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Abstract—Biped walking is a complex task, but usually with
a natural limit-cycle behavior when walking on an even ground.
However, perturbations during walking can make the robot fall.
Several works addressed the issue of measuring the robustness
to disturbances, and most methods study the effect of a single
perturbation. But when walking, the disturbances can be mul-
tiple, such as walking on rough terrains. The metastability is a
concept that helps studying the case of multiple disturbances.
The performance measure is the expectation of the time during
which the robot can keep balance. However, until today, only two
methods permit to measure this metrics: the discretization of all
the state-space and the Monte-Carlo sampling. The former one
cannot address high dimensional state-space and the latter is too
much time-consuming when the falls are rare. We propose here
a solution for walkers with high-dimensional states, even when
falls are very rares. The novelty of this method is to rely on the
property that limit-cycle walkers may return to the limit-cycle
several times before to fall. This method is even extended to the
cases of bifurcations or chaos. We illustrate the performance of
the approach with a simulated high-dimensional actuated walking
system.

I. INTRODUCTION

Legged walking is a complex, non-linear, and highly con-
strained task. Nonetheless, the simplifications made by re-
searches in biomechanics, neuroscience and robotics enabled
synthetic discoveries on elementary models. One among the
most important of these results is the limit-cycle property of
stable walking on flat terrain, whether for humans or artificial
walking systems. The limit-cycle describes a balanced state of
walking, and enables to evaluate some characteristics such as
energetic efficiency.

The most prominent models for artificial energy-efficient
biped walking are the passive-dynamic robots [9]. These
robots are able to produce stable gaits on shallow slopes
without any other source of energy but the gravity. Also, the
gait of these walkers have a natural convergence to a limit
cycle that depends only on the natural passive dynamics of
walking. These models have been extended to flat ground
by adding small actuators while keeping most of the passive
dynamics and the limit cycle properties [4]. These robots are
known to have the closest energy-efficiency to humans [1].

However, by making these simplifications and idealizing the
environment, the roughness of real grounds is not considered.
Nevertheless, the robustness to unexpected disturbances is
among the most important differences in walking perfor-

mances between humans and robots. For example, robots
show very high sensitivity to disturbances due to ground
unevenness [6], while humans show impressive capabilities
to reject large disturbances. Actively controlled robot have
usually specific criteria to respect to keep “balance”, such
as keeping the center of pressure strictly inside the support
convex polygon (see [13] for an overview of balance criteria of
walking systems). Violating the balance criteria leads generally
to an unavoidable fall. On the contrary, for most passivity-
based limit-cycle walkers, there is no formal definition of a
balance criterion; because the joint positions are not actively
controlled, and the natural dynamic passivity leads to an
unpredictability on the outcome of the perturbation. Therefore,
there is usually no way to decide whether a state is balanced
or not, except to wait for a stable gait or a fall.

The improvement of limit cycle walking systems in terms
of disturbance rejection requires to be able to quantify and
to compare the capabilities of the robots facing perturbations.
Several methods were created to evaluate these performances.
Some of these methods evaluate the range of perturbations
that can be handled by the walker, such as measuring the size
of the basin of attraction of the limit-cycle [11], or simply
quantifying the biggest perturbation that can be absorbed by
the walker. Other methods evaluate the rate of convergence to
the limit cycle after small perturbations (the largest Floquet
multiplier [9] or the Gait Sensitivity Norm [7]).

These metrics cannot show the walker performances against
repetitive disturbances such as on rough terrains. That’s
because the two first ones measure the effect of a single
perturbation, and the latter ones are local and do not model
the non-linearity of the system when getting away from the
vicinity of the limit-cycle.

Byl and Tedrake proposed an alternative method to estimate
the balance performance of a walker, using the concept of
metastability [3]. It consists at considering that, on rough
terrains, the probability of falling tends to 1 as time goes to
infinity, for any walking system. Therefore, one good way to
evaluate the robustness of a walker is to evaluate the expecta-
tion of the number of steps that the robot can achieve before to
fall, which is also called the mean first-passage time (MFPT).
However, the proposed method to compute this expectation is
based on a Markov chain model, and requires a discretization
of all the state space. This can be possible for low dimensional



robots but becomes computationally unrealistic for complex
walking systems. An alternate way to compute the MFPT
is to try a Monte-Carlo sampling method, which has the
advantage of a high accuracy in the evaluation MFPT and an
arbitrary precision in the state description, but requires very
long simulations when failures are rare [2]. Making failure
as rare as possible is the objective of the optimization in the
design of walking systems. The Monte-Carlo method is then
very restrictive.

Our contribution is to extend the metastability study to
high dimensional limit-cycle walking systems, while keeping
reasonable simulation time. The novelty of our method relies
on the property that limit-cycle walkers may return to the limit-
cycle several times before to fall1. We show that this property
performs noticeably well to estimate MFPT, especially for very
rare falls.

In the next section, we present the metastability concept
and its application to limit-cycle walking systems subject to
stochastic perturbations. Then we introduce the algorithm to
compute MFPT and we show how it can be extended to
bifurcations and chaos. In Section III, we present an example
of a high-dimensional robot that has an important variability
in its limit-cycle, and we show how we measured MFPT. In
SectionIV, we conclude our paper with a discussion about the
advantages and the limitations of the approach.

II. METASTABILITY ANALYSIS OF WALKING

A. Limit-cycle walking: a metastable system

The metastability is the property of some stochastic dynamic
systems to keep a specific behavior for long periods, but being
guaranteed to leave this state after a sufficiently long time [12].
The system reaches then what is considered as a failed state
(see Figure 1). This class of systems can be found in several
fields: such as chemical reactions, crystalline structures, brain
wave patterns, etc. Computing MFPT is a usual way to
estimate the stability of such kind of systems [10].

A

Fig. 1. The perturbations can take away the system from the metastable
state ‘A’. If the system escapes its basin of attraction, it may fall in a deeper
“failed” basin. When the failed state is absorbing, the system never gets back
to the metastable state.

Walking on rough terrain is also a metastable system: the
limit-cycle is an attractive balanced state, and the fall is
considered as an absorbing failed state. An absorbing state
is a state from which the system cannot escape.

1Section III presents an example where this property appears.

In order to study the balance performances of a limit-
cycle walker, it is usual to take profit from the periodicity of
walking, by considering the time-discretization constituted by
a Poincaré map. The Poincaré map describes the intersection
of the state vector with a manifold while evolving in time. For
walking case, the manifold is provided naturally from a cyclic
event during the gait, and is generally defined by ‘the impact
instant of the swing leg on the ground’. Let’s note R the set
of all possible states at impact. The state dynamics between
the impacts can be described with a discrete-time dynamic
system:

xk+1 = f(xk, wk) (1)

Where xk ∈ R is the state vector of the walker at the k-
th impact; wk represents the perturbations that happen during
the k-th step and f is the function that describes the dynamics
during the step.

This function associates to each state xk ∈ R and a
perturbation wk the return state xk+1, which belongs to R
only when the walker does not fall during the step. The fall is
a state where there is a contact between a non support limb and
the ground. Let’s define then a “fallen state”

×
x that gathers all

possible states of a fallen walker. This simplification permits
to define the Poincaré manifold as R∗ = R∪ ×

x, and to extend
the function f by defining that

∀w, f(
×
x,w) =

×
x (2)

which means that the walker cannot get up once it has fallen,
making the fall the absorbing failed state.

The walker has an attractive limit cycle, which is often a
periodic one-step trajectory which intersects R at a given state
x̆ (pronounced “x-breve”). In contrast, in some cases, there are
multiple period bifurcations and even chaotic behaviors during
the limit-cycle [5]. In such cases, the limit cycle intersects R
in a set of states instead of one. These cases will be discussed
in Subsection II-C. For now, we consider x̆ as the unique state,
which corresponds to the fixed point of the system when no
perturbations occur (see Figure 2):

f(x̆, 0) = x̆ (3)

This walking system subject to perturbations can be con-
sidered as an infinite state machine with two specific states
which are the limit-cycle x̆ state and the absorbing fallen state
×
x (Figure 3).

B. Computing the mean first passage time

In our context, we define MFPT as follows: starting from a
given initial state x0, MFPT is the expectation of the number of
returns that the walker can make before falling. In other terms
it is m = E(K) where K ∈ N s.t. xK 6=

×
x and xK+1 =

×
x.

The initial state x0 may take any value, but let’s consider it,
for now, as equal to the limit-cycle state x0 = x̆.

In fact, this definition of MFPT does not provide the actual
time of the first passage, but gives the number of steps instead.
This can seem misleading, because the steps do not necessarily



Fig. 2. A 3D line representing the state of the limit-cycle walker with no
perturbations. The intersecting plane is the Poincaré manifold, the thickest
ring is the limit cycle and the seperate vertex is the fall-state. When starting
from a state in the basin of attraction of the limit-cycle, the state intersection
with the Poincaré manifold converges to x̆. When starting from a position
outside this basin of attraction, there is a fall.

Fig. 3. The limit-cycle walker subject to perturbations as a state transition
system. The cloud represents the set of states that are neither fall nor limit-
cycle state.

last the same time, and it can be possible that, in some cases,
few steps last longer than more ones. However, we prefer
this definition because it enables to compare different robots.
Indeed, a small robot has faster dynamics than a taller one,
and it may have shorter MFPT while showing better (scaled)
disturbances rejection.

A stochastically rough terrain is a terrain with a texture, for
which the unevenness follows a probability distribution; this
is considered as a stochastic perturbation for a robot designed
to walk on flat surfaces. As stated before, we assume that on a
stochastically rough terrain, the probability that the robot falls
tends to one as the number of steps goes to infinity:

lim
k→∞

P (xk =
×
x) = 1, (4)

And if the robot does not fall, the probability that the robot
comes back, at least once, to the limit-cycle tends to one as the
number of steps grows. In other terms for any neighborhood
V (x̆) of x̆ in R:

lim
k→∞

P (∃k0 ∈ N∗ xk0
∈ V (x̆)|xk 6=

×
x) = 1 (5)

The proposed algorithm relies on these two statements to
consider the walking process as a Bernoulli trial: (i) either the
robot falls or (ii) it comes back to the limit cycle. Coming
back to the limit cycle can be approximated by checking if
the state belongs to a given neighborhood V (x̆) of x̆ which is
small enough to be considered as a good approximation. This
trial has a probability of fall pf and a probability of limit-
cycle return (1 − pf ). The robot stops at any falling trial.

Walking then follows a geometric distribution: a Bernoulli
process which stops at the first fail. The expectation of the
number of returns is then:

r =
1− pf
pf

(6)

The mean number of returns does not give the mean number
of steps. But if we know mr the mean number of steps of a
return and mf the mean number of steps of a fall, MFPT can
be estimated by:

m = rmr +mf (7)

The estimations of pf , mr and mf can be obtained by
repeating trials. Each trial starts from x̆, and stops either at x̆
or at

×
x. We denote p̂f , r̂, m̂r and m̂f the estimations of pf ,

r, mr and mf respectively.
Let’s evaluate the number of walking steps which are

required in order to obtain a good approximation of this value.
Suppose that, in order to have the desired precision, we want
to make a ∈ N trials. If we use the Monte-Carlo method, we
will have to wait for nMC = a.m̂ steps to obtain the evaluation
of m. But if we use our method, we will have to wait only
for

n = a m̂f p̂f + a m̂r(1− p̂f ) = a m̂ p̂f (8)

which can be dramatically less than nMC when the falls are
rare, and never more than nMC . Note that when pf is equal
to zero we have m =∞. In that case, Monte-Carlo sampling
is unsuitable, while our method takes n = a.m̂r (from (8)).

The method efficiency relies on the fact that the robot has a
non-negligible probability to come back to the limit-cycle state
before to fall. However, statement (5) may be wrong for special
kinds of perturbations. For example, if perturbations create a
new fixed point x̆′, then the walker never reaches x̆ when
starting from x̆′. In that case, the previous developments are
still valid, but our method may have less advantages compared
to Monte-Carlo sampling because the value of (1 − pf ) may
be too small. In fact, our method can be applied with the state
x̆ having any value, but the biggest possible return probability
(1− pf ) permits to have the fastest sampling.

So, what happens if we start from another state x0 which is
not the limit-cycle state? Then, the statements (4) and (5) can
still be reasonably considered true. In that case, we still can
take profit from them and use both x0 and x̆ as starting state.
That requires then a twofold sampling, the first starting from
x0 and the second starting from x̆. Beside the values pf , mf

and mr, we need, starting from x0, to estimate also (i) the
probability to fall without reaching the limit-cycle pf,0, (ii)
the mean number of steps needed to fall mf,0, and (iii) the
mean number of steps needed to reach the limit-cycle mr,0.
The new MFPT is then estimated by:

m̂ = p̂f,0 m̂f,0 + (1− p̂f,0)(m̂r,0 + r̂ m̂r + m̂f ) (9)

where p̂f,0, m̂f,0 and m̂r,0 are the estimates of pf,0, mf,0 and
mr,0, respectively.



C. Bifurcations and chaos

For some cases of limit-cycle walking systems, there exists
multiple period bifurcations which can multiply the duration of
a limit cycle. The bifurcations happen for passive walkers on
steep slopes [5], or for limit-cycle robots on repetitive terrains,
such as treadmill belts. For some cases the bifurcation spreads
until creating what is called a chaotic behavior [5]. In this case
the fixed point is not stable anymore. Instead, there is a set of
states {x̆1, ..., x̆l} such that:

∀i ∈ {1, ..., l − 1}, f(x̆i, 0) =x̆i+1 (10)
and f(x̆l, 0) =x̆1 (11)

(see Figure 4(a)). When subject to perturbations, the steps can
lead from any state to any other, and for a period long enough
eventually fails (see Figure 4(b)).

Bifurcations may be handled by three different methods.
Method 1- To consider only one limit state: Let’s con-

sider, without loss of generality, that x̆ = x̆1. In this case,
Property (5) holds, and we can apply the method shown
in the previous subsection. However, the return probability
(1 − pf ) can be very low for high number of limit-cycle
states. Therefore the advantage to Monte-Carlo method is less
interesting.

Method 2- The Markov chain model: Another solution is
to consider the walking system as a stochastic finite-state
machine (a Markov chain model) with an absorbing state

×
x

and the other states x̆1, ..., x̆l. When the walker is not in any
of these states, it is considered in transition (see Figure 4(c)).
Compared to the Markov chain model presented by Byl and
Tedrake [3], one transition does not represent one walking step
but potentially several ones.

In this case, we need to sample differently: starting from
each states x̆i and x̆j we estimate (i) the transition distribution
(the probability tij = P (xk+1 = x̆j |xk = x̆i)) and (ii) the
mean number of steps mij required to go from x̆i to x̆j .

For notation simplification, we denote the fall-state
×
x

by x̆0. This gives the the matrix M = (mij) and the
probability transition matrix T = (tij) whose first line is[
1 0 · · · 0

]
because of the absorbing fall-state. Let’s

define m =
[
m1, · · · ,ml

]t
being the vector of all MFPTs of

the limit-cycle states x̆1, ..., x̆l. Vector m is easy to compute,
by considering the relationship:

mi =

l∑
j=0

tij(mij +mj) (12)

with m0 = 0 being MFPT for the fall-state. This provides the
following single-shot computation:

m = (I − T̊ )−1


∑l

j=0 t1jm1j

...∑l
j=0 tljmlj

 (13)

where T̊ is T with removed first row and first column.
This model does not rely on the bifurcation properties of

the limit-cycle of the walker. In fact, it holds for any set of

states x̆1, ..., x̆l. The method can be, for example, adapted to
create partial discretization of the state space, e.g. around a
limit-cycle. This would enable to reduce the fall probability
pf , but with a loss of accuracy because of the discretization. In
that sense, our method constitutes a compromise between the
method of Byl and Tedrake [3] (full state-space discretization)
and Method 1.

(a) Without perturbations (b) Subject to perturbations

(c) The Markov chain model (d) The limit kernel method

Fig. 4. A simple example of three-states bifurcation. The cloud represents
the set of states that are neither fall nor limit-cycle state. The doubled arrows
represent transitions of the Markov chain model, and each transition between
x̆i and x̆j takes the mean number of steps mij . The shape labeled ‘X̆’
represents the approximation of the set of limit-cycle states.

Method 3- The limit kernel method: Method 2 shows
several advantages in the case of bifurcations. However, if
the number of the limit-cycle states is too large, for example
in chaotic behaviors, the required matrix can take a lot of
memory (theoretically infinite). We then suggest to make an
approximation X̆ of the set of all state-space which is reached
by this limit behavior, and to use Method 1 with X̆ as limit
state.

We call X̆ the limit kernel. The method creates a loss
in the accuracy of MFPT estimation, which is likely an
overestimation of its actual value. That is because a non limit-
cycle state x could lie inside X̆ , but non limit-cycle states are
usually less balanced than limit-cycle ones; thus the balance
of the state x is overvalued. Note that a too big kernel leads
to overestimate MFPT while too small kernel to a higher fall-
without-return probability pf and makes MFPT longer to be
estimated. In addition, X̆ must be defined in such a way that
we must be able to know whether a given state x is inside X̆
or not.

In the following section we present an example of a limit
kernel approximated by a multidimensional ellipsoid using
the covariance matrix of the limit-states set. The example
does not show a true chaotic behavior (a chaos due to the
dynamics of the system itself), but the rounding and the time-
discretization of our numerical simulations create a big set of
limit-cycle states. Then we show that it is possible to reach
high accuracy in MFPT estimation with a relatively loose-
fitting approximation.



III. EXAMPLE: A 4-DOF 2D ROBOT

A. Robot geometry and actuation

The walking robot model we consider is depicted in Fig 5.
It moves in the sagittal plane. The robot bodies consist of a
rigid upper body with two masses, one around the middle of
the segment (torso) and another at the top (head); and two
rigid legs with a mass on the segment. Each leg is equipped
with a prismatic spring-damper located between the mass and
the ground. We call toe, the bottom of the mobile part of the
leg. The hip-toe length lp at the rest position of the spring is
denoted by lp,0. The masses distribution and limbs proportions
taken for the simulation are anthropometric (Table I).

X

Z

+

Fig. 5. A sketch representation of the actuated 4 DOF model

lh = 0.535 m lt = 0.375 m lp,0 = 1 m ll = 0.40 m
mh = 0.5 kg mt = 4.5 kg ml = 1.5 kg

TABLE I
THE PARAMETERS VALUES OF THE SIMULATED ROBOT

The robot is considered to be always walking, that means
that there is always at least a contact between a toe and the
surface of the ground. If this condition is not satisfied, the
robot is considered as fallen. The so-called stance leg is the
leg in contact with the ground. The other leg is called the
swing leg. When a leg is in a swing phase, its toe comes back
instantly to the rest position of the spring, so the length of
the swing leg is constant with value lp,0. We denote by lp the
length of the stance leg.

The state vector of the robot is: x =
(
θ, θ̇, η̇, φ, α, α̇, lp, l̇p

)
where θ̇ is the time-derivative of θ.

The simulations are performed using the dynamic simulator
ODE with a time discretization of 1 KHz. A special simulation
time sample is set to 0.1 ms at the double support instant in
order to increase the physical realism of the impacts. Impacts
are considered inelastic and contacts are considered perfect
with no slipping.

The toe of the stance leg follows a passive spring-damper
behavior. The force applied to the ground has a proportional-
derivative (PD) expression:

ft = −Ktoe,p(lp − lp,0)−Ktoe,d.l̇p (14)

where Ktoe,p is the elasticity of the spring and Ktoe,d is the
damping factor. At the instant of raise-up of the stance toe, a
velocity controlled impulsion is applied to the ground to give a
propulsion to the robot (Figure 6). The force is automatically
computed by the dynamic simulator to provide the desired
velocity:

ft = h(l̇p,r) (15)

where l̇p,r is the given desired velocity and h is the speed-
referenced controller. The force ft is applied during one time-
step of simulation.

Fig. 6. The actuation and passivity of toes

The inter-leg joint is also controlled. The actuator is a pure
torque generator controlled by a simple PD that generates a
torque toward a reference angle:

τh = −Khip,p(θ − θr)−Khip,d.θ̇ (16)

where Khip,p is the proportional gain, θr is the reference angle
and Khip,d is the derivative gain. In order to preserve the
natural dynamics of the legs the values of the gains are small.

The trunk is stabilized to keep an upright orientation.
Among the several methods for controlling the upper body,
we choose the solution that generates a torque between the
stance leg and the trunk. By doing so, we leave the passivity
of the swing leg creating a more efficient motion [8]. The
trunk torque is actuated by a pure torque generator, controlled
by a PD that brings back the torque to vertical:

τt = −Ktrunk,p.α−Ktrunk,d.α̇ (17)



where Ktrunk,p is the proportional gain and Ktrunk,d is the
derivative gain.

The values of all these parameters appear in Table II.

Ktoe,p = 5000 n/m Ktoe,d = 200 n.s/m l̇p,r = 1 m/s
Khip,p = 1 n.m/rad Khip,d = 0.15 n.m.s/rad θr = 0.3 rad

Ktrunk,p = 30 n.m/rad Ktrunk,d = 15 n.m.s/rad

TABLE II
THE ACTUATION/PASSIVITY PARAMETERS OF THE ROBOT

B. The limit kernel

When starting the simulation on a flat ground from a state
in the basin of attraction, the robot reaches a limit behavior
within few steps. Figure 7 shows a phase plot of the inclination
of the left leg over the time during the limit-cycle. The limit
cycle seems to be unique, but there is a variability in the state
vectors xk when meeting the Poincaré manifold: the thickness
of the curve is the overlay of many curves. This variability is
probably due to the time-discretization and rounding errors.
This means that there is no real asymptotically stable fixed-
point of the system, and a we have very large set {x̆1, ..., x̆l}.
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Fig. 7. Phase plot of the limit-cycle of the left leg inclination during several
walking steps, each cycle here has a duration of 2 steps.

Our idea is to study the distribution of these states in the
multidimensional space. We made a rough sampling of the
state space (8000 initial states) and we ran a simulation from
each of them. The simulations for the states that lie into the
basin of attraction reached the limit cycle. In order to be sure
to catch most of the possible dynamics of the limit-states, we
recorded the states for each successful simulation, between the
400th and the 500th step, obtaining 3000 values of x̆i.

To analyze the obtained values of the limit cycle, we have
used principal components analysis (PCA). In Figure 8, we
see that the three first vectors carry the most important part
of the variability. Within the directions of these vectors, the
distribution is regular and reaches its maximum around its
mean value. This suggests that a multidimensional ellipsoid
can fit well the points cloud. An ellipsoid is an easy shape
to define: a state is inside the ellipsoid if and only if its
distance to the center is under a threshold d0. What we mean

by distance here is an anisotropic metrics defined by a semi
positive definite matrix.

(a) Principal components ratios (b) The 1st principal component

(c) The 2nd principal component (d) The 3rd principal component

Fig. 8. The PCA of the limit-cycle states values. We see in (a) that the
three first components carry most of the information. In (b), (c) and (d) we
see histograms of their distribution.

We propose to use the distance defined by the inverse of the
covariance matrix of the set of states (cov({x̆1, ..., x̆l}))−1.
However, the covariance matrix can be non-invertible. For
example, the value φ is always at zero during double sup-
port, creating a zero column/row in cov({x̆1, ..., x̆l}). So, the
solution is to use the Moore-Penrose pseudo-inverse of the
covariance matrix C = (cov({x̆1, ..., x̆l}))+. The function of
distance to the center is then defined by:

d(x) = (x− x̄)tC(x− x̄) (18)

where x̄ is the mean value of {x̆1, ..., x̆l}.
Note that even if the pseudo-inverse solves the problem

of non-invertibility, this new distance ignores completely the
null-space of the covariance matrix. That means that whatever
the value of φ, the distance is constant. As a consequence, a
special treatment must help to decide whether a state is in the
Kernel or not. We choose to follow the same choice as Byl
and Tedrake [3]: we ignore φ in the MFPT estimation. This
makes our limit kernel approximation oversized.

Figure 9 shows the distribution of the values of d(x̆i). Most
of the distances to the center are less than 20 while all of them
are less than 40. In order to show that a relatively loose-fitting
shape can be enough to estimate correctly MFPT, we take the
threshold d0 = 1000.

C. Simulation results

The model of perturbations we propose is to change at each
step the slope of the ground (see Figure 10). The slopes follow
a Gaussian white noise. The variance of the Gaussian defines
the texture of the ground. This kind of perturbations has the
advantage to not require any scaling, regarding the size of the
robot, because this perturbation is equivalent to a step down or
a step up with a height which is proportional to the walking-
step length.



Fig. 9. A histogram of the repatition of d(x̆i). There is no state at almost 0
distance because the multidimensional space is very small for small distances.

Fig. 10. The perturbations model. Each step has a different slope inclination.
The inclinations follow a Gaussian white noise.

We ran the algorithm described in Section II-C with the
ellipsod as a limit kernel and starting with x0 = x̄ and
a = 100000 trials were performed for each slope variance.
The results are shown in Figure 11(a). The robot has infinite
estimated MFPT until 0.05rad of standard deviation for the
ground slope. We know that this estimation is inaccurate,
but it suggests that the true MFPT is much higher than the
biggest MFPT we can evaluate with simulation techniques.
We qualify this value as being virtually infinite. While the
variance increases, MFPT decreases rapidly to reach less than
10 steps.

More importantly, Figure 11(b) compares the number of
steps required by Monte-Carlo sampling and by our method.
Considering that we simulate 100 steps in 4 seconds, the total
time required to get these results when using our method is of
48 hours, while using Monte-Carlo sampling takes 319 hours.
Such time costs have been estimated without considering the
0.05 rad case. including this case is out of the scope of Monte-
Carlo method, while it takes only 1.3 hour for our method to
estimate the virtually infinite MFPT.

In order to evaluate the accuracy of our method, we also ran
a classical Monte-Carlo simulation for the case 0.1rad. MFPT
estimation was 22.66 steps, while it was 22.75 steps with our
method. This shows an overestimation of 0.37% only but with
50% less simulation time.

We have seen through this example a relatively loose fitting
limit kernel which enabled an accurate and a much faster

estimation of MFPTs, especially for rare fall cases. Beside
the gain over Monte-Carlo, our method has several advantages
compared to other measures of robustness to disturbances, as
discussed below.

(a) MFPT estimations for different ground texture.

(b) The number of simulated steps required for the estimation.

Fig. 11. MFPT estimation and the number of steps required for the
estimation. Both are in logarithmic scale.

IV. DISCUSSION

This section presents the benefits of our method over the
existing approaches as well as its limitations.

In contrast to the previous robustness estimators, the
metastability based estimator enables to analyze the effect of
repetitive disturbances for which Property (5) holds. Indeed,
the Floquet multiplier and the gait sensitivity norm methods
study the convergence to the limit-cycle after a small pertur-
bation. These approaches can be extended to the presence of
repetitive disturbances but they remain local around the limit-
cycle. They cannot show under which conditions the robot
would fall. Furthermore these methods become less suitable
in the case of bifurcations, and unable to address the case of
chaos.

Some other methods, such as searching the largest admis-
sible perturbation and measuring the size of the basin of
attraction, are more global and do not need the presence



of a stable limit-cycle. However, they cannot be adapted to
repetitive disturbances.

MFPT is then a good metrics to measure the tolerance
to rough terrains. The method by Byl and Tedrake [3] to
estimate MFPT needs a discretization of all the state-space.
Let’s take the example of 8-dimensional state, which may be
reduced to 7-dimensions if we ignore φ. Suppose that we
want to discretize each dimension with 20 values, which is
very rough, the discretization would take 207 = 1.28 billion
of states. Again, the computation requires the inversion of
a square matrix of 207 × 207 = 1.6384 × 1018 cells. Our
method does not have any scaling problem with the increase
of the complexity of the walking system. Furthermore, our
method permits an arbitrary accuracy in MFPT estimation.
That’s because the only states which are approximated are the
limit-cycle states, and we can choose any tight approximation,
with, in return, a loss in the performances of the method, but
still being better than Monte-Carlo method.

However, as acknowledged, our method is not relevant if the
limit-cycle changes because of the perturbations. To overcome
this drawback, a solution can be to identify the new limit-
cycle and to change x̆ for the new one. Also our method
fails when important chaos cannot be approximated correctly
enough. Nevertheless, we keep in mind that our method can
never be worse than a Monte-Carlo approach that remains the
only alternative.

Finally, the biggest disadvantage of our method is that it
is more time-consuming than approaches based on Floquet
multipliers and gait sensitivity norm. But there is virtually no
other solution for such nonlinear system than trying several
times or multiple possibilities in order to have a synthetic,
global estimator about walking performances on textured
terrains.

V. CONCLUSION

This paper has shown how to take advantage of the existence
of the limit cycle to efficiently estimate metastability properties
of a walking robot. The method considers the walker as a
Markov chain, with a special absorbing state representing the
fall, and other states representing the limit-cycle behavior.
When the walker is neither fallen nor in a limit-cycle state, it
is considered in transition. With this model, the computation
of MFPT becomes straightforward.

On the other hand, the concept of metastability is partic-
ularly adapted to the model of stochastically rough terrain.
The given example have shown that the assumption which is
the basis of our approach is nicely verified with this model
of perturbations: the robot comes back regularly to the limit
cycle, and this may happen even for high variances of the
terrain inclinations.

Finally, MFPT is a good criterion to measure the robustness
of walking systems to repetitive disturbances. It can be used
either (i) to estimate the tolerance of a walking system to given
disturbances and to give an estimation of the distance that can
be traveled before falling, (ii) to use it for comparing different
robots, even if they have different dynamics, (iii) to optimize

the dynamical structure of a robot in order to maximize MFPT,
or (iv) to compare different control policies for a same robot.
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