
HAL Id: hal-01079780
https://hal.science/hal-01079780

Submitted on 3 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Robot Planning and Execution for an Exploration
Mission: a Case Study
G. Infantes, C. Lesire, C. Pralet

To cite this version:
G. Infantes, C. Lesire, C. Pralet. Multi-Robot Planning and Execution for an Exploration Mission: a
Case Study. ICAPS 2014 PlanRob Workshop (Planning and Robotics), Jun 2014, PORTSMOUTH,
United States. �hal-01079780�

https://hal.science/hal-01079780
https://hal.archives-ouvertes.fr

Multi-Robot Planning and Execution for an Exploration Mission: a Case Study

Guillaume Infantes, Charles Lesire, Cédric Pralet
ONERA - The French Aerospace Lab, F-31055, Toulouse, France
{Guillaume.Infantes,Charles.Lesire,Cedric.Pralet}@onera.fr

Abstract

This paper presents the first steps of the treatment of
a real-world robotic scenario consisting in exploring
a large area using several heterogeneous autonomous
robots. Addressing this scenario requires combining
several components at the planning and execution lev-
els. First, the scenario needs to be well modeled in or-
der for a planning algorithm to come up with a realistic
solution. This implies modeling temporal and spatial
synchronization of activities between robots, as well as
computing the duration of move activities using a pre-
cise terrain model. Then, in order to obtain a robust
multi-agent executive layer, we need a robust hierarchi-
cal plan scheme that helps identifying appropriate plan
repairs when, despite the quality of the various models,
failures or delays occur. Finally, we need various algo-
rithmic tools in order to obtain flexible plans of good
quality.

Motivation

Automatic exploration of large and hazardous areas benefits
from the use of multiple robots. Indeed, the use of several
robots working in parallel allows the duration of missions to
be drastically decreased, which may be useful to deal with
crisis situations or with search and rescue missions, in which
the response time is a key criterion. The deployed team of
robots may be heterogeneous, to take advantage of the skills
of different kinds of robots: flying robots can see over build-
ings and quickly cover large distances; ground robots can
accurately map the environment; some robots may be able to
enter buildings, overcome obstacles, and even cross flooded
areas. Operators often use tools for defining the mission of
robots offline, taking into account various operational con-
straints. Robots must then act autonomously at execution
time in order to adapt their behavior to complex, dynamic
and uncertain environments, and to perform replanning tasks
if needed. Autonomy is especially useful when communica-
tions are intermittent or unreliable. In such cases, it is in-
deed impossible to permanently control each robot from a
remote mission center. However, operators often need some
feedback at regular time intervals, in order to know how the
mission is progressing and to get data collected by robots.

Operational Scenario We consider the problem of ex-
ploring an area using heterogeneous autonomous robots,
subject to the supervision of human operators . When defin-
ing the mission, human operators first define some zones to
be observed by the robots. These zones are considered as ob-
servation tasks that will be allocated to the robots depending
on their capabilities (some robots cannot see under trees, or
cannot enter buildings). In this work, robots are assumed to
be individually able to localize themselves, to plan trajecto-
ries, and to perform navigation tasks in the environment, the
latter being possibly mapped online using robot sensors.

In the mission considered, human operators need to regu-
larly monitor mission execution. Due to intermittent or unre-
liable communications between robots, and between robots
and the operators, this online monitoring is defined as a time
rate at which each robot has to report an execution status for
its plan. This execution status may for instance contain the
current robot position and the list of zones it has observed.
Due to communication and motion constraints, aerial robots,
which can move faster, are used to collect other robots data
and to communicate these data to the operators. Reporting
tasks correspond to temporal and spatial rendezvous, during
which robots share information.

Approach Followed The main contribution of this paper
lies in the integration of several components for tackling the
operational scenario described above. The integrated com-
ponents are:

• Multi-agent, temporal and hierarchical planning: we de-
fine a planning algorithm that computes plans of actions
for the whole team of robots. Built plans are hierarchical,
in the spirit of Hierarchical Task Networks (HTN (Erol,
Hendler, and Nau 1994)). Elementary actions in these
plans are move, observation and communication actions.
These plans enforce temporal constraints coming from the
environment model (time needed to move from points to
points, or to observe zones) and from the mission require-
ments (periodic reporting to the human operator). To
deal with communications, we propose an offline plan-
ning algorithm that includes communication tasks within
the initial plans. We use an offline planning approach as a
first step to coordinate vehicles which may not be perma-
nently visible from the operation center. The algorithm

PlanRob 2014 Proceedings

49

used is linked with external libraries that compute for in-
stance durations of moves performed during the explo-
ration, based on a terrain model.

• Mission execution and repair: based on embedded reac-
tive architectures, plans are executed on each robot in a
distributed way, each robot being in charge of its own
tasks. During execution, disturbances may occur, requir-
ing either an adaptation of plans (for instance when a
robot is going to be late at a rendezvous), or more global
repairs when the plan is no longer feasible. As communi-
cation may be unavailable for a global replanning, plans
can be locally repaired through communication between a
few close teammates (Gateau, Lesire, and Barbier 2013).
In this paper, we only consider hard-coded repair rules
used in case of failures. More advanced techniques using
a deliberative architecture on-board each robot could be
considered.

The paper is organized as follows. The next section
presents a modeling of the scenario, and the way it is trans-
lated into constraints. The general scheme of the execution
process (including plan adaptation and repair) is then pre-
sented. Afterwards, we present the offline planning algo-
rithm, along with the constraint-based framework the algo-
rithm is based upon. Finally, we present an evaluation of the
algorithm on some basic examples, and we show first results
on a real-world scenario involving three robots.

This work has been partially supported by the DGA
funded Action project (http://action.onera.fr) and the AN-
CHORS project (http://www.anchors-project. eu), funded
by the German Federal Ministry of Education and Research
(BMBF) and the French National Research Agency (ANR).

Modeling the Scenario
Static Data
The mission consists in observing a set of nz zones using nr
robots.

• The team of robots is R = {ri}1≤i≤nr
.

• The set of zones is Z = {zi}1≤i≤nz
.

• Each robot ri can reach a set of navigation points P (ri).

• For each robot ri, function Oi gives the navigation points
from which a zone zj can be observed by ri. We have
Oi(zj) ⊆ P (ri).

• For communications, we consider a function C that gives,
for each couple of robots (ri, rj) the set of points from
which robots ri and rj can communicate. We have:
C(ri, rj) ⊆ P (ri)× P (rj).

Dynamic State Description
At a given time, a robot ri can be at one of its navigation
points pj ∈ P (ri), which is denoted by at(ri, pj). A robot
ri can also be navigating between two locations. In normal
execution, no action is possible until the robot reaches its
destination.

Furthermore, a zone must be observed only once, so we
define function toObs : Z → {>,⊥} that expresses if a

zone zj is to be observed (toObs(zj) = >) or if zj has
already been observed (toObs(zj) = ⊥).

Task Model
Each robot ri ∈ R can perform three elementary tasks:

• goto(ri, pj , pk): navigation from point pj to point pk; the
preconditions at the beginning of the task are pj , pk ∈
P (ri), and at(ri, pj); as for effects, at(ri, pk) becomes
true at the end of the task, whereas at(ri, pj) becomes
false at the beginning of it;

• obs(ri, pj , zk): observation of zone zk from point pj ; pre-
conditions pj ∈ Oi(zk) and toObs(zk) = > must hold at
the beginning of the task; condition at(ri, pj) must also
hold at the beginning and during the task; as an immediate
effect, we have toObs(zk) = ⊥;

• com(ri, rj , pk, pl): communication between ri and rj , lo-
cated at positions pk and pl respectively; preconditions
are pk ∈ P (ri), pl ∈ P (rj), and (pk, pl) ∈ C(ri, rj);
also, at(ri, pk) and at(rj , pl) must hold at the beginning
and during the task; we do not consider explicit effects, as
they will be dealt with in a dedicated approach.

We associate with every task t a starting time point δs(t) and
a duration dur(t). We then define the end time of task t as
δe(t) = δs(t) + dur(t).

Constraints
Along with this formulation, we consider more elaborate
constraints over the actions. In order to obtain realistic
plans, we need to integrate some real-world knowledge
based on models of the environment, and to be able to pre-
cisely synchronize communications between robots.

Visibility Constraints An external library provides us
with the Oi(zj) and C(ri, rj) static data. More precisely,
visibilities for observation and communication are obtained
from terrain models and ray-tracing algorithms, taking into
account (optical) sensor ranges and occlusions.

Temporal Constraints on Motions One key point for
tackling a realistic scenario is to model the dura-
tion of moves. We thus use an external function
dur(goto(ri, pj , pk)) which provides us which an estima-
tion of the duration of motions. This function can be imple-
mented using any path planning algorithms (LaValle 2006)
based on precise terrain models. For our experiments, the
external library we use implements an A∗ algorithm on dis-
crete terrain models taking into account robots’ motion ca-
pabilities.

Temporal Constraints on Other Actions We consider a
duration for observation and communication tasks. For now,
these durations are constant, but this can be easily lifted up.

Constraints on Communications For an operational sce-
nario, one important need for the operator is to regularly
monitor the states of the robots and the progress of the mis-
sion. In our case, as communications are not always possi-
ble, we need to enforce periodical communications, in order
to detect within a given time if a robot has a problem, for

PlanRob 2014 Proceedings

50

instance if it is lost or blocked by an obstacle and unable to
reach its objective.

In order to do so, we add a set of constraints on commu-
nications, using a centralized communication scheme:
• the operator has to be given a complete update periodi-

cally (every ∆ minutes);
• communications with the operator are very limited;
• one of the robot is preferred for centralizing communica-

tions with other robots and the operator, because it has
more motion capabilities than the others; for example an
Autonomous Aerial Vehicle (AAV).

Dividing the Plan into Chunks
We solve the mission planning problem by dividing the plan
into chunks. Each chunk corresponds to a sequence of ob-
servations followed by a communication between all team-
mates and the operator. Splitting plans into such chunks al-
lows the operators to regularly receive a complete feedback
concerning the state of each robot, which can make mission
monitoring easier.

For making mission monitoring easier again, we build hi-
erarchical plans, containing actions with different levels of
abstractions. Operators may go deeper in the hierarchy of
actions in order to understand what the robots are doing. We
first define some abstract tasks.
Definition 1. (goto and obs) A goto and obs abstract task
is made of a movement task g and an observation task o:
• g = goto(r, pi, pj) and o = obs(r, pj , zk);
• r ∈ R is the robot performing the tasks;
• pj ∈ P (r) is the point from where zk ∈ Z is observed;
• δe(g) = δs(o).
This abstract task is denoted as goto and obs(r, pi, pj , zk).
Definition 2. (goto and com) A goto and com abstract
task is made of two tasks g and c such that:
• g = goto(ri, pu, pv) and c = com(ri, rj , pv, pw);
• ri ∈ R is the robot performing the tasks;
• pv ∈ P (ri) is the point from where a communication is

possible to pw ∈ P (rj);
• δe(g) = δs(c).
This abstract task is denoted as
goto and com(ri, rj , pu, pv, pw).

Now we can define a chunk as a sequence of
goto and obs for each robot, followed by synchronized
goto and com for all robots.
Definition 3 (Chunk). Let rm denote the robot in charge of
the centralization of the communications (m for “master”),
and let op denote the operator. A chunk c is composed of:
• for each ri ∈ R, a sequence of abstract tasks
goto and obs(ri, pj , pj+1, zk);
• for each ri ∈ R, i 6= m, a task
goto and com(ri, rm, pu, pv, pw) for robot ri and
a symmetric task goto and com(rm, ri, px, pw, pv)
for robot rm; communications are synchronized, i.e.
δs(com(ri, rm, pv, pw)) = δs(com(rm, ri, pw, pv))

• a task goto and com(rm, op, py, pz, pop) at the end of
the chunk, with pop the point where the operator is.

We define dur(c) as the temporal distance between the be-
ginning of the first goto and obs task of the chunk and the
end of the communication with the operator. The chunk is
said to be valid if and only if dur(c) ≤ ∆, where ∆ is the
communication period set by the human operator.

The intuition is that a chunk is a refinement method in the
HTN framework, augmented with temporal constraints. If
communication period ∆ is too small, then it will be impos-
sible to include some observations into plans. A schematic
graphical view of a chunk is given in Figure 1.
Definition 4 (Chunked Plan). A chunked plan C is a se-
quence of chunks (ci)i≥ 0 such that at the end of the exe-
cution we have ∀zk ∈ Z : toObs(zk) = ⊥.

The planning algorithm must ensure that given the chosen
observations, the duration of any chunk does not exceed the
required communication period (∆). It must also minimize
the number of chunks and, as a side effect, the total duration
of the mission.

Supervising Execution
Plan Representation
Hierarchical and Temporal Tree of Tasks (HT3) We
represent the plan as a hierarchical tree of tasks along with
their temporal execution windows. As said before, repre-
senting plans in such a way can make plans more readable
for the operators. We follow the common hierarchical model
of HTNs (Erol, Hendler, and Nau 1994) to model the plan,
and we include some temporal information (Bresina et al.
2005) as well as allocation of tasks to robots.
Definition 5 (HT3). An HT3 plan P = (R, T,M,A, I, tr)
is defined by:

• a set of robots R = {ri, 1 ≤ i ≤ nr};
• a set of tasks T = Te ∪6= Ta, where Te is a set of elemen-

tary tasks representing robots’ actions, and Ta is a set of
abstract tasks;

• a decomposition function (or set of methods) M : Ta →
2(Ta∪Te)×{→,∼} that associates with each abstract task
a set of tasks st and a relation rel between the elements
of st; rel is either a non-ordered relation (∼, tasks of st
can be executed in any order) or a sequence (→, tasks of
st must be executed in a specific order);

• an allocation function A : T → 2R that associates with
each task a set of robots; for elementary tasks, only one
robot is performing the task : ∀t ∈ Te,#A(t) = 1;

• an interval function I that associates with each task t a
time interval I(t) = [δ−, δ+] such that δ− and δ+ are the
earliest and latest times to start the execution of the task;

• a root task tr ∈ T .

A plan P is valid only if it has no cycles (e.g., abstract
tasks being child of themselves). It can then be represented
as a tree, alternating tasks and methods. Note that contrarily
to HTNs, HT3 do not allow any choice in the decomposition
of abstract tasks, which makes them directly executable.

PlanRob 2014 Proceedings

51

com_rc

com_opegoto_com_ope

goto_and_com_ope

goto_com_ri

goto_and_com_ri
goto_and_com_rj

com_ri com_rjgoto_com_rj

com_rcgoto_com_rc

goto_and_com_rc

com_rcgoto_com_rc

goto_and_com_rc

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

r_i

r_j

operator

r_m

Figure 1: General scheme of a chunk

root

seq. of chunks

chunk c_0 chunk c_1 ...

c_0 for r_c c_0 for r_i c_0 for r_j ...

goto_and_obs ... goto_and_obs goto_and_com goto_and_com ... goto_and_com

goto obs goto obs goto com(r_i) goto com(r_j) goto com(op)

Figure 2: HT3 built from a sequence of chunks. Ovals, di-
amonds, rectangles respectively represent tasks, sequential
methods, unordered methods. For clarity, allocation and in-
terval functions are not represented.

Chunked Plans as HT3 Building an HT3 plan (Def. 5)
from a chunked plan (Def. 4) is quite straightforward: we
first define a root task tr, containing a sequential method
with the sequence of chunks as children. Then each chunk
is decomposed into a non-ordered method containing the
tasks of each robot. Finally, the chunk for each robot is se-
quentially decomposed into abstract tasks goto and obs and
goto and com, themselves respectively decomposed into
goto and obs, and goto and com elementary actions. Fig-
ure 2 shows the generic hierarchical pattern of a plan.

Algorithm 1 Execution of hierarchical and temporal plans

Require: P the global team plan, r ∈ R the robot that lo-
cally executes the plan

1: procedure SCANTASK(t, r,P)
2: CHECKTIME(I(t))
3: if t ∈ Te then EXECUTE(t)
4: else . t ∈ Ta
5: st, rel←M(t)
6: Sort st according to rel
7: for all t′ ∈ st do
8: if r ∈ A(t′) then SCANTASK(t′, r,P)

Plan Execution
Each robot executes planP following the procedure detailed
in Algorithm 1. The plan is executed by each robot in a depth
first (i.e. descending from abstract tasks to elementary tasks)
and left first (i.e. enforcing the ordered relations between
tasks) manner. Procedure SCANTASK is initially called with
tr (the root task) as a parameter.

Procedure CHECKTIME used at line 2 checks that the cur-
rent execution time is in the allowed window of start times
for task t. If the task is early, we wait for the earliest start-
ing time of the task. If the task is on-time, we start it im-
mediately. If the task is late, a repair is needed (see next
paragraph).

Procedure EXECUTE used at line 3 triggers the execu-
tion of an elementary task on the robot. In practice, this
is achieved by calling a service on the robot control archi-
tecture, in order to move the robot, make observations, or
communicate with other robots.

Plan Repair
At execution, two kinds of disturbances are considered: late-
ness of tasks and execution failures of elementary actions.

PlanRob 2014 Proceedings

52

Lateness During Execution In the CHECKTIME proce-
dure (line 2), the task to execute may be detected as late, i.e.
the latest time at which it should have started has passed.
Then, the execution is inconsistent regarding the plan.

As communication is unreliable and not persistent, we
cannot count on a global repair. Therefore, the repair pro-
cess is driven by the key feature which ensures the suc-
cess of the mission: the communication constraint between
robots. We therefore try to secure communication tasks. For
this purpose, the repair process is a simple hard-coded rule
that removes goto and obs tasks from the plan of the late
robot until the current chunk becomes temporally consistent
again. The new plan is executed until the end of the chunk,
where a communication between all robots is possible (by
using master robot rm). At the end of the chunk, the oper-
ator knows the set of observations removed during repairs.
He/she can then reallocate these observations and transmit
the new plans to all robots through master robot rm.

Failures of Execution Execution disturbances may also
come from issues in the execution of tasks by the control ar-
chitecture of the robot. For instance a mobile ground robot
may face some obstacles during its movements. If it reaches
the aimed point, the next task may be late due to the time
needed to overcome the obstacle (previous lateness case).
But the robot may even not reach the point, for instance be-
cause no path exists (at least in the robot map) to join this
point. In these situations, which are considered as failures,
we use some precomputed parametered local hierarchical
plans that are adapted for repairing a set of predefined fail-
ures. When a failure occurs, depending on the task that has
failed and of the cause of the failure, we replace the failing
task with the appropriate local plan. More advanced plan
repair techniques could be considered. In our experiments,
three kinds of parametered local plans are considered:

• parametered backup trajectories to find communication
opportunities with the master robot (to ask for help);

• map sharing between robots (to update the map of the lost
robot);

• relative localization between robots (to update the posi-
tion of the lost robot).

As these parametered local plans are represented as “local”
HT3, they can be directly inserted within the current plan
and executed without any hack in the execution procedure.

Note that this paper does not provide repair rules for all
possible lateness issues and all possible failures. It just de-
scribes a first step in the definition of hard-coded repair rules
for the operational scenario we consider. Additional work on
this point is left for future work. In particular, rules should
be defined for tackling the case where master robot rm itself
fails, or cases in which removing observation tasks does not
suffice to satisfy the chunk duration constraint again.

Planning
In this section, we describe the planning model implementa-
tion and the planning algorithm used to build mission plans
offline.

Using a Generic Framework: InCELL
In order to state all temporal constraints of the problem
and to handle them efficiently, we rely on the InCELL
framework (Pralet and Verfaillie 2013). InCELL is inspired
by Constraint-based Local Search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its
problem in terms of decision variables, constraints, and opti-
mization criterion. For the multi-robot exploration mission,
(1) decision variables correspond to the sequence of tasks
to be performed by each robot, (2) constraints are either
temporal constraints (activity durations and communication
deadlines) or spatial constraints (zone observation and robot
communication from possible locations), and (3) the crite-
rion is to minimize the duration of the mission.

In CLS, the user also defines a local search procedure
over complete variable assignments (where every decision
variable is assigned). Such a local search procedure corre-
sponds to a sequence of local moves. For the multi-robot
exploration problem, examples of local moves are the ad-
dition/removal of a chunk and the addition/removal of an
observation task for a robot inside a chunk.

Because the speed of local moves is one of the keys to
local search success, CLS uses so-called invariants, which
allow expressions and constraints to be quickly evaluated af-
ter each move. Invariants correspond to one-way constraints
[x1, . . . , xn] ← f(y1, . . . , yp), where x1, . . . , xn (the out-
puts) are variables whose assignment is a function of other
variables y1, . . . , yp (the inputs). Invariant outputs are incre-
mentally (quickly) reevaluated upon small changes in the in-
puts. In particular, InCELL models temporal constraints as
invariants and uses incremental Simple Temporal Network
(STN (Dechter, Meiri, and Pearl 1991)) techniques to effi-
ciently maintain earliest/latest consistent times for activities.

Task Modeling InCELL allows tasks to be modeled based
on the notion of interval. An interval is defined by two time-
points representing the start and the end of the task, and by
one boolean variable representing the presence of the task
in the plan. Elementary tasks of the multi-robot exploration
problem (moves, observations, communications) are repre-
sented as InCELL intervals.

For the multi-robot exploration mission, goal activities
are observations and communications, whereas setup activ-
ities are motions that occur between goal activities. Tasks
goto and obs and goto and com represented in Figure 1 are
modeled as intervals composed respectively of two sub-
intervals [goto obs , obs] and [goto com, com]. Doing so,
the hierarchical structure of plans is explicitly taken into ac-
count in the model.

The duration of each goal activity is constant in our case.
The duration of a move towards a goal activity Act depends
on the goal activity Act itself and on the goal activity preAct
preceding the move. If the current and previous activities
Act and preAct are provided, the InCELL invariant evaluator
automatically calls the external terrain-aware function that
computes estimations of move durations.

Chunk Modeling Beyond intervals, the multi-robot ex-
ploration model also uses the notion of sequence of con-
tiguous intervals available in InCELL. Using this modeling

PlanRob 2014 Proceedings

53

feature, it is easy to implement chunks as nr + 1 sequences
of contiguous intervals, one for each robot plus one for the
operator. When inserting a new task in the middle of a se-
quence, one only needs to update the “previous activity” fea-
ture for the inserted task and for the task following it. The
InCELL invariant in charge of managing temporal aspects
then automatically updates earliest/latest times of all time-
points of the problem, using incremental STN techniques.
The chunk itself is a specialization of a temporal interval, so
it also has start and end time-points.

Mission Constraints as InCELL Invariants The In-
CELL invariant managing temporal aspects takes as input
all temporal constraints of the problem inside a chunk:

• equality of communication starts and communication
ends for the two robots involved in a communication task;

• start time of the chunk equal to the start time of the first
move of the chunk;

• end time of the communication with the operator equal to
the end time of the chunk;

• bounded temporal distance between the start and the end
of a chunk, in order to enforce communication period ∆.

Algorithm
On top of the InCELL model, we define an algorithm that
allocates observation tasks within chunks. This algorithm
combines: (1) a constructive greedy search phase, which
produces a first exploration and communication plan; (2) a
local search phase that improves on the plan found at the
first phase.

Greedy Search We first use a greedy search that tries to
put as many as possible observations inside a chunk, and
when constraints are violated, a new chunk is created, and
the process iterates until all zones are scheduled for obser-
vation. The pseudo-code is detailed in Algorithm 2.

In this algorithm, the main loop iterates until no more
zones are to be observed. Inside this main loop, a chunk
is first allocated at line 8, already containing goto and com
tasks, as described in the modeling section. Then a robot
is selected at line 9. Several strategies are possible, we im-
plemented a random choice giving more weight to slower
robots, in order for them to be able to choose first their ob-
jectives, because in our scenarios all robots start from a close
location, and we do not want the slower ones to go very far to
achieve their first objectives. This procedure return ∅ when
all robots are marked as full, that is when no robot can accept
a new observation in the current chunk.

We then enter a second loop for filling current chunk ci.
First, the closest observation is selected for robot rj at line
11. This is done on the basis of the navigation points P (rj)
from which a zone that has not yet been observed can be ob-
served, and of a heuristic implemented as an InCELL invari-
ant (see below). We implemented both a simple Euclidean
distance and the real distance as given by the external dura-
tion function used by the constraint checker.

The selected observation is inserted at the end of the
chunk, just before the communication tasks (line 12); then,

Algorithm 2 Greedy search for allocating observation tasks

Require:
1: Z the set of zones to observe
2: R the set of robots
3: P the function giving navigation points
4: O the function giving points for observing zones
5: C the function giving pair of points for communication

6: procedure GREEDYSEARCH(Z,R,P ,O,C)
7: while Z 6= ∅ do
8: ci = ALLOCATENEWCHUNK
9: rj ← SELECTROBOT(R)

10: while rj 6= ∅ do
11: (zk, pl)← SELECTOBS(Z,P (rj), O, pl−1)
12: INSERT(ci, (zk, pl), rj)
13: UPDATECOMLOC(ci, C, P)
14: ok = EVALUATECONSTRAINTS
15: if ¬ ok then
16: CHANGECOMORDER(ci, C, P)
17: UPDATECOMLOC(ci, C, P)
18: ok = EVALUATECONSTRAINTS
19: if ¬ ok then
20: REVERTCHANGES
21: TAGASFULL(rj , ci)
22: if ok then
23: Z ← Z \ {zk}
24: rj ← SELECTROBOT(R)

the communication locations are updated, by choosing for
the slower robot the communication point that is the closest
from the newly inserted observation task (line 13). A lo-
cation for the other robot involved in the communication is
chosen among the restricted possible ones, also based on its
last objective so far. Then the InCELL model is evaluated at
line 14.

If the insertion fails (lines 16-17), we try to swap some
communication activities for master robot rm (these activi-
ties are initially randomly ordered). We also try to change
communication locations. If insertion is still impossible, we
discard changes and mark the selected robot as full for the
current chunk, meaning that it does not accept new observa-
tions in the current chunk.

If insertion is possible, we mark the zone as observed (line
23), we select a robot and we iterate the inner loop again.
This loop ends as soon as all robots are full for the current
chunk.

Heuristics as Invariants InCELL offers various high
level invariants, including the argmin invariant used for se-
lecting items into a set based on some criterion. We thus
use a selection based on the argmin invariant to maintain
the closest observation candidates for any robot, as well as
the closest communication location candidates. These in-
variants allow a transparent heuristic computation, used in
the SELECTOBS and UPDATECOMLOC procedures (lines 11
and 13).

PlanRob 2014 Proceedings

54

Local Search While greedy search aims at minimizing the
number of chunks (and thus the total number of mandatory
communications), it has a major drawback: the last chunk
is generally very inefficient, because of the priority given to
the slower robots. It may involve only a few observations by
the slower robot, while other faster robots do not have any.
To overcome this issue, we perform a local search from the
solution produced by the greedy search.

The lower levels local search operators are to remove an
observation from any chunk (including the corresponding
goto), and to insert a zone to observe anywhere in the plan,
trying every observation location for a given zone.

Over these two basic local moves, we implemented:

• a bestInsert procedure, which tries in turn every possi-
ble insertion for a given zone to be observed (in every
chunk), and returns an updated plan with the best inser-
tion, in terms of earliest end time of the global mission;

• a moveInSequence procedure, that removes and tries to
bestInsert every observation in turn, this for a given robot.

We also implemented higher level local moves, namely:

• 2-opt (Croes 1958), which tries permutations of pairs of
observations and inverts orders in-between;

• relocate (Salvelsbergh 1992), which first removes an ob-
servation from a robot, second tries to bestInsert it in the
plan of another robot, third applies 2-opt, and fourth ap-
plies moveInSequence; it does so for every observation, as
long as there are improvements in the global earliest end
time of the mission.

Other moves based on the computation of critical paths
could also be used to compact the obtained schedules.

Evaluating Planning and Local Search
We first show some planning results on simple scenarios, to
give a first idea of the efficiency of the approach.

First Example We first consider a 100 m × 100 m area
containing 25 zones to be observed, and a temporal con-
straint on communications allowing the whole mission to
be executed in only one chunk (namely 5 minutes). Figure
3a shows the trajectories for 1 Autonomous Aerial Vehicle
(AAV) and 2 Autonomous Ground Vehicles (AGVs) after
greedy search, without any local optimization. The earliest
end time of the mission is 299.2 seconds. After local search,
we non surprisingly obtain better trajectories, shown on Fig-
ure 3b, and the earliest end time of the mission lowers to
214.7 seconds. In the first case, the greedy search gives high
priority to the two AGVs, so that they have respectively 11
and 12 objectives to observe, while the AAV, which is much
faster, only has two. After local search, the AAV has 12 ob-
jectives, and the AGVs 7 and 6, respectively, leading to a
much better distribution of tasks over time.

For this simple problem, on an Intel Core 2 Duo 3GHz-
4GBRAM, the construction and initialization of the InCELL
model took 780ms, and greedy search time is 161 ms. The
local search took 2833 ms.

Other Examples A second example considers the very
same problem but with a 3-minute constraint for chunk du-
rations, so that the mission cannot be achieved in only one
chunk (it takes 2). Before local search, the earliest end time
is 358.6 seconds. After local search, it lowers to 291.2 sec-
onds. In this case, the local search time raises to 9141 ms.

To give an idea for larger scenarios, if we consider 100
zones to observe, the greedy search takes 682 ms, while the
local search raises to approximately two minutes. We thus
have a first solution very quickly, and the local search can be
used as an anytime algorithm, giving better solution as time
passes. Figure 3c shows the evolution of the earliest end
time of the mission wrt. computation times for 100 zones to
observe.

Complete Scenario
The complete scenario demonstrated fall 2013 involved one
autonomous aerial vehicle and two autonomous ground ve-
hicles. The area to explore was 28800 square meters wide,
including 72 zones to observe. Figure 4a shows the area
used for the experiments, for which a 3D model has been
built in order to compute visibilities (for observations and
communications) as well as durations of movements. The
operator had to be given a complete update every 5 minutes
(maximum size of a chunk). As flight authorizations are re-
quired to use our experimental platforms, only a few tests
were performed in real conditions.

The InCELL model contains 31154 invariants. It is built
and initialized in about 7 seconds. The resolution based on
greedy and local search takes about 6 minutes, the best so-
lution being obtained only after 3 minutes of computations.
The huge difference with simple examples, that are about the
same size, is mainly due to the calls to the precise computa-
tion of motion times, that are very slow. We implemented a
cache in order to limit this impact.

Figure 4b shows the trajectories computed for this real-
world mission. The duration of the mission plan obtained
is 472 seconds. This duration is mainly due to the fact that
the AAV has many more observations to do than the AGVs
(the AGVs fill their objectives during the first chunk, while
the AAV needs two). One can also notice that the obser-
vation tasks assigned to the two AGVs have a particular
spatial repartition. This is due to the fact that their possi-
ble positions are very constrained: they must remain on the
road since their navigation on the field can be problematic
depending on the precise state of the terrain (height of the
grass, wetness of the soil).

The execution procedure has been integrated on the three
robots, as a separate program calling each robot’s services
to realize elementary actions. The aerial autonomous robot
is a Yamaha Rmax helicopter that navigates based on a GPS
sensor, and embeds a software architecture based on Oro-
cos (Soetens and Bruyninckx 2005), in which actions are
triggered by executing supervision state machines specified
in the rFSM language (Klotzbücher and Bruyninckx 2012).
The ground robots are Segway-based robots integrating lidar
sensors for map building, cameras and inertial sensors used
for localization, and embedding a Genom-based (Mallet,

PlanRob 2014 Proceedings

55

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

AGV1

AGV2

AAV

(a) Example 1 before local search

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

AGV1

AGV2

AAV

(b) Example 1 after local search

 510

 520

 530

 540

 550

 560

 570

 580

 590

 600

 0 20000 40000 60000 80000 100000 120000

s
e

c
o

n
d

s
 t

a
k
e

n
 b

y
 m

is
s
io

n

milliseconds of computation

Earliest end time during local search

(c) Earliest end time (100 zones)

Figure 3: Plans produced on simple examples by the offline planning algorithm

Pasteur, and Herrb 2010) software architecture, in which ac-
tions are triggered by executing specific agents of the ROAR
framework (Degroote and Lacroix 2011).

In fall 2013, we demonstrated the execution of the nomi-
nal plan, along with the management of some failures (one
of the two ground robots get lost and, following hard-coded
repair rules, asked for the Rmax helicopter to map the en-
vironment around the ground robot). We also demonstrated
the replanning process including reallocation of the unex-
plored zones. We plan to do some complementary experi-
ments in the future, in order to demonstrate the management
of lateness of execution, by introducing disturbances at any
moment in the mission execution.

(a) Map of the experiments area

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80 100 120 140 160 180 200 220 240

AGV1

AGV2

AAV

(b) Trajectories after greedy and local search

Figure 4: Real-world scenario

Related Work
Some works focus on allocating exploration tasks to sev-
eral robots, but either do not consider communication con-
straints (using frontier-like exploration (Hourani, Hauck,
and Jeschke 2013) or a segmentation of the environ-
ment (Wurm, Stachniss, and Burgard 2008)), or try to main-
tain communication capabilities at any time by deploying
a network infrastructure (Pei and Mutka 2012; Abichan-
dani, Benson, and Kam 2013). Some approaches use oppor-
tunistic communications to optimize the plan (Sung, Aya-
nian, and Rus 2013), but do not enforce them. These ap-
proaches do not consider time constraints between tasks,
and when synchronization is explicitly modeled, it is fo-
cused on spatial synchronization (Coltin and Veloso 2012).
Other approaches propose mechanisms to maintain the plan
consistency at execution. In (Kaminka et al. 2007), robots
regularly communicate to update temporal constraints be-
tween their tasks in order to maintain the global plan con-
sistency. In the exploration mission considered in (Korsah
et al. 2012), offline task scheduling and online plan flexibil-
ity are combined, and robots adapt their plans by exchang-
ing messages for satisfying task constraints again. However,
associated communication tasks are not explicitly included
within plans. Moreover, these tasks are considered as not
subject to failures.

In another direction, multi-robot task scheduling deals
with time constraints such as task precedence or synchro-
nization (Zhang and Parker 2013). In (Ponda et al. 2010;
Luo, Chakraborty, and Sycara 2013), tasks are scheduled
using an auction algorithm to minimize their delays. Mixed
Integer Linear Programming (MILP) is used in (Koes, Nour-
bakhsh, and Sycara 2006) to solve task allocation prob-
lems with constraints modeled using Allen’s algebra, and
in (Mathew, Smith, and Waslander 2013) to find trajecto-
ries of robots that must meet the already planned trajectories
of robots to be recharged. In these works, once tasks are
scheduled, no communication occurs to share information
and maintain plan consistency.

In probabilistic domains, (Wu, Zilberstein, and Chen
2011) proposes to broadcast history of actions and ob-
servations when an inconsistency is detected between
the current observation and the belief state of a local
POMDP. (Matignon, Jeanpierre, and Mouaddib 2012) uses

PlanRob 2014 Proceedings

56

a DecMDP model with communication uncertainty, while
(Spaan and Melo 2008) defines local interactions within a
so-called IDMG model. While these approaches generate
policies which include communication tasks, they do not in-
tegrate temporal constraints between tasks.

Conclusion and Future Work
We presented in this paper the high-level aspects of a com-
plete multi-robot exploration mission, from mission model-
ing to execution and repair, including planning algorithms
taking into account various constraints. We rely on the ro-
bust generic framework InCELL for planning algorithms, as
well as a HTN-like paradigm (augmented with temporal as-
pects) for solution scheme, distributed execution and repair.

This work will continue in several directions. First, at
model level, we want to take into account resources like en-
ergy, but also to do time-dependent scheduling. A typical
case is that for optical sensors, it might be useful to be able
to select observations locations with respect to the precise
time of the action, in order not to have sun on sight for in-
stance. Tasks should also be possibly done in parallel. For
instance an observation should not be simply to take a pic-
ture of a location from a given position, but grab a whole
video flow for a given time, this while moving. Similarly,
communication and observation could be performed in par-
allel. We also would like to use a good criterion for plans, in-
cluding much more information than only the earliest global
end time. This includes a trade-off with the flexibility, but
also variable costs of motions, variable values of interest for
zones. Finally, we would like to stop discretizing the mis-
sion over predefined observation zones.

At planning level, we are also working on a very differ-
ent approach for planning with temporal HTNs, that should
be more generic and allow a user (maybe directly the opera-
tor) to specify the chunk-like decomposition, instead of the
current fixed one.

At execution and especially at repair level, we plan to
make the planning model “alive” on the different robots and
feed it with real execution times in order to detect temporal
inconsistencies much earlier, and replan as soon as possi-
ble. While deferring observation tasks for a given robot is
an easy solution, ensuring global consistency and quality of
the plan is quite a challenge. As previously mentioned, we
plan to extend the set of failure cases which can be handled
by the repair process. Last, we would also like to integrate
the hand-written repair methods into the main planning loop,
instead of leaving them only at the supervision level.

References
Abichandani, P.; Benson, H.; and Kam, M. 2013. Robust
Communication Connectivity for Multi-Robot Path Coordi-
nation using Mixed Integer Nonlinear Programming: For-
mulation and Feasibility Analysis. In International Confer-
ence on Robotics and Automation (ICRA).
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan,
K. 2005. Activity planning for the mars exploration rovers.
In International Conference on Automated Planning and
Scheduling (ICAPS), 40–49.

Coltin, B., and Veloso, M. 2012. Optimizing for Transfers
in a Multi-Vehicle Collection and Delivery Problem. In In-
ternational Symposium on Distributed Autonomous Robotic
Systems (DARS).
Croes, G. A. 1958. A method for solving traveling salesman
problems. Operations Research 6:791–812.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Degroote, A., and Lacroix, S. 2011. ROAR: Resource ori-
ented agent architecture for the autonomy of robots. In Inter-
national Conference on Robotics and Automation (ICRA).
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In AAAI Conference on Arti-
ficial Intelligence (AAAI).
Gateau, T.; Lesire, C.; and Barbier, M. 2013. HiDDeN:
Cooperative Plan Execution and Repair for Heterogeneous
Robots in Dynamic Environments. In International Confer-
ence on Intelligent Robots and Systems (IROS).
Hentenryck, P. V., and Michel, L. 2005. Constraint-based
Local Search. MIT Press.
Hourani, H.; Hauck, E.; and Jeschke, S. 2013. Serendip-
ity Rendezvous as a Mitigation of Explorations Interrupt-
ibility for a Team of Robots. In International Conference on
Robotics and Automation (ICRA).
Kaminka, G.; Yakir, A.; Erusalimchik, D.; and Cohen-Nov,
N. 2007. Towards collaborative task and team mainte-
nance. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS).
Klotzbücher, M., and Bruyninckx, H. 2012. Coordinating
Robotic Tasks and Systems with rFSM Statecharts. Journal
of Software Engineering for Robotics (JOSER) 3(1):28–56.
Koes, M.; Nourbakhsh, I.; and Sycara, K. 2006. Constraint
optimization coordination architecture for search and rescue
robotics. In International Conference on Robotics and Au-
tomation (ICRA).
Korsah, A.; Kannan, B.; Browning, B.; Stentz, A.; and Dias,
B. 2012. xBots: An approach to generating and execut-
ing optimal multi-robot plans with cross-schedule depen-
dencies. In International Conference on Robotics and Au-
tomation (ICRA).
LaValle, S. 2006. Planning Algorithms. Cambridge Univer-
sity Press.
Luo, L.; Chakraborty, N.; and Sycara, K. 2013. Dis-
tributed Algorithm Design for Multi-Robot Task Assign-
ment with Deadlines for Tasks. In International Conference
on Robotics and Automation (ICRA).
Mallet, A.; Pasteur, C.; and Herrb, M. 2010. GenoM3:
Building middleware-independent robotic components. In
International Conference on Robotics and Automation
(ICRA).
Mathew, N.; Smith, S. L.; and Waslander, S. L. 2013.
A Graph-Based Approach to Multi-Robot Rendezvous for
Recharging in Persistent Tasks. In International Conference
on Robotics and Automation (ICRA).

PlanRob 2014 Proceedings

57

Matignon, L.; Jeanpierre, L.; and Mouaddib, A.-I. 2012.
Coordinated Multi-Robot Exploration Under Communica-
tion Constraints Using Decentralized Markov Decision Pro-
cesses. In AAAI Conference on Artificial Intelligence
(AAAI).
Pei, Y., and Mutka, M. 2012. Steiner traveler: Relay de-
ployment for remote sensing in heterogeneous multi-robot
exploration. In International Conference on Robotics and
Automation (ICRA).
Ponda, S.; Redding, J.; Choi, H.-L.; How, J.; Vavrina, M.;
and Vian, J. 2010. Decentralized Planning for Complex Mis-
sions with Dynamic Communication Constraints. In Ameri-
can Control Conference (ACC).
Pralet, C., and Verfaillie, G. 2013. Dynamic online plan-
ning and scheduling using a static invariant-based evaluation
model. In International Conference on Automated Planning
and Scheduling (ICAPS).
Salvelsbergh, M. W. P. 1992. The vehicle routing problem
with time windows: Minimizing route duration. Journal on
Computing 4:146–154.
Soetens, P., and Bruyninckx, H. 2005. Realtime hybrid task-
based control for robots and machine tools. In International
Conference on Robotics and Automation (ICRA).
Spaan, M., and Melo, F. 2008. Interaction-driven Markov
games for decentralized multiagent planning under uncer-
tainty. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS).
Sung, C.; Ayanian, N.; and Rus, D. 2013. Improving the
Performance of Multi-Robot Systems by Task Switching.
In International Conference on Robotics and Automation
(ICRA).
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175:487–511.
Wurm, K.; Stachniss, C.; and Burgard, W. 2008. Co-
ordinated multi-robot exploration using a segmentation of
the environment. In International Conference on Intelligent
Robots and Systems (IROS).
Zhang, Y., and Parker, L. 2013. Multi-Robot Task Schedul-
ing. In International Conference on Robotics and Automa-
tion (ICRA).

PlanRob 2014 Proceedings

58

