.

Let A0 be the event
⋂2d

i=1{#(ξ0 ∩ Φ0
i ) 6= 0} and

An :=
2d⋂

i=1

{#(ξ0 ∩ Φn
i ) 6= 0} \

2d⋂

i=1

{#(ξ0 ∩ Φn−1
i ) 6= 0}.
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Figure 1. Γ0 and the lens Φ0
i .

Note that the An are disjoint and P0

[⋃∞
n=0An

]
= 1. Thanks to Fact 32, one has:

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
=

∞∑

n=0

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

1An

]

≤
∞∑

n=0

e2ρβ
nP0

[
An

]

≤ e2ρ +
∞∑

n=1

e2ρβ
nP0

[ 2d⋃

i=1

{#(ξ0 ∩ Φn−1
i ) = 0}

]

≤ e2ρ + 2d
∞∑

n=1

e2ρβ
nP0

[
#(ξ0 ∩ Φn−1

1 ) = 0
]
, (50)

where we used the isotropy of the point process in the last inequality.
Now, there exists a constant c29 > 0 such that Φn−1

1 contains a cube Cn−1 of side c29β
n−1.

Hence, with (V’) and (50), we obtain:

E0
[
e
ρmaxx ∼

DT
0 ‖x‖

]
≤ c30 + 2d

∞∑

n=n0

e2ρβ
nP0

[
#(ξ0 ∩ Cn−1) = 0

]

≤ c30 + 2d
∞∑

n=n0

e(2ρβ−c31)β(n−1)d
.

The last series converges if ρ is small enough and (48) is proved.
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In the same way, thanks to Fact 32, one can write:

E0
[
e
ρ degDT(ξ0)(0)

]

=
∞∑

n=0

E0
[
e
ρ degDT(ξ0)(0)1An

]

≤ E0
[
eρ#(ξ0∩Γ0)

]
+

∞∑

n=1

E0
[
eρ#(ξ0∩Γn)1An

]

≤ E0
[
eρ#(ξ0∩Γ0)

]
+

∞∑

n=1

∞∑

k=0

eρkP0

[
{#(ξ0 ∩ Γn) = k} ∩ An

]

≤ E0
[
eρ#(ξ0∩Γ0)

]

+ 2d
∞∑

n=1

∞∑

k=0

eρkP0

[
{#(ξ0 ∩ Γn) = k} ∩ {#(ξ0 ∩ Φn−1

1 ) = 0}
]

≤ E0
[
eρ#(ξ0∩Γ0)

]

+ 2d
∞∑

n=1

∞∑

k=0

eρkP0

[
{#(ξ0 ∩ Γn \ Φn−1

1 ) = k} ∩ {#(ξ0 ∩ Φn−1
1 ) = 0}

]
.

Now, there exists a constant c32 > 0 such that, if n is large enough Φn−1
1 contains a

cube Cn−1 of side c32β
n−1 satisfying d(Cn−1,Γ

n \ Φn−1
1 ) > m. Thanks to the m-dependence

assumption on the point process and to (EM), it follows that:

E0
[
e
ρ degDT(ξ0)(0)

]

≤ c33 + 2d
∞∑

n=n0

∞∑

k=0

eρkP0

[
#(ξ0 ∩ Γn \ Φn−1

1 ) = k
]
P0

[
#(ξ0 ∩ Cn−1) = 0

]

≤ c33 + 2d
∞∑

n=n0

E0
[
eρ#(ξ0∩[−2βn,2βn]d)

]
P0

[
#(ξ0 ∩ Cn−1) = 0

]
.

Finally, with (V’) and (EM), we obtain:

E0
[
e
ρ degDT(ξ0)(0)

]
≤ c34 + 2dc5

∞∑

n=n1

e(2
df(ρ)βd−c35)β(n−1)d

.

This concludes the proof since f(ρ) goes to 0 with ρ by assumption. �
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