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Abstract—Passivity-based walkers represent a model for hu-
man walking and a solution for low-energy locomotion for
humanoid robots. The presence of an upper-body and even a
head in this kind of systems is necessary as a better model for
humans and to improve their usability. The benefits of these
additions have never been studied, and no work experimented
the addition of a head limb to a passivity-based walker. So,
we aim, in this paper, to study the effects of the addition of
these modifications on walkers with fully passive lower limbs.
By comparing three systems (a passive compass, an upper-body
stabilizing walker and a head stabilizing walker) simulations
show that: (ii) upper-body stabilization improves the stability
of the walking limit cycle; (ii) in return, the stabilization of the
upper body requires a noticeable amount of the kinetic energy
of the walker, and a significant energy supply (steeper slopes for
the passive case) is necessary to guarantee the stability of the
gait, especially for the case of head stabilization; and (iii) in a
dynamical context, such as steep slopes, the upper-body and head
stabilization have close performances for absorbing perturbations
and smoothing the impacts, but with a slight advantage for the
latter.

I. INTRODUCTION

Legged, and especially biped, locomotion is acknowledged
to be the most adapted moving technique when sharing the
same space as humans. However, there lies an intrinsic falling
hazard in the dynamics a walker. A robot’s state is said to be
viable if the robot is able to avoid the fall [1]. Walking is
then a very dynamic task which requires energy. However, an
important parameter for biped robot is the energy-efficiency
of walking, and the robots that show the best efficiency are
passive walking robots. Indeed, on shallow slopes, very simple
mechanical designs with appropriate mass distributions show
balanced and durable gaits with no energy source other than
the gravity. This efficiency property was then adapted to
generate low power walking systems on level ground by the
use of simple actuators to compensate gravity [2]. Moreover,
passive walkers are commonly assumed to generate more
human-like motions, even with the presence of geometrical or
mechanical discrepancies between the robot and humans [3].
This similarity has attracted the interest of biomechanics to
study the passivity of the human gait [4].

In order to improve the accuracy of this model for humans,
the presence of a vertical upper-body is crucial, because the
dynamics and mass contributions of the human’s upper-body
are important. Moreover, any biped robot that is intended to
have actual usability other than a simple locomotion requires

to have an upper body, for example to enable manipulation and
interaction. Indeed, some researches have studied the addition
of an upper-body to a passive walker, but none of them, to our
knowledge, studied the effect of a vertical stabilization of this
upper-body on the stability of the limit-cycle, nor the benefits
on the set of viable states.

One other important feature of human walking, that does not
enter into account within the aforementioned researches, is the
role of the head and gaze in human locomotion. Indeed, it has
been shown that during walking motions, the head is stabilized
in rotation [5]. This stabilization is a general phenomenon
observed for several human tasks and is believed to enable
a more stable reference frame for egocentric visual motion
perception and a more consistent visual-vestibular sensory
inputs. In the same spirit, it has been shown that the head
stabilization provides a major improvement of the estimation
of the vertical direction for robots, particularly when relying
on a vestibular-like inertial measurement system [6]. An
accurate estimation of the vertical is considered as a crucial
parameter to ensure balance for humans and humanoid robots.
However, no research, to our best knowledge, studied the
possibility to add a head link to a passive walker.

We propose to study, in a pure mechanical point-of-view,
the benefits of upper-body and head stabilization on the
simplest human-like walking systems: a purely passive lower-
body. The paper aims particularly to study the case of the
appearance of unexpected perturbations during cyclic walking.
We propose then to compare the simulated dynamics of three
models: (i) the classical compass walker (ii) a walker with a
stabilized simple upper-body, and (iii) a novel passive walker
model with an upper body and a head, both stabilized.

In the following section, we describe these three models,
their control and our implementation. In the section III, we
describe the results we obtained when evaluating the viability
kernels of these walkers for different slope inclinations. And
in the section IV, we show an in-depth analysis of the cyclic
walking on shallow slope.

II. WALKING SYSTEMS

A. The mechanical model

We study in this paper two main 2D models for passive
walkers: one with only two links (compass) and the other one
equipped with upper-body segments, as depicted in Fig 1. The
walker has two massless legs of lp length, with, on each leg,



a point mass of ml at ll distance to the joint between them.
The trunk is a masseless stick of lt length, linked to legs, and
having a point mass of mt on its middle. The head is a point
mass of mh on the top of a stick of lh length, linked to the
torso. To keep the simplicity of the model, we didn’t study
the case of the presence of knees, ankles or arms even if they
have noticeable effects on the dynamics of the walker [7]–[9].
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Figure 1. Our walker model. The mass on the trunk is at the middle of the
trunk joint. The case of two segment compass corresponds to lt = lh = 0.

There are two major ways to add an upper body to a passive
walker. First, the bisector constrained walker, introduced
by Wisse et al [10], is a compass with an upper limb
that is constrained to be in the midway angle of the two
legs. However, beside the fact that it is not an accurate
model of human walking, its bisecting constraint introduces
an instability, especially in the presence of a big upper body
mass [11], which is the case of humans. Therefore, none
of our simulations succeeded to show any viable state for
this model. The second method is to stabilize actively the
upper body against the vertical. This method better models
the human gait. The stabilization is achieved commonly by
applying torque on the stance leg [12] which has the advantage
to not disturb the passivity of the swing motion. The torque
applied on the stance leg is denoted τt. The head stabilization
is ensured by another pure torque generator in the neck link,
between the head and the trunk. This torque is denoted τh.

The walker has always a stance leg on the ground. That
makes the compass position fully describable with four angles:
the inter-legs angle (θ) and the stance leg, torso and head
inclinations with regard to vertical (φ, α and β respectively).

We study also the case where there is no upper body, which
is equivalent in our case to consider lt = lh = 0. In that case
the angles α and β have no influence on the dynamics of the
compass and can be ignored.

B. The dynamics state

The dynamics state x of the walker can be defined
by the limbs angles and their angular velocities x =[
θ φ α β θ̇ φ̇ α̇ β̇

]t
. The evolution of the state

over time is continuous except in impacts. The impacts on
the ground are considered perfectly inelastic and stiff. That
introduces discontinuities in the angular velocities, and the
stance leg switch introduces a change in the sign of θ. There-
fore, we prefer a discreet time expression of the evolution of
the dynamics state. We consider the future discretized state
xk+1 as completely determined by the previous state xk and
the torques vector τk =

[
τt,k τh,k

]t
:

xk+1 = f(xk, τk) (1)

The function f integrates the dynamics equations over sam-
pling time. These equations won’t be detailed here and can be
adapted from former works [13]. We used a software dynamic
simulator to compute the dynamics and detect contacts during
walking motions. We consider that contacts always happen
on a sampling instant, and that the dynamics state during this
instant is the pre-contact one. The contacts are considered
without slipping or deformation. The falling state is detected
in three cases: when (i) there is no contact on the ground, (ii)
there is a contact with a limb other than a foot, or (iii) a double
support lasts for more than one instant, which corresponds to
a stop in the walking motion.

C. The controllers

The control has to be different from a walker model to
another. For example for the simple two-links walker, the
torques have no effect on the dynamics and are ignored. The
walkers equipped with an upper body have to be actively
controlled to maintain the trunk and the head above the ground.

1) Trunk stabilization controller: To control the robot with
one-link upper-body, we add a rigid constraint on the neck
joints to guarantee that α = β. The proposed controller is
a proportional derivative (PD) servoing the upper-body to be
vertical, i.e. α = 0. The torque expression is then:

τ1,t = −K1,pα−K1,dα̇ (2)

With K1,p and K1,d are the proportional and derivative
gains of the controller. The controller behaves like an angular
spring-damper on the trunk-to-stance joint. However, we
cannot assume any actually realizable equivalent setting with a
passive spring-damper because the vertical reference is defined
in absolute frame and the stance leg changes at each step.

2) Head stabilization controller: The controller we suggest
for the neck is also a PD bringing back β to zero:

τ2,h = −K2,pβ −K2,dβ̇ (3)

This walker requires also to control all the upper-body
and maintain it upright. The controller we propose for trunk
stabilization will try maintain the center of mass of the upper
body cu above the hips. To do so, we use another PD to



control the inclination µ of the line joining cu to the hips (see
Fig. 2-C):

τ2,t = −K3,pµ−K3,dµ̇ (4)

BA C

Figure 2. The three walker models. A- The two-links compass has no upper
body and no actuator. B- The walker with a simple-trunk stabilization has
only one link on the upper body. C- The upper body of the walker with a
stabilized head has two links. The controller brings back µ to zero, i.e. the
center of mass of the upper body cu vertically on the hips.

D. The simulated walkers parameter values

For the robots equipped with an upper-body, we have
chosen to use a human-like mass distribution and body
proportions [14], but by simplifying and rounding them for
simulation reproducibility. Even if the two-links compass
doesn’t have an upper body, we kept the same masses dis-
tribution to guarantee a coherent comparison. The masses are:
ml = 1.5kg, mt = 4.5kg, mh = 0.5kg and body lengths are
lp = 1m, ll = 0.6m, and for upper-body equipped walkers:
lt = 0.75m and lh = 0.125m.

The controllers parameters were also fixed. For the
trunk stabilization we set K1,p = 30N·m/rad and K1,d =
15N·m·s/rad. We limited the absolute value of the torque
|τt| < 50N·m. This value is not bio-inspired but only
prevents the system from producing excessive torques. For
the head stabilization, we choose to have the same upper
body stabilization parameter, the controller parameters are then
also K3,p = 30N·m/rad, K3,d = 15N·m·s/rad, with |τt| <
50N·m. For head stabilization, we took K2,p = 5N·m/rad and
K2,d = 0.5N·m·s/rad. The neck torque τh had two limitations:
|τh| < 10N·m during the double support instant in order to
absorb the impact, and |τh| < 2N·m otherwise. These values
permit to enable the best impact absorption in this joint while
keeping the torque reasonable during the rest of the time.

With these models, we can finally start the simulations.

III. VIABILITY KERNEL VS ENERGY CONSUMPTION

We aim in this first study to compare the robustness of the
three walkers to a variety of initial conditions on different
slope inclinations. Then, we define a relaxed definition of a
viable state which is: a state from which the walker is able to
perform at least 6 steps. Although this new definition does not
guarantee the balance of the walker for all future steps, it is
a good indicator of the viability kernel and has a fast enough
computation to permit to check large number of states.

To compare the performances of these walkers, they have
to start from the same initial state. However, the state vector
itself is different from a walker to another. Indeed, the two-
links compass has a state vector with only relevant variables,[
θ φ θ̇ φ̇

]t
. For the stabilized-trunk walker, there are also

α and α̇. And for the stabilized-head walker there are β and
β̇ also. Therefore, for the last two ones, we provide constant
initial values for α, α̇, β and β̇. For each walker, the initial
state is its mean value during double support, after it reaches
its limit-cycle on 4˚ slope (this limit-cycle will be detailed in
subsection IV-B). Specifically, for the trunk stabilized walker
the values are α0 = β0 = 0.0454rad α̇0 = β̇0 = 0.251rad/s.
For the head stabilized walker, the values are α0 = 0.0643rad,
β0 = 0.0028rad, α̇0 = 0.289rad/s, and β̇0 = 0.176rad/s. After
this initialization, they have the natural dynamics during all
the simulation. The choice of these parameters is coherent
with our idea to study the effects of unexpected perturbations
during cyclic walking: the walkers are supposed to be stable
in their cycle before the beginning of the simulation.

All the starting states, in our simulations, are in double
support phase, during the pre-impact instant. In that instant,
the knowledge of the slope angle γ and the inter-leg angle θ
is sufficient to give the stance leg inclination φ. The initial
state is then simplified to three scalars: θ, θ̇ and φ̇.

The simulations are run for five different slope inclinations:
2˚, 4˚, 6˚, 8˚ and 10˚. For each inclination and each walker
model, we ran simulations for 8 millions different states,
which corresponds to 200 different values for each of the three
dimensions. These values were uniformly distributed within
ranges of values that cover all the viable states we could sim-
ulate. These ranges are [0, 1.309]rad for θ0, [−11.4, 130]rad/s
for θ̇0, and [0, 8]rad/s for φ̇0.

For each initial state, the walker starts the simulation at
double support state and the steps it makes are counted. If it
reaches 6 steps, the initial state is said to be viable, if it falls
before, the state is non viable. The sampling period is of 5ms
and the simulations have a complete duration of 90 hours.

The most important result we compare in this simulation is
the volume of the viability kernel by counting the number of
viable states among the 8 million combinations. The results
are shown in Fig. 3.

One striking property in this figure is the difference of
results between shallow and more steep slopes. For less than
6˚ slopes, the simple two legs compass has a bigger viability
kernel than upper-body equipped ones, and for steeper ones
the upper body gives better results than a simple compass. The
analysis we provide for this result is that the upper body does
stabilize the walking motion, but this stabilization absorbs the
total kinematic energy of the walker. As the only external
source of energy is gravity, shallow slopes do not provide
enough energy to compensate the loss due to stabilization. The
two legs compass is much more energy-efficient, because the
only loss of energy happens during impacts. Impacts depend
on the angle of incidence of the swing leg on the ground,
and in shallow slopes, the steps are much smaller and impacts
preserve more kinematic energy.
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Figure 3. The volumes of viability kernels of the three models, for different
slope inclinations (number of viable states among 8 million combinations).

On the contrary, in steeper slopes, the highly dynamic
context provides kinematic energy on one hand, and an
important instability on the other. Here can be demonstrated
the stabilizing properties of upper-body control, especially on
highly dynamic instability. We see then that the upper body
stabilization absorbs an important part of this energy and helps
to recover balance. Moreover, the head stabilization appears
to be better again than the trunk only. The difference is tight,
without surprise, because the mass contribution of the head
is relatively less important. But we can say that there are
states that are not viable for the trunk stabilization alone,
and that can be recovered when the head is stabilized. The
consequence of the control of the head is to distribute the
stabilization of the upper body on more than a link. This result
shows then that dividing the upper body on two (or more)
hierarchically stabilized segments can improve the recovery
for highly dynamical instability.

In this section, we have analyzed quantitatively the volume
of viability kernel for the three walker models. We have
seen that at 4˚ slope, the two-links compass has a bigger
viability kernel than the two other walker models. However,
by analyzing deeper this specific result in the next section,
we will see that the distribution of the viable states of a two-
links compass is not optimal regarding small perturbations to
cyclic walking. We will see also that upper-body stabilization
improves the stability of the walking limit cycle compared to
a two-links compass.

IV. LIMIT CYCLE WALKING

A. Sensitivity to perturbations

The context we are analyzing is particularly the recovery
from unexpected perturbations. In such situation, the state of
the walker is probably close to the limit cycle. From this per-
spective, we projected the viability kernels along the three di-
mensions, and studied their position compared to the limit cy-
cle state. The mean limit cycle states are

[
0.625 0.71 1.6

]t
for the compass,

[
0.56 −0.357 1.42

]t
for the trunk stabi-

lization and
[
0.54 −0.23 1.41

]t
for the head stabilization.

The figures 4, 5 and 6 show the distribution of this ‘error’,
where zero value means that the corresponding component of
the state is the same as in the limit cycle. The densities have
been normalized to have a total integral of 100%. We see
in Fig. 4 and 6 that the kernels are almost equally close to
zero: the three models have similar sensitivities to variations
in the the inter-leg angle θ and stance inclination rate φ̇ (see
Table I for the mean values of this error along each of the
dimensions).
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Figure 4. The marginal density, associated to the inter-leg angle θ, of the
error between the limit cycle state and the viability kernel states, for the three
models, on 4˚ slope.

On the contrary, the Fig. 5, related to the inter-leg angle
rate θ̇, shows an important difference between upper-body
equipped walkers which are centered on the limit cycle and
the simple compass which is much more asymmetric around
zero, which is confirmed by the Table I. That means that
the compass is more sensitive to perturbations in θ̇. In fact,
if we reduce the state space to 15rad/s around the limit
cycle, the number of viable states drops to 24447 for the
compass, 23385 for the trunk stabilization and 21615 for the
head stabilization. That makes them finally almost equivalent
against perturbations on the limit cycle.

Despite the equivalence in the volumes of the viability
kernels, this particular sensitivity to θ̇ can make the limit
cycle less regular for two-links compass. In order to study
this sensitivity, let’s analyze the cyclic walking itself, and
specifically the stability of this cycle.

Table I
ERRORS BETWEEN VIABLE STATES AND LIMIT CYCLE (MEAN VALUES)

θ θ̇ φ̇
Compass -0.1679 26.2864 1.5577

Trunk stabilization 0.1891 1.6704 1.0303
Head stabilization 0.1487 2.5020 0.8570

Table I. We clearly see here that the mean position of θ̇ in the the viability kernel of
the compass is much farther from the limit cycle than for other walkers.

B. Stability of the cycle
In the perspective of studying the stability of the dynamical

walking, we have chosen to analyze the trajectory of one of the
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Figure 5. The marginal density, associated to the inter-leg angle variation
θ̇, of the error between the limit cycle state and the viability kernel, for the
three models, on 4˚ slope.
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Figure 6. The marginal density, associated to the stance leg inclination rate
φ̇, of the error between the limit cycle state and the viability kernel, for the
three models, on 4˚ slope.

legs of the walkers, let’s say it’s the left one. We simulate the
walking motion, and analyze the trajectory of the inclination ψ
of the left leg. In Fig. 7, 8 and 9, the phase plot of limit-cycle
left leg inclination is displayed for each of the walker models,
when walking during 75 seconds on a 4˚ slope (see [13] to help
interpreting these plots). These limit-cycles were obtained
by simulating a walking motion during 2000 steps before to
start the plot. The first observation is that the upper-body
walkers have smaller amplitude, in left leg inclinations, than
compass one, which means that they make smaller steps.
This has already been analyzed as a direct effect of upper-
body stabilization [15]. More interestingly, the trajectory for
the compass presents a chaotic behavior [13]. This chaos
means that the fixed point of the Poincaré map is unstable.
We see some trajectories with very small pre-impact swing
leg retraction and even impacts that create a discontinuity in
the opposite direction to usual ones, which is a sign of an
important instability during walking. The only part which is
regular is the stance phase, which corresponds to the case

where ψ = φ. This is coherent with the previous observation
that the compass is less sensitive to the variations of φ and φ̇
than to variations of θ̇. To analyze this sensitivity, there are
dedicated methods such as the Floquet multipliers [16], but
they are not adapted to our case because they are not well
defined in the case of chaotic behavior.
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Figure 7. A phase plot of the evolution of left leg inclination of a two-links
compass for 75 seconds on a 4˚ slope. We see that the limit oscillation is
chaotic.

For other walkers, we can see also a chaotic motion, but
the amplitudes of the state values is noticeably smaller. we
see regular-limit cycles for the left leg inclination. The plots
are quite similar, but noticeable differences are visible in post
impact trajectories, this shows that trunk stabilization and head
stabilization don’t deal with impacts in the same way. This
the topic of the next and last analysis of this paper.
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Figure 8. A phase plot of the evolution of left leg inclination of the stabilized
trunk walker for 75 seconds on a 4˚ slope. The cycle is much more stable.
We can see also that the walker maker smaller steps than the compass.

C. Energy and impacts

The energy loss in collision is an indicator of the severity of
the impacts. The smoothest the impact is, the more efficient
is the walking motion, in terms of dissipation of energy. For
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Figure 9. A phase plot of the evolution of one leg inclination of the stabilized
head walker for 75 seconds on a 4˚ slope. The cycle is similar to the stabilized
trunk one, but we notice higher dynamics phases after the impacts.

the same period of 1000 steps, the compass had a mean
energy loss of 3.20J by step, the trunk stabilization: 1.76J
and the head stabilization: 1.49J. This is due to the fact
that the compass has a CoM up to 26 cm lower and bigger
steps. For illustration, in 1000 steps, the compass traveled
for 593 meters, the trunk stabilization walker 536 meters
and the head stabilization one made 533 meters. Moreover,
there is a part which is absorbed by the actuator itself,
the mean power was of −1.97W for the trunk stabilization,
and −3.16W for the head stabilization. That means more
kinematic energy is absorbed in head stabilization, which
explains its 2˚ slope disappointing performance in Fig. 3.
Nevertheless, the advantage of this property is that impacts are
much lighter, which permits better absorption of perturbations
during highly dynamical instability, that explains the better
performances for steep slopes in Fig. 3.

V. DISCUSSION AND CONCLUSION

We have seen throughout this study the effects, in mechan-
ical ways, of the addition of an upper-body and a neck joint
to a passive walking system. The upper-body stabilization
regulates naturally the limit cycle of these walkers on shallow
slopes and improves the balance and perturbation recovery for
steeper slopes. However, these features consume the kinematic
energy of the walker and require a minimal source of energy,
this explains the bad performances of this model in nearly flat
grounds.

Our results lead us to believe that adding actuation to the
legs is required to overcome directly the energy supply issue.
Doing so, upper-body stabilization is expected to contribute to
generate stable motions in shallow slopes, and even on rough
flat terrain. Furthermore, adding actuation to a passive walker
can improve the stability of the walking motion. However, the
control of passivity-based walkers is an active research topic
that requires a subtle choice of the control strategy to use.
This choice is usually a difficult compromise between power

efficiency and balance enhancement. This will be the topic of
our next study.

This work opens the way to other extensions, for example in
terms of mechanical model. We can divide the upper-body into
more segments to constitute a vertebral column. Our results
suggest that a more complex upper-body can improve again
the stability of walking motions.

MEDIA ATTACHMENT

The attached video shows (A) a simulation of the limit-
cycles for the three walkers on 4˚ slope, with a speed-up
to better notice irregularities, particularly in the two-links
compass case. And (B) examples of slope inclination changes
that the upper-body walkers overcome and not the compass.
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