
HAL Id: hal-01079840
https://hal.science/hal-01079840

Submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lossless seeds for searching short patterns with high
error rates

Christophe Vroland, Mikaël Salson, Hélène Touzet

To cite this version:
Christophe Vroland, Mikaël Salson, Hélène Touzet. Lossless seeds for searching short patterns with
high error rates. International Workshop On Combinatorial Algorithms, Oct 2014, Duluth, United
States. �hal-01079840�

https://hal.science/hal-01079840
https://hal.archives-ouvertes.fr

Lossless seeds for searching short patterns with
high error rates?

Christophe Vroland1,2,3, Mikaël Salson1,2, and Hélène Touzet1,2

1 LIFL (UMR CNRS 8022, Université Lille 1),
2 Inria Lille Nord-Europe, France

3 Laboratoire Génétique et Evolution des Populations Végétales (UMR CNRS 8198,
Université Lille1)

{christophe.vroland, mikael.salson, helene.touzet}@lifl.fr

Abstract. We address the problem of approximate pattern matching
using the Levenshtein distance. Given a text T and a pattern P , find all
locations in T that differ by at most k errors from P . For that purpose,
we propose a filtration algorithm that is based on a novel type of seeds,
combining exact parts and parts with a fixed number of errors. Exper-
imental tests show that the method is specifically well-suited for short
patterns with a large number of errors.

1 Introduction

We consider the approximate pattern matching problem where a pattern P is
searched in a text T with a given number of errors k. An error can be defined in
several ways. Here we consider an error as defined by the Levenshtein distance:
either a substitution, an insertion, or a deletion. The problem is to find all the
locations where the pattern matches the text with at most k errors.

Navarro et al distinguish three main approaches [17]. The first one, neigh-
borhood generation, consists in generating all the strings within the number of
errors of the queried string. Then the generated strings are searched exactly in
the text. This generation is exponential in the number of errors. It is often done
with dynamic programming, bit-parallelism, or finite automata (for instance
[27]).

A second approach, partitioning approach, consists in filtering regions of in-
terest. Such regions are found by using pattern substrings, called seeds. Once
the seeds are found in the text, their occurrences must be extended to check if
the pattern occurs within k errors. The pigeonhole principle is used, where the
pattern is split in k + ε non-overlapping parts, ε > 0. Then ε parts are searched
exactly, usually ε = 1. However the more errors we allow, the shorter the parts
will be and therefore the more potential occurrences we may have. Thus the
filtration efficiency becomes lower with higher values of k. A recent example of
this method, using a modified Burrows-Wheeler transform is shown in [18].

? This work was partly supported by the Mastodons project (CNRS).

Finally, the third approach a hybrid of the two previous established ap-
proaches. The pattern is split in non-overlapping parts that can be searched with
a given number of errors. For instance, Navarro and Baeza-Yates [16] designed
a hybrid method which consists of splitting the pattern in j = (m + k)/ logσ n
parts, where σ is the alphabet size, and searching these parts with bkj c errors.

This approach has also been used with a LZ-index or a FM-index [19].
Each of these search strategies can be directly applied to a string and will be

linear in time depending on the size of the text. For a survey of online algorithms,
refer to [15]. Using a text index, it is also possible to reduce time consumption
at the expense of space consumption. Two main families of indexes are used:
q-gram indexes and full-text indexes. The former allows to efficiently recover
occurrences of a fixed-length word, while the latter allows to search for any pat-
tern of any length. This generally allows one to backtrack so that a word can be
searched with some errors. A third family of indexes consists of indexes specifi-
cally designed for approximate search [5,13,4,2]. However, these indexes are not
compressed indexes, (i.e. whose space consumption is proportional to the empir-
ical entropy of the text) and, to the best of our knowledge, no implementation
of the proposed solutions exists.

Despite all these methods, we think there is a need for algorithms dedicated
to searching short patterns (< 50 letters) on a small alphabet (e.g. DNA alpha-
bet) with a medium to high error-rate (7 %–15 %). This can be used in several
applications in computational biology, such as predicting targets of non-protein
coding small RNAs [25] and analysing spacers in CRISPR for potential trans-
fers from viruses or plasmids [22,24], to cite a few. More generally, introducing
some errors would improve the sensitivity in the presence of sequencing errors
or variants. Since we combine a high error rate with a small alphabet, we need
to design a method with a good filtration efficiency. This is necessary to limit
the number of false positives, thus the number of unnecessary verifications. In
this paper, we present a new hybrid method where the pattern will be split in
non-overlapping parts, some of them being searched without error, while others
are searched with a limited number of errors.

In Section 2, we detail the novel type of seeds we will use and show some
properties of those seeds. We also show that in practice those seeds are efficient
filters. In Section 3, we explain how we make use of those seeds in our algorithm
and how they are searched in a compressed index. In Section 4 we show some
experimental results on DNA with random sequences and real data.

2 Approximate seeds for the Levenshtein edit distance

Let A be a finite alphabet. Given two strings u and v of A∗, define lev(u, v) to
be the Levenshtein distance between u and v. This is the minimum number of
operations needed to transform u into v, where the only allowed operations are
substitution of a single character and deletion or insertion of a single character.
Each such operation is also called an error. From now on, we assume that a
given natural number k corresponds to a maximum number of errors.

Let P be a pattern of length m over A. Using the pigeonhole principle, it
is well-known that if P is partitioned into k + 1 parts, then every string U ,
such that lev(P,U) ≤ k, contains at least one of these parts. Similarly, if P
is partitioned into k + 2 parts, denoted P1, . . . , Pk+2, then U should contain at
least two disjoint parts of P . The parts do not need to be of the same length.
The following lemma allows to push the analysis further. It is indeed possible to
request that these two parts be separated by parts with exactly one error.

Lemma 1. Let U be a string of A∗ such that lev(P,U) ≤ k. Then there exists
i, j, 1 ≤ i < j ≤ k + 2, and U1, . . . , Uj−i−1 of A∗ such that

1. PiU1 . . . Uj−i−1Pj is a substring of U , and

2. When j > i+ 1, for each `, 1 ≤ ` ≤ j − i− 1, lev(Pi+`−1, U`) = 1.

As a consequence of Lemma 1, we can design a seeding framework for lossless
filtering for the approximate pattern matching problem with k errors. To this
end, we introduce some terminology that will be used in the remaining of the
paper. XXXXX

Definition 1. Let P = P1 . . . Pk+2 be a pattern divided into k + 2 parts. Then
the 01∗0 seed for P and k is the regular expression

∪k+1
i=1 ∪

k+2
j=i+1 Pi lev

1(Pi+1) . . . lev1(Pj−1) Pj

where lev1(u) denotes the set of strings whose Levenshtein distance with u is 1.

The filtration efficiency is the primary criterion used to evaluate the perfor-
mance of a seed. To estimate it, we generated an independent and identically
distributed random sequence of length 108 over the DNA alphabet {A,C,G, T}
as well as 100 patterns of length 20. We then searched for our 01∗0 seed for
k = 3. For each pattern, we counted the total number of occurrences of the seed
in the text, including overlapping occurrences. The distribution is plotted in Fig-
ure 1-(a). The average number of observed occurrences per pattern is 6,665. To
compare with exact seeds, we report analogous results obtained with filtration
based on q-grams in the same text as well as the same collection of patterns.
First, we divide the pattern in k + 1 = 4 parts, leading to q-grams of length
5, which guarantees lossless filtration (Figure 1-(b)). We also divide the pattern
in three parts, of lengths 6, 7, and 7 (Figure 1-(c)). This seed is less sensitive
since it allows for some false negatives. In the first case, the average number of
occurrences is 390,635, and in the latter case, it is 36,644. Both distributions are
shown in Figure 1-(b,c). These empirical measurements show that the 01∗0 seed
is significantly more selective than exact seeds, such as q-grams. Of course, this
higher selectivity comes at the price of some additional work to locate seeds in
the text. However, the fact that errors are not randomly distributed within the
seed drastically reduces the combinatorics.

(a) (b) (c)

6,500

6,600

6,700

6,800

389,000

390,000

391,000

392,000

36,500

37,000

Fig. 1. Distribution of the number of occurrences of three different seeds for 100 pat-
terns of size 20 in a random sequence of length 108. This filtration is done (a) with the
01∗0 seed for k = 3 and m = 20, (b) by dividing the pattern in 4 parts of length 5, (c)
by dividing the pattern in 3 parts of lengths 6, 7, and 7, respectively. For each box plot,
the bottom and top of the box are the first and third quartiles. The band inside the
box is the median, and the ends of the whiskers represent the minimum and maximum
of all of the data. There is on average 26.85 occurrences of the whole pattern within 3
errors.

3 Algorithm

Let T be a text over the alphabet A∗. The problem we consider now is that of
finding matches of P with at most k errors in T . For this we devise an efficient
filtration algorithm based on the seeding framework introduced in Section 2. It is
necessary to keep in mind that we want to search small patterns (several dozens
of letters) in large texts (millions or billions of letters) with small alphabets (e.g.
DNA). We first justify our choice of using a FM-index. Then we explain how
seeds are searched for and how they are extended when necessary.

3.1 Choice of index

As we have biological applications in mind (e.g. searching small DNA sequences
on large genomes), we are in the situation where the text is known in advance.
Moreover, we may have millions of short sequences to be queried in the text.
This situation is particularly suitable for text indexes.

Since patterns do not have fixed sizes, full-text indexes are more appropriate.
Furthermore, to limit space consumption, compressed indexes appear to be the
indexes of choice. Among compressed indexes, FM-indexes [8] have an optimal
time complexity for counting the occurrences of a pattern, while pattern search
is more complex and counting is more time consuming with LZ-indexes [7].

3.2 Seed filtration

Given a pattern P , we enumerate all possible subseeds for the pattern. Each
subseed for P is characterized by two parts Pi and Pj , 1 ≤ i < j ≤ k + 2,
that occur exactly in the text. According to Lemma ??, all the intervening parts
between Pi and Pj must be searched with exactly one error. We recall that in the

FM-index, patterns are searched backwards, therefore, we first start by searching
any part P`, with 1 < ` ≤ k + 2, assuming it is Pj . This is an exact search in
the index. Then the parts preceding P` are searched with at most one error (by
backtracking as in BWA for instance [12]). When a part is found exactly, we
know that Pi has been reached. Starting with P`, we can have several parts that
fulfill our requirements; on reaching different parts Pi1 , . . . , Piq each of them
matching exactly at different locations in the text. All the possible solutions are
searched. If P` cannot be found exactly or if a part cannot be found with at
most one error, this P` is skipped and we move on the next one. Therefore, at

most we will have considered the (k+1)(k+2)
2 possible pairs (i, j).

Example 1. Let us continue with Example ??, also shown in Figure ??: k = 3
and
P = AACG TGAG GTAG GTTC CATG, which is partitioned into 5 parts of equal
length. Assume that this text is the concatenation of the three strings at distance
3 from P :
T =AACGGAGGTAAGTTCTCATGAACGTAGGCAAGTTCCATGATCGTGACGTAGGGTCCATG.

– The algorithm first tries j = 5. P5 = CATG is found with no error in the
FM-index. So, it has some exact occurrences in the text. Therefore, we continue
to go through the FM-index to extend P5 to the left and find all possible values
for i. We find i = 4 (P4 occurs exactly), i = 3 (P4 occurs with one error and P3

exactly) and i = 1 (P4, P3 and P2 occur with one error and P1 exactly). This
gives three different seed instances, leading to three seed occurrences.

P1 P5 P4 P5 P3 P5

AACG TGAG GTAG GTTC- CATG GTTC CATG GTAG GTTC CATG
| |
AACG -GAG GTAA GTTCT CATG AACGTAGGCAA GTTC CATG ATCGTGAC GTAG GGTC CATG

– With j = 4, GTTC occurs exactly in the FM-index, and correspond to two
occurrences in T . By extending P4 to the left, we keep just one instance since
the second one cannot be extended to P3 = GTAG with at most one error.

P1 P4 × P4

AACG TGAG GTAG GTTC GTTC
| | | | | | | | | | | | | | | | | |
AACG -GAG GTAA GTTC TCATGAACGTAGGCAA GTTC CATGATCGTGACGTAGGGTCCATG

Note that in this particular case, the first occurrence of P in T is covered by two
overlapping 01∗0 seeds, characterized by i = 1 and j = 5, and i = 1 and j = 4,
respectively. This redundancy is solved with the extension and verification step,
which is described in the next subsection.

– With j = 3, we have two occurrences of GTAG in the text. The first one cannot
be extended to the left with P2 = TGAG. As for the second occurrence, P2 is
found with one error, but P1 = AACG does not exactly match. So, the occurrence
is discarded.

× P3 × P3

GTAG TGAG GTAG
| | | | | | | | | | |

AACGGAGGTAAGTTCTCATGAAC GTAG GCAAGTTCCATGATCG TGAC GTAG GGTCCATG

– With j = 2, there is no exact occurrence of the part TGAG in the text.

At this point, all the seed instances occurring in the text are identified. We
then proceed to the elongation and verification step.

3.3 Elongation and Verification

To perform the elongation of an instance of the seed, we first need to have
a deeper look at the error distribution along the pattern. We know that the
subseed instance has a Levenshtein distance of j − i − 1 with Pi . . . Pj , which
makes j − i − 1 errors. Via Lemma ??, we know that there are at least k −
j + 2 errors in Pj+1 . . . Pk+2. So, since the total number of errors should not
exceed k, there should be at most i− 1 errors in P1 . . . Pi−1. As a consequence,
each seed instance is first extended to the left, to find P1 . . . Pi−1 with at most
i − 1 errors. To gain more efficiency, this extension is directly carried out in
the FM-index to filter out candidates. Indeed, the retrieval of the positions of
occurrences is the most time consuming part in an FM-index (in O(log1+ε n) per
occurrence [9]). Once this extension is performed, the occurrences of P1 . . . Pj
are retrieved. Then the extension to the right is performed in the text using a
banded dynamic programming algorithm. The starting point of the extension
is the ending position of the occurrence of P1 . . . Pj in the text. Let us assume
that an instance of a given prefix P1 . . . Pj has been found with e errors in the
FM-index. Thus, Pj+1 . . . Pk+2 must be searched with at most k−e errors in the
text. Therefore, the bandwidth is 2 × (k − e) + 1 in the dynamic programming
algorithm. Note that the extension to the right could also have been performed
in the index using a bidirectional Burrows-Wheeler transform [21,3]. That would,
however, increase the memory footprint and provide only a moderate speed up,
since many false positive seed instances have been removed at this step.

3.4 Implementation

Our algorithm was implemented in a software called Bwolo. Bwolo is written
in C++, with the help of SeqAn library and the the FM-Index implemented
within [6]. It is open source and can be downloaded from http://bioinfo.

lifl.fr/bwolo. In this implementation, patterns are divided into parts whose
length differ by at most one character.

4 Experimental Results

In this section, we present some experimental results in order to measure the
performance of our algorithm. We compare Bwolo to a selection of tools that were
chosen for their complementarity. Widely utilized in bioinformatics, Exonerate is
a generic tool for pair-wise sequence alignment, which uses exact sparse dynamic
programming to perform the search. [23]. We use it as a standard for an on-line
exact algorithm for our problem. RazerS3 is a read mapping program based
on counting q-grams [26]. It performs the verification via an implementation of
the improved Myers bit-vector algorithm proposed by Hyyrö [10]. RazerS3 works

without a precomputed index for the text. So, we also selected Bowtie2 [11], that,
like our tools, indexes the text with an FM-index. It then uses backtracking for
handling errors and dynamic programming to build the full alignment. Lastly, we
used an in-house implementation for approximate search in an FM-index written
with the SeqAn library. It is based on a simple breadth-first search method with
no prior filtration. Unfortunately, we were not able to include hybrid methods
described in [19] in our benchmark, since the implementation is not available.

All these tools were configured to be full sensitive and output all occurrences
of the pattern: option --exhaustive for Exonerate, --filter pigeonhole

--percent-identity [Id] --recognition-rate 100 such that [Id] = 100 ×
(1− k

m) for RazerS3 and -a -L [Seeds] -i C,[Seeds],0 such that [Seeds] = m
k+1

for Bowtie2. Moreover, for each tool the score system is based on the unit score,
which computes the Levenshtein distance.

The tests were run on a single thread of a server equipped with two Intel(R)
Xeon(R) CPU E5-2420 and 205GB of RAM. The CPU time and the memory
consumption were measured using the GNU time command.

4.1 Randomly generated sequences

This first test uses independent and identically distributed sequences on the
DNA alphabet. The size n of the sequences ranges from 104 to 109. We also
generated 100 patterns of 20 nt at random and measured the computation time
of each tool for k = 2 and k = 3. Results are shown in Figure 2.

In both cases, Bwolo is the fastest tool for long sequences, from 106 nt. As
expected, the added-value of Bwolo is even more obvious when k = 3. Tools
with no filtration, Exonerate and the exact search in the FM-index, are slow.
Bowtie2 operates slowly compared to all the other tools, especially with larger
values of n. This confirms that Bowtie2’s heuristics, which have been designed
for long patterns (at least 50 nt) and few errors, is not well adapted to shorter
patterns with higher error rate. Unfortunately, there is not yet a specialized tool
for this type of problem. In our benchmark, Bowtie2 is obliged to use a seed
with low filtering power that lets too many occurrences happen. This dramati-
cally increases the verification effort due to the cost of retrieving text positions
from the FM-index. Interestingly enough, RazerS3, which uses the same seed,
functions well on this data. This is consistent with the fact that a linear method
can, in certain conditions for large k and n, be more efficient than a method
based on a text index [16]. However, Bwolo is still five times faster than RazerS3
for sequences of length 109. Indeed, the number of seed occurrences is an order
of magnitude less with Bwolo, which offsets the additional time needed to query
the FM-index in the verification step.

For k = 2, we can observe that there are fewer differences in the CPU time
between FM-index and Bwolo on larger texts. The former takes 18.4 s on the
1GB sequence while the latter takes 13.8 s. This small difference is actually
misleading. Loading the index from disk (which is the same in both cases) and
unserializing the data structures takes 12 s on that same sequence. Ignoring the
loading of the index leads to a three-fold speedup using the 01∗0 seeds compared

to the breadth-first approach. With a higher error rate (k = 3) we have a seventy-
five-fold speedup on the 1GB sequence. For the sake of comprehensiveness, we
should mention that RazerS3 takes 8s to load the 1GB sequence from disk.

104 105 106 107 108 109
10−2

10−1

100

101

102

103

104

Sequence length

T
im

e
(s
ec
o
n
d
s)

k = 2

104 105 106 107 108 109

Sequence length

k = 3

Bwolo FM-index Bowtie2 Exonerate RazerS3

Fig. 2. Running time for 100 randomly generated sequences. Both axes are in log-
arithmic scale. Bwolo is our algorithm. FM-index refers to the breadth-first search
implementation in a FM-index.

All tools have a reasonable memory consumption, independent of the value
of k, which grows linearly with the size of the text. For example, it is 27 MB
for Bwolo, 99 MB for Bowtie2, 25 MB for RazerS3, and 31 MB for Exonerate
for n = 107. The memory consumption of Bwolo and Bowtie2 is dominated by
the size of the FM-index. It is larger for Bowtie2 because it also deals with the
inverted text and uses a different implementation. It is quite surprising that
RazerS3 and Exonerate have a memory peak in the same order. It may be
possible that they load both all the text and keep all results in memory.

4.2 Reads from the Human genome

In order to test our algorithm with an external dataset made of short sequences
we relied on the work done by Schbath et al [20]. Their H3 dataset contains
10 millions of reads of length 40nt that have been generated from the Human
genome (assembly 37.1 from the NCBI, 25 chromosomes for 2.7 Gbp) with ex-
actly three mismatches. Compared to the previous test, it allows us to evaluate
the performance of the software with longer patterns, hence longer seeds. The

maximum number k of errors is 3 (including indels, not only substitutions). We
ran Bwolo, RazerS3, and Bowtie2 on the full set of reads (107 reads). Since we
were not able to obtain results with Bowtie2 on the full dataset within a reason-
able amount of time, we also used a random selection of 10,000 reads. Table 1
shows the results. As in the previous test, Bwolo achieves the best performances.
However, the difference between Bwolo and RazerS3 was even more striking than
in the previous test. This is due to the time needed to load the index. It was
negligible on this dataset, but it constituted an important part of the search
time with a much smaller dataset in the previous test.

index construction 10, 000 reads 107 reads

time memory time memory time memory

Bwolo 7, 594 9, 584 97 6, 522 55, 493 9, 054
RazerS3 0 0 502 6, 469 467, 413 152, 045
Bowtie2 10, 584 5, 379 156, 164 8, 260 NA NA

Table 1. Running time on the Human genome benchmark. All times are in seconds,
and the memory in Mo. NA: non available.

5 Conclusion

We have introduced a new seed framework, which we named 01∗0 seeds. These
seeds achieve a good balance between the filtration step and the verification
effort. Moreover, we have shown that they can be efficiently searched in a com-
pressed full-text index, such as the FM-index. We believe that this method is
especially well-suited to deal with patterns containing a high rate of errors and
constitutes a promising alternative to existing algorithms. In this paper, we chose
to show how to apply these seeds to searching a preprocessed text stored in an
index. Our results offer some other perspectives. For instance, when dealing with
a large collection of patterns, preprocessing them would allow us to take advan-
tage of the parts that are shared among several patterns in order to speed up the
algorithm. The filtration algorithm could also be applied online. Identifying the
01∗0 seeds requires us to identify an exact part first, which we then extend to
the 1∗ parts. This can be performed efficiently using bit-wise operations. Once
the seeds are identified, we can compute the left and right extensions using a
bit-parallel algorithm [14].

The generalisation of 01∗0 seeds to (01∗)ε0 could also be promising in further
studies. This would not be as straightforward as one would think, since splitting
the pattern in k + 1 + ε parts is not sufficient.

Finally, albeit having been beyond the scope of this paper, an important
aspect to thoroughly analyze would be the average case of our algorithm, as
Baeza-Yates and Perleberg did in [1].

References

1. Baeza-Yates, R.A., Perleberg, C.H.: Fast and practical approximate string match-
ing. Information Processing Letters 59(1), 21–27 (1996)

2. Belazzougui, D.: Improved space-time tradeoffs for approximate full-text indexing
with one edit error. Algorithmica pp. 1–27 (2014)

3. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) Algorithms – ESA 2013, pp. 133–144. No. 8125 in Lecture
Notes in Computer Science, Springer Berlin Heidelberg (2013)

4. Chan, H.L., Lam, T.W., Sung, W.K., Tam, S.L., Wong, S.S.: A linear size index
for approximate pattern matching. J. of Discrete Algorithms 9(4), 358–364 (2011)

5. Chávez, E., Navarro, G.: A Metric Index for Approximate String Matching. In:
Rajsbaum, S. (ed.) LATIN 2002: Theoretical Informatics, pp. 181–195. No. 2286
in Lecture Notes in Computer Science, Springer Berlin Heidelberg (2002)

6. Döring, A., Weese, D., Rausch, T., Reinert, K.: SeqAn an efficient, generic C++
library for sequence analysis. BMC bioinformatics 9(1), 11–19 (2008)

7. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
From theory to practice. J. of Experimental Algorithmics (JEA) 13, 12 (2009)

8. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM (JACM)
52(4), 552–581 (2005)

9. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. on Alg. (TALG) 3(2) (2007)

10. Hyyrö, H.: A Bit-vector Algorithm for Computing Levenshtein and Damerau Edit
Distances. Nordic J. of Computing 10(1), 29–39 (2003)

11. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature
methods 9(4), 357–359 (2012)

12. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics (Oxford, England) 25(14), 1754–1760 (2009)

13. Maaß, M.G., Nowak, J.: Text indexing with errors. J. of Discrete Algorithms 5(4),
662–681 (2007)

14. Myers, G.: A Fast Bit-vector Algorithm for Approximate String Matching Based
on Dynamic Programming. J. ACM 46(3), 395–415 (1999)

15. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys (CSUR) 33(1), 31–88 (2001)

16. Navarro, G., Baeza-Yates, R.: A Hybrid Indexing Method for Approximate String
Matching. J. of Discrete Algorithms 1, 19–27 (2001)

17. Navarro, G., Sutinen, E., Tanninen, J., Tarhio, J.: Indexing text with approximate
q-grams. In: Combinatorial Pattern Matching. pp. 350–363. Springer (2000)

18. Petri, M., Culpepper, J.S.: Efficient indexing algorithms for approximate pattern
matching in text. In: Proceedings of the Seventeenth Australasian Document Com-
puting Symposium. p. 9–16. ADCS ’12, ACM, New York, NY, USA (2012)

19. Russo, L., Navarro, G., Oliveira, A.L., Morales, P.: Approximate string matching
with compressed indexes. Algorithms 2(3), 1105–1136 (2009)

20. Schbath, S., Martin, V., Zytnicki, M., Fayolle, J., Loux, V., Gibrat, J.F.: Map-
ping Reads on a Genomic Sequence: An Algorithmic Overview and a Practical
Comparative Analysis. Journal of Computational Biology 19(6), 796–813 (2012)

21. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees. In: CPM, pp. 40–50. No. 6129 in LNCS, Springer (2010)

22. Shah, S.A., Hansen, N.R., Garrett, R.A.: Distribution of CRISPR spacer matches
in viruses and plasmids of crenarchaeal acidothermophiles and implications for
their inhibitory mechanism. Biochemical Society Transactions 37(1), 23 (2009)

23. Slater, G.S.C., Birney, E.: Automated generation of heuristics for biological se-
quence comparison. BMC Bioinformatics 6, 1–11 (2005)

24. Stern, A., Keren, L., Wurtzel, O., Amitai, G., Sorek, R.: Self-targeting by CRISPR:
gene regulation or autoimmunity? Trends in genetics 26(8), 335–340 (2010)

25. Storz, G., Altuvia, S., Wassarman, K.M.: An abundance of rna regulators. Annu.
Rev. Biochem. 74, 199–217 (2005)

26. Weese, D., Holtgrewe, M., Reinert, K.: RazerS 3: Faster, fully sensitive read map-
ping. Bioinformatics 28(20), 2592–2599 (2012)

27. Wu, S., Manber, U.: Fast text searching: allowing errors. Communications of the
ACM 35(10), 83–91 (1992)

