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Defects induced by boron doping in diamond layers were studied by transmission electron

microscopy. The existence of a critical boron doping level above which defects are generated is

reported. This level is found to be dependent on the CH4/H2 molar ratios and on growth directions.

The critical boron concentration lied in the 6.5–17.0� 1020at/cm3 range in the h111i direction and

at 3.2� 1021at/cm3 for the h001i one. Strain related effects induced by the doping are shown not to

be responsible. From the location of dislocations and their Burger vectors, a model is proposed,

together with their generation mechanism.VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4900741]

Natural diamonds, grown under thermodynamically sta-

ble conditions, generally have a very low density of crystal-

line defects, but these have an intense impact on their

optical, thermal, and electronic properties.1,2 The literature

describing several structural defects is often based on Raman

spectroscopy,3 X-ray diffraction,4 and cathodoluminescence5

techniques. More rarely, transmission electron microscopy

(TEM) has been employed,6–12 due to the remarkable hard-

ness of diamond, which makes the specimen preparation

more difficult. Understanding the origin of defects in dia-

mond, and classifying them according to their type and spa-

tial distribution, is an indispensable step toward a better

control of the microstructure and properties of synthetic dia-

mond films. Synthetic diamond is one of the most promising

material for high power devices due to its extraordinary

physical properties, such as high thermal conductivity

(22W/cm K), electric breakdown field (>10MV/cm), and

carrier mobility (ln¼ 1000 cm2/Vs, lp¼ 2000 cm2/ Vs).13,14

In order to improve its electrical conduction, dopants are

added during the synthetic diamond growth. In particular

cases, metallic diamond layers are necessary,15–17 which

may be the case if the boron concentration is high enough16

([B]� 5� 1020at/cm3). Despite the quantity of studies by

different techniques focused on dislocations observed in the

epilayers but originated from diamond substrates, only a few

mentions the presence of additional planar and one-

dimensional defects, i.e., stacking faults, twins, and disloca-

tions brought about by homoepitaxial overgrowths and boron

doping.18–20

In this work, conventional TEM (diffraction contrast

mode, CTEM) was used to determine a relationship between

doping level and the generation of such extended defects.

The latter behavior is evaluated versus crystalline orienta-

tion, boron concentration, and film thickness to establish

rules to prevent the generation of such defects. This study

aims at predicting the maximum doping level for a defect-

free epitaxy, depending on the growing conditions.

Three sets of samples have been compared: h111i single
pþ layers (samples A, B, C), h001i thick single pþ layers

(samples D, E), and h001i thin pþ layers arranged in pþ/p�

multilayer stacks (samples F-16, F-26, and F-27). Diamond

films were grown on Ib-type HPHT substrates from

Sumitomo Electric on h111i and h001i orientations, respec-
tively. A chemical cleaning process was carried out to

remove the superficial contamination including non-diamond

carbon phases, before growth. Prolonged 0.3–2 h H2 plasma

has been applied to eliminate residual contamination and to

etch away the damaged surface layer resulting from the sub-

strate polishing. Diamond growths were performed in a

NIRIM-type Microwave Plasma Chemical Vapor Deposition

(MPCVD) reactor,21 under 50 Torr. Growth parameters were

adjusted to achieve high boron doping levels. Secondary Ion

Mass Spectroscopy (SIMS) provided a dopant depth profile

for each sample, being the resultant average boron concen-

trations presented in Table I.

The specimens for cross sectional TEM observations

were obtained in a FIB apparatus (Focused Ion Beam-Dual

Beam Quanta 200) following a lift-out method.22,23 All cross

section lamellas were extracted from the center of the sample,

i.e., the most homogeneous area, with thicknesses around

200 nm. Diffraction contrast observations were performed

with a Jeol 1200EX and a Jeol 2010F microscopes operating

at 120 keV and 200 keV, respectively. Observations were car-

ried out under dark field (DF) conditions at 004, 220, and 111

reflections (g vector).

Fig. 1 shows DF observations of a 0.34lm-thick pþ

layer grown along h111i direction (sample A) recorded at the

½1�10� pole (g¼ 004 and g¼ 111 reflections). The combina-

tion of these observations revealed the type of dislocation,

their associated peculiar location and some planar defects. In

the case of g¼ 004 (Fig. 1(a)), arrows 1, 2, and 3 indicate

some of the threading dislocations which are not visible fora)E-mail: maripaz.alegre@uca.es
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g¼ 111 (Fig. 1(b)). Invisibility conditions of dislocations

were reached only for g¼ 111. Then, according to the invisi-

bility criterion g.b¼ 0, the Burger vector (b) could be either

1=2½01�1� or 1=6½11�2�, as already reported in diamond.6 As

highlighted in Fig. 1(a) by arrows 4 and 5, misfit dislocations

lying parallel to the surface were observed as dots (or spots)

in the micrographs. They were found at different positions

within the pþ layer thickness. Such behavior is commonly

observed inside thick gradual composition layers, such as

InxGa1�xAs/GaAs, whose composition varies in the film

thickness.24 However, such a phenomenon has not been

reported in the case of a nominally constant composition

layer. Usually, dislocations coming from interfacial effects or

lattice mismatch are located at the interface between an active

layer and its buffer,20 here at the pþ/p� interface. Moreover,

in such situations, the number of threading dislocations is

lower than the misfit dislocations one. Thus, the dislocation

behavior observed here in boron-doped diamond is unusual

inasmuch not any interaction between misfit-like dislocations

(M-L) were observed to generate threading dislocations (TH).

The introduction of substitutional boron into diamond

leads to an expansion (da/a) of the lattice parameter due to

larger covalent radius of boron (rB¼ 0.088 nm) compared to

that of carbon (rC¼ 0.077 nm);25–28 for the maximum B con-

centration achieved (�7� 1021at/cm3), the shift of the

lattice parameter is about 0.3% (or 0.011Å).27 In the case of

an isostatic stress, strain is da/aepilayer. Here, it is assumed

that all (i) epilayers are grown coherently on the substrate,

i.e., (pseudomorphic growth) without misfit dislocations and

(ii) epilayers are much thinner than the substrate, so that

strain in the substrates can be neglected. The films will be

then under compression strain in the in-plane growth (e//)

and under extension strain perpendicularly (e?). From an

energetical point of view and taking into account the strongly

anisotropic elasticity of diamond, one gets for total strain of

the layer

e ¼
da

aepi
�

da

asub
¼ chkl

da?

asub

¼ chkl bsizenB þ bpairnBB þ belectronB�

� �

: (1)

Indeed, only a? can be known experimentally versus boron

doping. The chkl parameter is related to the elastic constants

and allows relating the in-plane strain (e//) to the perpendicular

strain (e?). Its behavior varies with the growth orientation:

c111¼ (c11þ 2/3C)/(c11þ 2c12) and c100¼ (c11/c11� 2c12),

where c11, c12, and c44 are the elastic constants and

C¼ c44� c11þ c12. In the case of diamond,29 c100¼ 0.8113

and c111¼ 0.9136. Thus, for an identical doping level, the

TABLE I. Summary of growth parameters, layer thickness, boron doping level, and generated dislocation for all pþ layers studied.

Layer

label

Sample

name

Layer

positiona
Growth

direction

CH4/H2

(%)

B/Cgas

(ppm)

Thicknessb

(nm)

[B]solid
b

(�1020at/cm3)

Dislocation density

(�109cm�2)

A PA01 n/a 111 0.15 6000 �340 �18 �2

B PA20 n/a 111 0.6 500 �350 4.5 …

C PA31 n/a 111 0.6 1000 �450 �10 �32

D PA14 n/a 100 4 1800 �3700 �13 …

E PA23 n/a 100 4 2500 �2000 45 >100c

F-27.1 ML27 1 100 0.5 100 23 0.3 …

F-27.2 ML27 2 100 0.5 300 24 1 …

F-27.3 ML27 3 100 0.5 800 25 2.5 …

F-27.4 ML27 4 100 0.5 2000 20 �5 …

F-27.5 ML27 5 100 0.5 6000 14 11 …

F-26.1 ML26 1 100 0.5 6000 14 14 …

F-16.4 ML16 4 100 0.5 6000 6 20 …

F-16.3 ML16 3 100 0.5 6000 12 28 …

F-16.2 ML16 2 100 0.5 6000 11 28 …

F-16.1 ML16 1 100 0.5 6000 9 37 >100c

aCorresponds to the pþ layer position in the multilayer stack.
bMeasured by SIMS.
cNot possible to distinguish individual dislocations over 1011 dislocation/cm2.

FIG. 1. Dark field XTEM micrographs

of the sample A recorded at (a)

g¼ 004 and (b) g¼ 111 reflections.

Dashed lines correspond to the inter-

face between pþ and p� layers. Solid

and dashed arrows denote threading

dislocations and bi-dimensional

defects, respectively. Arrows 1, 2, 3, 4,

and 5 show threading dislocations

exclusively visible under the g¼ 004

reflection.
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lattice expansion changes with the crystalline growth orienta-

tion. The variation of the lattice parameter with the boron con-

centration depends also on the boron pair formation30,32 and

on the electrostatic interaction when dopant atoms are ion-

ized,29–31 as introduced in the 2nd and 3rd term of Eq. (1). The

values of the bi here used here are: bsize¼ 8.12 � 10�25cm3,

bpair¼ 12.4� 10�25cm3, belectro¼�2.74 � 10�25cm3, taken

from literature.26,28 Boron concentration into diamond lattice

is represented by nB; nBB is the density of B2 pairs; and nB
� is

the concentration of ionized boron.

To have a rough estimation of the thickness (critical lat-

tice thickness, CLT) necessary to generate dislocations, i.e.,

when the strain energy is comparable to the dislocations

energy, the Matthews Blakeslee model is here used. The cal-

culated CLT for a boron doping level of 1021at/cm3 (i.e., a

strain around 6� 10�4)26 stands around a few tens of lm

(28lm),19 introducing the Eq. (1) into the MB equation.33–35

Such CLT is about two orders of magnitude larger than the

total thickness of the observed layer, which is 0.34 lm.

To definitively discard MB mechanism, very thin

(6–12 nm) layers with very high doping level were grown. Fig.

2 shows a DF micrograph of sample F-16 recorded in the

[00 1�] zone axis. This sample grown along h001i is com-

posed of four pþ layers (labeled from F-16.1 to F-16.4) sepa-

rated by p� layers, where the boron concentration was kept

below 1016at/cm3. The grey contrast between pþ and p� layers

has a chemical origin, and it is used to quantify the boron

enrichment36 above 1020at/cm3. This chemical contrast coex-

ists with the contrast induced by dislocations in the present DF

configuration. The thickness of pþ layers did not play an im-

portant role in the defect generation. Indeed, most of threading

dislocations were generated at the first pþ/p� interface.

Dislocations loops stopped their propagation inside the p�

layer located between the first and second pþ layer (dotted

line in Fig. 2), and a few still were observed up to the fourth

pþ layer. Also, some dislocations are observed to recombine

with each other (dashed ellipses in Fig. 2). Another remarkable

feature is their direction of propagation, which is changing

when crossing a pþ layer (see arrows). Thin pþ layers can act

as barriers to dislocations propagation, because the high boron

concentration increases the probability that a dislocation meets

an interstitial or a boron pair on its way, and stops its exten-

sion during crystal growth. Epilayers grown under h100i direc-
tions in this reactor are usually fully strained37 up to tens of

micrometers thickness38 and free of dislocations36 (except for

those from the substrate), similar to sample D.

If the accumulated strain energy is not the driving force

other key parameters have to be considered such as the boron

density, the interface roughness or some growth conditions.

Another mechanism based on in-plane phenomena during

growth must be considered. Indeed, dislocations are

observed to be generated at all possible epilayer depth. In

fact, the first pþ layer of sample F-16 (F-16.1), where dislo-

cations are shown to be generated, has the highest boron

doping (3.7� 1021at/cm3), while being neither the thickest

nor the thinnest. Rather, the results suggest the existence of a

boron concentration threshold value above which disloca-

tions are generated for a given set of growth parameters. We

propose to label such value as a critical boron level (CBL).

Based on our observations, this parameter seems to depend

mainly on some growth conditions, such as CH4/H2 molar

ratio (related to the growth rate), and on the crystallographic

orientation. Thus, it is labeled CBL½CH 4=H 2 �=growth direction:
In order to evaluate the effect of growth conditions and

crystallographic orientation, the dislocation density was plot-

ted against the boron concentration of each sample measured

by SIMS (Fig. 3). In Fig. 3, samples grown along h001i were
represented by circles while growths along h111i were repre-
sented by stars. Moreover, those samples grown under the

same CH4/H2 molar ratio and crystallographic orientation

are connected by lines. The present study reveals that only

four samples contain defects: samples A, C, E, and F-16. In

addition, it reveals an abrupt increment of the dislocation

density when a specific boron doping level is reached. At the

same CH4/H2 molar ratio (0.5%–0.6%), the CBL on h111i is
lower than on h001i. For this set of samples, CBL0.6/h111i and

FIG. 2. TEM micrographs recorded at ½00�1� axis zone of the sample F-16.

Arrows denote changes in the propagation direction of dislocations across

the diamond layers. The dotted line bounds the region where the most of dis-

locations disappear. Dashed circles frame indicates convergence points

between dislocations.

FIG. 3. Density of dislocations as a function of the boron doping level of pþ

layers measured by SIMS is plotted. Circles and stars represent samples

grown along h100i and h111i direction, respectively. Individual dislocations
were not distinguished over 1011 dislocation/cm2.
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CBL0.5/h100i are estimated at 6.5� 1020 and 3.2� 1021at/

cm3, respectively, for the present MPCVD conditions.

CBL0.15/h111i reaches 1.7� 1021at/cm3 because sample A

showed a very low dislocation density. Similarly, CBL4/h100i

is estimated at 2.5� 1021at/cm3, which corresponds26 to a

maximum internal strain of 2� 10�3. Then, for both crystal-

lographic orientations for the diamond substrate, the lower

the CH4/H2 ratio, the larger the CBL.

A possible scenario emerges from these results. At lower

CH4/H2 ratios during diamond growth, the partial pressure of

carbon or boron-related molecules is low, and the phase con-

tains less carbon radicals relative to atomic hydrogen, and, in

proportion, less boron radicals. Then, the diamond surface is

exposed for a long time to highly reactive atomic hydrogen

radicals, which are spreading radicals homogeneously over

the surface and etching away nondiamond carbon or boron

phases. In that case, the growth rate is lower and the proba-

bility to form dopant-related point defects such as boron-

dimers32 becomes negligible. At higher CH4/H2 ratios, this

spreading becomes less efficient, allowing possible local

accumulation of boron atoms. In summary, the lower the

CH4/H2 ratio, the more uniform the boron distribution. In the

same way, the difference of CBL measured on h111i and on

h001i samples scales with the difference of dangling bonds

density at their respective surfaces.

To illustrate the link between boron atoms incorporation

and diamond crystalline quality, a schematical representation

of a h111i-oriented boron-doped diamond lattice is proposed

in Fig. 4. If we assume the growing diamond surface to be

exposed to an instantaneous large amount of boron radicals,

then boron aggregates can be formed. Boron atoms have a

larger covalent radius than carbon, and their incorporation

on substitutional sites induces a strain of the surrounding dia-

mond lattice.38 Under our particular conditions, this local

strain tends to thrust the top atomic plane upwards, out of its

equilibrium position. We surmise that this effect can lead to

the formation of planar defects or dislocations (see dashed

line in Fig. 4). As shown in this illustration, a random

arrangement of boron atoms (dark dots) within the diamond

lattice (light dots) in the ð�1�1�1Þ plane of a growing surface,

can lead to the formation of a dislocation line (see dashed

line) followed by another threading segment. Here, only the

displacement of the first neighbor carbon atom (dashed

circles) has been considered in order to simplify the picture

and to emphasize the dislocation formation. Obviously, this

strong neighboring effect should involve a larger number of

atoms which move away from their initial atomic positions

(even in X-ray topography effects as far as microns are

observed) and the resulting displacement is much lower than

that showed in this Fig. 4 by the dashed circles. Above a cer-

tain local boron concentration, neighboring effects favor the

disappearance of an ½�110� oriented segment of atoms.

Moreover, first-principles calculations have shown that pair-

ing of next-neighbor substitutional boron atoms becomes en-

ergetically favorable as the Fermi level goes into the valence

band upon heavy boron doping.32 Such calculations have

also evaluated the lattice extension associated with the pres-

ence of boron dimers.26 We surmise that boron pairs may

also contribute to the generation of dislocations. Once such a

segment is created, during the growth of the next planes, bo-

ron will tend to locate close to this segment, leading to a

plane-by-plane replication of the same situation up to the

surface. This results is a ½�110� segment of dislocation with

two dislocation segments, one threading aligned along the

½�10�1� (see full circle) and the other lying in the growing sur-

face plane in the ½011� direction. As shown, in this case, the

Burger vector of this 2–3 segments dislocation is 1=2½01�1�,
in accordance with the invisibility criteria. The second

Burger vector that is proposed follows the ½11�2� direction.
This direction is perpendicular to the cross-section sample,

i.e., its observation would require a TEM micrograph under

planar view (PV) configurations. However, this is ill-adapted

to most FIB set-ups.

To conclude, heavily boron-doped diamond epilayers

grown along h111i and h001i directions were characterized

by conventional TEM techniques, and revealed extended

defects. Dislocations were generated inside highly boron

doped layers grown along the h111i direction at thickness

values much lower than predicted by the critical lattice thick-

ness model of Matthews and Blakeslee. The main observed

defects were threading dislocations with Burger vectors of

1=2½01�1� or 1=6½11�2�. A mechanism involving substitutional

boron pairs has been proposed for the generation of disloca-

tions in such epilayers. A critical boron concentration limit

(CBL) was shown to trigger the proposed mechanism. The

CBL increased when the CH4/H2 molar ration decreased. It

was higher when the growth was made along the h001i direc-
tion than for h111i-oriented growth. Its value provides an

upper bound to the boron doping level of pþ epilayers

FIG. 4. Schematic views of the dislocation formation on the ð�1�1�1Þ growth
surface. Dark and light dots correspond to boron and carbon atoms, respec-

tively. The full circle denotes a generation point of dislocation segments due

to the propagation of ½�110� dislocation (black dashed line). Dashed circles

show displacements of carbon atoms from their nominal positions. A black

arrow represents a Burger vector ð~bÞ along 1=2½01�1�.
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increasingly considered for inclusion in the design of

diamond-based devices.
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