A Strictly Convex Hull for Computing Proximity Distances With Continuous Gradients - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Robotics Année : 2014

A Strictly Convex Hull for Computing Proximity Distances With Continuous Gradients

Résumé

We propose a new bounding volume that achieves a tunable strict convexity of a given convex hull. This geometric operator is named sphere-tori-patches bounding volume (STP-BV), which is the acronym for the bounding volume made of patches of spheres and tori. The strict convexity of STP-BV guarantees a unique pair of witness points and at least C 1 continuity of the distance function resulting from a proximity query with another convex shape. Subsequently, the gradient of the distance function is continuous. This is useful for integrating distance as a constraint in robotic motion planners or controllers using smooth optimization techniques. For the sake of completeness, we compare performance in smooth and nonsmooth optimization with examples of growing complexity when involving distance queries between pairs of con-vex shapes.
Fichier principal
Vignette du fichier
06710113.pdf (1.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01079783 , version 1 (04-11-2014)

Identifiants

Citer

Adrien Escande, Sylvain Miossec, Mehdi Benallegue, Abderrahmane Kheddar. A Strictly Convex Hull for Computing Proximity Distances With Continuous Gradients. IEEE Transactions on Robotics, 2014, 30 (3), pp.666-678. ⟨10.1109/TRO.2013.2296332⟩. ⟨hal-01079783⟩
491 Consultations
1472 Téléchargements

Altmetric

Partager

More