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Abstract. The framework of this study is the conventional four cameras two time steps Tomo PIV. The rationale behind 

this paper, and its main contribution, is that using two ultra sparse tomographic reconstructions (one particle –one 

voxel: LocM-CoSaMP) at time step t and t+dt where the particles are only represented by the voxels they are embedded 

in, one can reliably link the particles in the two time steps and filter out most of the ghosts. It is acheived by driving the 

3D particle matching by a measure of the 2D displacement on the images themselves (optical flow). To derive an 

accurate vector field, the positions of the matched particle are then refined by a global optimization to yield subvoxel 

location. The 3 steps of the proposed method are described. Synthetic experiments on a linear displacement and on a 

vortex ring are presented. The performances of Nearest Neighbors matching and optical flow matching are compared. 

The performances on the derived vector field are assed in terms root mean square error. We show on illustrations how 

well interpolating the vector field on a regular grid captures the structure of the flow. 

 
 

 

1. Introduction-Motivation 

 
This paper deals with 3D velocity measurement using a two-frames/four cameras PIV setting. Such a setting 

is actually typical of tomo-PIV (Elsinga 2006), but our 3D velocimetry method shares with 3D-PTV (Maas 

et al. 1993) the same philosophy of extracting 3D particles while working at much higher ppp than this latter.  

It has long been recognized that extracting 3D particles using early 3D-PTV (Maas 1993) techniques based 

on image detection and matching using epipolar geometry would break down at ppp larger than 1e-3 

(Wieneke 2013), due to overlapping particle images and ambiguities in matching. This led Schröder et al 

(2009, 2011) to build 3D-PTV schemes based on 3D particles extracted using  tomo-PIV 3D which is 

reported to operate efficiently in real experiments with ppp equals 0.05. Such an approach was later referred 

to as tomo-PTV by Scarano (2013), borrowing from Wieneke (2011). 

Our method is closely related to the tomo-PTV paradigm, the vector field derivation relies on 3D particle 

matching in successive time-step, but in this paper we only deal with 2 time steps in view of forthcoming 

tracking. 

Our method starts with an ultra sparse tomographic reconstruction that yields a one-particle-one-voxel 

detection where particles (and ghosts) are represented by the voxel they belong to. Such reconstructions are 

performed independently at time t and t+dt. The 3D particle matching is then driven by a consistency 

criterion built on 2D image motion in each camera. This process filters out most of the ghosts and yields 

reliable matchings. To derive an accurate particle velocity estimate, the voxel-scale 3D location of the 

matched particles is then refined by a global optimization to yield subvoxel location. Finally the sparse 

velocity map may be interpolated to yield a 3D velocity map. 

1.1 Related work 

 

The actual status of 3D PIV at high seeding relies on the reconstruction of 2-3 voxel large blobs using Tomo-

PIV (Elsinga 2006, Scarano 2103). However, there is a growing interest in the 3D PIV community in 

pointwise particle representation instead of blobs. Cornic et al. (2013) proposed a sparse tomographic 

reconstruction based on a pursuit algorithm that yields a list of voxels that embed the particles, but without 

going so far as computing a vector field. Champagnat et al. (2013, 2014) used SMART but within a 
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paradigm favoring the reconstruction of particles instead of blobs. Vector fields are still estimated by 3D 

correlation.  

Such pointwise representations are much more compact, encode particles with less memory and a better 

physical relevance: the tracers are often much smaller than the voxel scale. Furthermore, one might wonder 

whether correlating empty spaces is relevant. It imposes to take large interrogation windows to have a 

sufficient number of particles inside. Averaging over of the interrogation window acts as a low pass filter on 

velocity gradients and smooth out small structures. The greater the window, the greater the smoothing. In our 

procedure, dense 3D vector field is interpolated from individual particles velocities, this means that the 

amount of smoothing depends on the density of extracted particles. 

Associated with time resolved (TR) PIV, the particle approach allows performing Lagrangian evaluations, 

hardly possible with Tomo-PIV. In order to do so, Schröder et al. (2009, 2011) detected subvoxel location of 

tracer particles in the time series of tomographically reconstructed volume. Instead of fitting 3D Gaussian on 

blobs to detect particles, we propose to use an ultra sparse tomographic reconstruction “one particle-one 

voxel” and to refine their location once they are matched. 

Iterative Particle Reconstruction (IPR) (Wieneke 2011, 2013) starts with a standard 2D particle finding and 

3D triangulation and then iteratively adds and removes particles and refines their 3D positions and intensities 

to match the projection of the particle distribution in the volume with the recorded images. However, this 

approach did not go as far as it might have gone, performing 3D correlation for the derivation of vector field. 

Recently, Shake The Box (STB) (Shantz et al. 2013) predicts the positions of particles already tracked and 

refine their position with IPR scheme. STB is able to produce reliable long term tracks but requires in order 

working efficiently that a certain fraction of particles is already tracked. According to the authors 

themselves, the application of STB-method (or even IPR) to conventional two frames PIV is doubtful as no 

prediction is available and particle matching is difficult due to many ghost particles. 

Eventually, the idea of using two time steps to get rid of ghost can also be found in (Novara et al., 2010), but 

in our approach, the consistency measure is built on the image space rather than on the 3D space as in 

(Novara et al., 2010). 

1.2 Paper focus and organization 

 

The paper is outlined as follows. Section 2 briefly introduces the reconstruction algorithm. Section 3 

describes the main contribution of this paper, the optical flow driven 3D matching. Section 4 describes the 

synthetic setup. Section 5 is dedicated to the second contribution of this paper, the global subvoxel 

refinement.  

 

2. One particle – one voxel reconstruction  
 

The goal of the first step of the proposed procedure is to yield an approximate representation of the 3D 

distribution of particles at a given instant in the form of a voxel map with sparse entries. By sparse we mean 

that a particle should be represented by a non negative entry only in the nearest voxel node, in contrast to the 

usual blob representation obtained by tomo-PIV.  

This “One particle – One voxel” goal is achieved by the LocM-CoSaMP introduced in (Cornic et al.,2013).  

 

Similarly to tomoPIV, LocM-CoSaMP seeks a resolution of the tomographic linear system Y = W.E that 

relates the observations Y (pixels) to voxels intensity E through the weight matrix W (Elsinga, 2006). But 

the One particle – One voxel goal is achieved in a very efficient manner by using jointly three salient 

features: 

1. Building matrix W directly using the samples of the imaging Point Spread Function (PSF), this 

ensures that the image of a given particle can be represented by few coefficients (Champagnat et al. 

2013) [MST], 

2. Restricting voxel intensity E in system Y = W.E to local maxima of the MLOS map (Cornic et al. 

2013) 

3. Solving the system Y = W.E in the mean square sense allowing a maximum of S (the sparsity) non 

zero coefficients (i.e. using sparsity techniques) 
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The first feature is related to the Particle Volume Reconstruction (PVR) paradigm (Champagnat et al. 2013, 

2014). PVR is based on the fact that the geometric image of tracers particles is usually smaller than the width 

of the Point Spread Function (PSF) of the imaging system, thus their intensity is spread around pixels nearby 

their projection coordinate in image plane according to the Point Spread Function (PSF) of the imaging 

system. The contributions of the different particles add. From these hypotheses PVR derives a discretization 

of the image intensity distribution in the form Y = W.E with W made of PSF samples, see (Champagnat et 

al. 2013). The choice of the voxel to pixel ratio (v/p) is an important issue with PVR. As shown in (Cornic et 

al. 2013), the reconstruction performances increase as v/p decreases and a good tradeoff between memory 

requirement and reconstruction quality is given by v/p = ½ . 

 

The second feature is based on the observation/proof by Cornic et al. (2013) that particles are located in or 

close to the voxels which are local maxima of the MLOS function; see (Atkinson & Soria, 2009) for further 

details. Since within the PVR paradigm a single voxel can render a particle image, only the columns of the 

weight matrix W corresponding to local maxima of MLOS can be retained. Using This LocM step, less than 

10% of the columns of W are retained (Fig. 1). 

 

 
Fig. 1: Only the columns of W corresponding to local maxima (green) of the MLOS are retained in the system 

to be solved 

 

The third feature is implemented through the use of pursuit algorithms dedicated to the search of sparse 

solution of linear systems. CoSaMP (Compressed Sampling Matching Pursuit) introduced in (Needell & 

Tropp, 2009) is a second generation pursuit algorithm. It iteratively solves the linear system Y=W.E in the 

least square sense under the constraint that the number of nonzero entries of E (‖ ‖ ) is lower than an 

integer (the sparsity) set by the user. 

Mathematically speaking, it solves: 

   
 
‖     ‖                       ‖ ‖           

 

Performances of LocM-CoSaMP have been evaluated in (Cornic et al. 2013) using an extensive synthetic 

data test. The study showed that detection performances outperform those of tomo-PIV in most 

configurations while the associated computational cost and memory requirement is much lower.  

The reconstructions yielded by LocM-CoSaMP are not suited for correlation: the particles are represented by 

only one voxel (not blobs as in conventional tomography) and are located on a v/p=1/2 voxel grid. The 

displacement estimation has to be performed through the matching of particles at time t and t+dt. The 

matching amounts to determine which voxels at time t and t+dt represent the same particles.  

The next section explains how one voxel particles extracted by LocM-CoSaMP are matched between 

adjacent time steps.  

 

3. 3D matching 

 
PTV techniques usually rely on accurate particle location prediction in order to get reliable temporal 

matches. This can be implemented through multiple frame techniques, eg. Minimum Acceleration over 3 

frames, Minimum Change in Acceleration over 4 frames (Malik et al. 1993) (Ouellette et al. 2006). In the 

case of two frames PIV, such approaches do not apply, so the best prediction of one particle in the next 
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frame is its current position. In this context the simplest matching strategy is the Nearest Neighbor (NN) 

matching: match the particle detected at position x at time instant t with that particle which is the closest to x 

at instant t+dt.  But as shown in the experiment (see § 4.2)  it yields a lot of erroneous links. 

Our strategy for bypassing the limitations of NN matching is to test a potential 3D match against 2D motion 

in each camera. Since the projection of a single particle can occur anywhere in image plane, the 2D motion 

information has to be dense. For this task we rely on FOLKI-PIV a fast, accurate dense optical flow 

algorithm (Champagnat et al. 2011), but the principle of the proposed matching method does not depend on 

this specific algorithm. For convenience, we denote hereafter the 2D motion in the images by optical flow 

without referring to any particular technic. 

3.1 Basic principle of the optical flow driven 3D matching 

 

The basic principle for driving the matching by the optical flow is well captured by the figure Fig. 2. It is 

illustrated on a four cameras setup which is the one used in the synthetic settup (see § 4.1). Each particle at 

time t is assigned a list of potential matches at time t+dt by taking all the particles within a certain distance, 

depending on the flow speed and time step dt. The list is then processed sequentially. The particle and a 

potential matching of the list are projected in the 4 images and the corresponding displacements are 

computed (cyan arrows). The consistency of the displacement field is then assessed against the measured 

optical flow in the x and y directions in the four images at the location of the projected particle indicated by a 

black cross Fig. 2 . 

The consistency is assessed by a matching cost which is a function of the difference in each image between 

observed and predicted displacement. 

Let (  
    

 ) be the coordinates of the projection in image j of the particle under consideration at time t, and 

let (  
       

    ) be the coordinates of the projection of a potential match at time t+dt. The consistency 

criterion reads:  

 

∑ (   (|  
    

        (  
    

 )| |  
    

        (  
    

 )|)           )      (Equation 1) 

 

Where             are the estimated x and y components of the optical flow. Nc is the minimal number of 

images where the computed displacement should meet the estimated flow:        

All the potential matches that do not meet Equation 1 are discarded and if any, the best one is validated as a 

match. Tie break for equation 1 uses the better consistency. 

Depending on the complexity of the flow and on the thickness of the volume, the optical flow may be more 

or less well estimated depending on whether there are superimpositions in the correlation window of 

contrary movements originating from different depth in the volume. The cost may take into account this 

uncertainty in the optical flow estimation by relaxing the requirements to validate a match (see § 4.2). 

The tolerance in term of discrepancy (Threshold) and the number of conditions to satisfy (Nc) are the two 

parameters one can play around with to take into account the error introduced by the localization on a voxel 

grid of the particles and the potentially inaccurately estimated optical flow.  
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Fig. 2: Assessment of the consistency of the predicted displacement field associated with the potential 

matching (cyan arrow) with the measured optical flow (white arrow). The black cross indicates the 
projection of the particle at time t in the four images. The color codes the magnitude of the optical 

flow.  

 

4. Performances for the 3D matching 

 
LocM-CoSaMP yields a list of nonzero voxels occupied by a particle. A detection, i.e. a nonzero voxel, is a 

True Positive (TP) if it is in the neighbourhood of a true particle. Unless otherwise specified, the 

neighbourhood is here a 2x2x2 voxels whose centre chessboard distance from the particle is lower than one 

voxel with v/p=1 size. A detection is a False Positive (FP), ie. a ghost, if it is not in the neighbourhood of a 

true particle. A particle is recorded as False Negative (FN) if there is no detection in its neighbourhood. 

A matching is referred to as a “good match” if its matches two corresponding TP detections (ie. two 

detections of the same particle at instant t and t+dt). As already done in (Cornic et al. 2013) to characterize 

the reconstruction, we define the Recall and the Precision measures for the matching. The Precision metric is 

the fraction of good matches among all detected matches. The Recall metric is defined as the fraction of 

detected good matches among all the possible good matches (detected or not).  

 

       
                      

              
            

                      

                 
 

 

The best achievable performance is again given by Recall=1 (all the good matches are detected) and 

Precision=1 (all the detected matches are good matches).  

4.1 Synthetic setup 

 
A thorough description of our setup can be found in (Cornic et al. 2013, Champagnat et al. 2014). All our 

simulations involve four cameras, which are positioned on a single side of the laser sheet at the vertices 

(
  

 
 
  

 
 
 

√ 
) of a square of 1 meter side. They are positioned at 1 meter from the centre of the reconstructed 
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volume located at (0,0,0) and point at it. The voxel-to-pixel ratio v/p = 1 leads to voxels of 0.1 mm side. 

The tracers particles are uniformly distributed in the light sheet volume. It is important to notice that all the 

illuminated particles cannot be seen by all cameras, as in real dataset.  

The images Ij (j=1..4) are synthesised according to: 

  ( )  ∑    (    (  ))   

where   (   ) denotes any location in the image plane, h is the compactly supported PSF function, Ep and 

Xp are the intensity and 3D coordinates of particle p.   (  ) is the geometrical image of particle p. We 

assume that the PSF is a separable function. We use a single 1D PSF for both directions: 

 ( )  (     )( )  ∫   ( )  (   )   
 

 
(   (

  
 

 
 

√  
)

 

  
     (

  
 

 
 

√  
)) (Equation 2) 

 

We take σpsf=0.6. A gaussian noise with zero mean and standard deviation 2 is added to the images (with 

negative values thresholded to zero). Its amplitude is thus about 5% relative to the maximum particle 

intensity. 

4.2 Synthetic experiment: Vortex ring 

 
The displacement field considered is a vortex ring, similar to that considered by Elsinga et al. (2006), whose 

main section lies in the z = 0 plane. The radius of the ring is equal to 393 voxels and the maximum 

displacement is equal to 2.94 voxels (in v/p = 1 unit). 

In this case, the optical flow – shown Fig. 3 for one camera and ppp=0.057 – is not easy to estimate because 

there are antagonist movements over the depth. This results in complex displacement in the image that may 

not be well captured with the window used to estimate the optical flow. In this case, the consistency of the 

displacement of a potential match is assessed against at least two optical flows out of four (Nc=2). 

 
Fig. 3: Vortex ring experiment ppp=0.057. One out of four optical flows. The color codes the magnitude of 

the displacement in pixels.  
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Fig. 4: Matching performance for vortex ring displacement field. On the left hand side v/p=1. On the right 

hand side v/p=1/2. On both sides, upper limit Recall and NN Recall are superimposed. 

 

Fig. 4 shows the matching performances as a function of the ppp. On the left for v/p=1 reconstruction, on the 

right for v/p=1/2. The sparsity parameter is set to the exact number of particles in the volume. The solid and 

dashed blue curves give the best achievable Precision and Recall (upper limit) with the two computed 

reconstructions. It can be seen that, contrary to NN (green curves), the optical flow Recall (solid red curve) 

does not reach the best achievable Recall. Despite the relaxed consistency conditions (at least 2 out of 4) 

some good matches are not consistent with the estimated optical flows. This leads to missing some good 

matches. But the Precision (red solid curve) is clearly higher than the NN’s one.  

The presented experiment show that the optical flow driven 3D matching is an efficient way to get a high 

percentage of reliable matches (high Precision), even when the ppp gets close to 0.1. It clearly outperforms 

the Precision of the NN. 

 

5. Subvoxel refinement 

 
The optical flow driven 3D matching step yields reliable matchings, most of the ghosts have been discarded. 

But the remaining particles are located on a voxel grid (v/p=1/2). Accurate motion estimation requires 

subvoxel localisation of the particles, the more so the displacement field is small compared to the voxel size. 

In classical PTV, up to ppp=0.001, accurate 3D localisation is achieved through the establishment of 

accurate correspondences involving subpixel localisation of the particles in the images and epipolar 

geometry (Maas et al., 1993). 

With the considered ppp, this is no longer possible. On one hand, accurate subpixel localisation is prevented 

by the mostly overlapping particles; on the other hand, with 4 cameras, the number of ambiguities is too 

large for a robust solution of the correspondence problem (Maas et al. 1993). 

Due to the impossibility to extract accurate subpixel location for the particles, one can’t formulate the 

subvoxel refinement as the minimization of the distances between the subpixel location in the image and 

projections of the 3D particles’coordinates. 

Instead, using the PVR model,  ( )  ∑    (   (  ))  we formulate the subvoxel refinement as the 

global minimization of the difference between observed images and predicted ones. The predicted images 

depend on the 3D positions    and intensities    of the particles which are the variables to optimize. The 

optimization problem can be formulated as the minimization of the following criteria:  

 

        {∑ ∑ ∑ ‖  ( )     (    (  ))‖
 

   }  

 

Where Yj are the observed images, x is any location in image plane, Fj is the projection function in image j 

and h is the PSF function. Without loss of generality and to alleviate the notation we suppose that h do not 

depend on image j. 
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The PSF is compactly supported; the optimization can be performed on neighbourhood of the particles 

projections. Let Vj(p) be a neighbourhood of the projection of particle p in image j. eg. a 3x3 or 5x5 window 

centred on the initial particle projection. The optimization problem boils down to: 

 

         {∑ ∑ ∑ ‖  ( )     (    (  ))‖
 

     ( )  } (Equation 3) 

 

Given that we look for subvoxel refinement, we suppose that the neighbourhood of each particle is given by 

the initial projection and do not change during the optimisation process.  

 

It is worth to mention that contrary to (Wieneke, 2013) and (Schantz et al., 2013), that iteratively optimize 

the particles' location one by one, we perform the optimization globally to fully account for the interactions 

between particles. The evaluation of the two optimisation strategies, local versus global, is an on-going 

work.  

5.1 Optimisation procedure 

 

If the number of particles is low, say smaller than 20000, we perform the optimization all at once. We derive 

the analytical expression the jacobian of the criteria given by equation 4 and use the Levenberg-Marquardt 

algorithm of Matlab to perform the optimisation.  

When the number of particles is greater and consequently when the number of variables exceeds 4x20000, 

this is no more tractable, at least using our 8 core, 64G ram workstation, with the Matlab lsqnonlin 

procedure. The next section explains how such a high dimension problem can be tackled. 

5.2 Graph partitioning 

 

When the ppp grows, the optimization of the above criteria with a number of variables 4 times the number of 

particles may become intractable. The solution is to cut out the problem in smaller parts, but taking into 

account, as much as possible, particles' interactions.  

This can be understood considering a toy example with 4 images, 6 particles projected in the images with 

5x5 neighbourhood (see Fig. 5). Two particles interact if their neighbourhoods intersect. It can be seen Fig. 5 

that there are 3 independent sets of interacting particles: {1,2,3} {4,5} and {6}. These are the connected 

components of the graph. A particle of one set has no interactions with the particles of the two other sets. 

Consequently, each connected component can be optimized independently of the others. These sets are the 

connected components of the graph defined by the neighbourhood intersection relationship.  

 

Generalizing, we say that two particles p and q interact if for some image j their neighbourhoods intersect: 

  ( )    ( )   . This relationship defines a graph whose connected components can be optimized 

independently.  

 
A graph can be represented by an adjacency matrix A, where the entry A(i,j) is the weight of the edge that 

links vertices “i” and “j”. For our toy example Fig. 5, it counts the number of interaction of particle “i” and 

“j”. The adjacency matrix of the toy example is given Fig. 5. One can see the “block diagonal” structure with 

the 3 connected components. 
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Fig. 5: Toy example with 6 particles. There are 3 connected components {1,2,3} {4,5}, {6}. The adjacency 

matrix describes the graph. 

 

Unfortunately, very quickly when the ppp is greater than 0.02 the graph with four images is entirely 

connected, ie. the whole graph is made of only one connected component. Transforming a connected graph 

into several connected components cannot be done without cutting edges. Let’s consider the following 

connected graph (Fig. 6): 

 
Fig. 6: Cutting the edge linking 4 and 5 yields 2 connected components.  

 

Cutting the edge linking vertices 4 and 5 yield 2 connected components {1 2 3 4} and {5 6 7} 

 

The aim of Graph Partitioning, which is a very active research area, is to partition a connected graph into 

several connected components minimizing either the number of cut edges, or the sum of the weight of the cut 

edges. METIS (Karypis et al.) is a set of serial programs for partitioning graphs, partitioning finite element 

meshes, and producing fill reducing orderings for sparse matrices. METIS provides a powerful algorithm to 

partition a graph given its adjacency matrix.  

5.3 Optimisation procedure for high dimension sets 

 

We compute the adjacency matrix of the graph for a fixed neighbourhood. We use METIS (Karypis et al.) to 

get connected components with a maximum size of about 20000 particles and we use the Levenberg-

Marquardt algorithm of Matlab to perform the optimisation independently on each partition of the graph. 

 

6. Performance measures for the vector field 
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Displacement fields obtained by the 3D matching of the particles are then assessed using, firstly, the 

averaged norm of error between estimated and ground truth displacement of the detected particles, defined 

as: 

         
 

      
∑ ‖ ̂( ̂ )     ( ̂ )‖

      

   

 

Where Nmatch is the number of matched particles,  ̂  is the estimated location of a matched particle,  ̂( ̂ ) is 

the displacement given by the matching and    ( ̂ ) is the true displacement at  ̂  location. 

 

Secondly by a measure on a grid where the displacement is interpolated inside the convex hull of the 

particles: 

         
 

 
∑‖ ̂( )     ( )‖

 

   

 

Where N is the number of points on the grid, X is any location on the grid,  ̂( )  is the estimated 

displacement and    ( ) is the true displacement. These two measures are given in v/p=1 voxels unit. 

It should be stressed that no precaution is taken to linearly interpolate the displacement on the grid, ie. no 

filtering of the wrong vectors.  

6.1 Synthetic experiment: Vortex ring 

 

The reconstruction (LocM-CoSaMP) is performed with a voxel to pixel ratio equals to 0.5. The interpolation 

grid 158x167x41 is defined in mm as follows: [-41.7  41.7] x [-39.3 39.3] x [-10.00 10.00] by step of 0.5 mm 

(ie. 5 voxels). This domain is included in the polyhedron seen by all the cameras. Outside of this domain 

there is virtually no movement. That is the reason why we restrict the performances to this domain. They 

would have been better if we had computed them on the whole commonly seen polyhedron. 

 

Fig. 7 shows the performance measures Disppart and Dispgrid as a function of the ppp on a voxel and subvoxel 

basis. It can clearly be seen the improvement achieved by the subvoxel refinement. The subvoxel mean error 

Disppart is up to 5 times lower than the voxel one for the lowest ppp with a value of 0.07 voxels. When 

considering the interpolation on the grid, the subvoxel mean error Dispgrid is 2.6 times lower for the lowest 

ppp than its voxel counterpart.  

 

 
Fig. 7: Left hand side, Disppart mean error as a function of the ppp in v/p=1 voxel unit. Without refinement 

(blue), with refinement (green). Right hand side, Dispgrid mean error on the grid. 
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6.1.1 Interpolation on a grid 

 
It should be stressed again that the shown interpolations are performed “as is”, without averaging on an 

interrogation window as done in (Schantz et al. 2013) and without any attempt to reduce the influence of 

wrong vectors. The interpolation is linear and wrong vectors may perturb locally the result. 

The displacement is given in v/p=1 voxel units. (U,V,W) refer to the three components of the displacement 

on axis (X,Y,Z) of the world frame. We present results for ppp=0.028 and ppp=0.047. The illustrations 

shown are slices for various planes of the interpolated vector field (U,V,W) on the grid. The general layout 

of Fig. 8 to Fig. 10 and Fig. 11 to Fig. 13 is as follows. On the left hand side, the ground truth, in the middle 

the voxel based interpolation and on the right hand side the subvoxel refinement based interpolation. The 

same comment applies to all these figures. The structure of the flow is well captured and improvements 

achieved by the subvoxel refinement are clearly visible. It can also be seen that the subvoxel refinement can 

help to get rid of a few remaining wrong matches.  

Indeed, it may happen that during the optimisation some particles move far away (i.e. several tens of voxels) 

from their initial positions. If so, the two corresponding matched particles are removed. We have observed 

that ghosts were involved in this process. This topic is currently under inspection.  

Hereafter we do not deal with the relevant question of determining which ppp should be used to better 

describe a complex flow with our method. This study remains to be done. We only provide these illustrations 

to give an overview of how well the interpolation of the sparse vector field for commonly used ppp in real 

experiments can capture the structure of the flow. 

6.1.1.1 ppp=0.028 

 
The Dispgrid (rmse) measure equals 0.105 voxels. Fig. 8 shows W in plane Z=0. Although for this ppp they 

are few wrong vectors in the volume, the influence of one of them can be seen on the outer right limit of the 

vortex. 

 
Fig. 8: ppp=0.028. W in plane Z=0. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel refinement 

 
Fig. 9 shows U in plane Z=-5.5 mm. It can be seen that a wrong vector disturbs the voxel based interpolation. 

It is corrected or removed by the subvoxel refinement, as explained above. Fig. 10 shows V in plane Z=-5.5 

mm. 
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Fig. 9: ppp=0.028. U in plane Z=-5mm. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel 

refinement 

 

 
Fig. 10: ppp=0.028. V in plane Z=-7.5mm. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel 

refinement 

6.1.1.2 ppp=0.047 

 
For this ppp the Dispgrid measure equals 0.127 voxels. Fig. 11 illustrates W in plane Z=0. The subvoxel 

interpolation is quite satisfactory. 

 
Fig. 11: W in plane Z=0. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel refinement 

 
Fig. 12 shows U in plan Z=-5.5 mm. It can be seen that although the refinement eliminates some wrong 

vectors, at least two remain and locally disturb the interpolation. 
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Fig. 12: U in plane Z=-5.5mm. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel refinement 

 

Fig. 13 shows V in plane Z=-8 mm. Several wrong vectors are eliminated by the subvoxel refinement. 

 

 
Fig. 13: V in plane Z=-8 mm. (Left) Ground truth – (Middle) voxel based – (Right) subvoxel refinement 

 

7. Discussion 

 
We have presented what may be described as a credible alternative to conventional 2 frames 4 cameras 

Tomo-PIV - at least until ppp=0.05- with many benefits. The particles are only represented by four real 

numbers - 3 for position coordinates, one for intensity - saving a huge amount of memory. Starting from an 

ultra sparse tomographic reconstruction “one voxel-one particle” with coarse location, our method provides 

accurate subvoxel 3D location of the particles at the two time steps along with reliable matches, ie. it follows 

the motion of the particles between time t and t+dt. Consequently, vector field computation does not rely on 

3D cross correlation. It avoids thus the drawbacks of large interrogation windows. One of the most salient 

features of our approach is that it does not rely on previously estimated kinetic parameters and start from 

scratch. The 3D matching is driven by the optical flow measured in the images. The matches are reliable and 

most of the ghosts are filtered. We have shown on a vortex ring synthetic experiment that the instantaneous 

flow field may be interpolated on a regular grid without taking any special precaution to filter wrong vectors, 

at least until ppp=0.05. Illustrations show how well the structures of the flow are captured. 

It should be stressed again that in the presented illustration there is no mechanism to filter wrong vectors. 

Such a scheme should be very beneficial and should alleviate their influence on the interpolation and rmse. 

Looking at Fig. 12 one might think that lower ppp than those used in our experiments would give better rmse 

results. It is true for the Disppart measure, but below a certain ppp Dispgrid is expected to rise because 

interpolation requires a minimum number of measures. 

Thorough evaluation against tomo-PIV is an ongoing work and will be dealt in a future paper. One can 

already remark that the rmse computed on the grid in a ppp range of [0.03 0.06] compares favorably with 

Tomo-PIV results on the same case (Champagnat et al. 2014). 

Our scheme is designed to be conservative. It is deemed better not to match two particles rather than risk an 
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erroneous match. It is both its strength and its weakness. A high Precision is favored, but it is at the expense 

of the Recall. Currently, long term tracking cannot be associated with high Recall. Fig. 4 shows that for the 

vortex ring experiment the Recall for two time steps is around 0.9 for ppp≤0.05. A first order approximation 

would say that for n time step it would be 0.9
n-1

. The drop is rather quick when n grows. Long tracks are not 

very likely. 

Although some good matches may not meet the optical flow requirement because this latter may not be 

perfectly estimated, the main limiting factor is that the reconstruction step does not detect all the particles in 

the volume. Increasing the sparsity parameter yields more true particles in the reconstruction and more good 

matches (Recall grows) but it results also in more ghost and wrong matchings (Precision drops). The left and 

right side of Fig. 14 give two insights of this. The normalized sparsity (NS) is the ratio of the sparsity 

parameter and the number of particles. The left hand side of Fig. 14 shows for the vortex ring experiment 

(ppp=0.057), Precision and Recall as a function of the normalized sparsity. The right hand side shows 

Precision and Recall as a function of the fraction of true particles detected in the first time step 

reconstruction. It can be seen on both side that up to some breakpoint (NS=1; fraction of detected particles ≈ 

0.95) the Precision is almost steady while the Recall soars. Above this breakpoint, the Recall does not grow 

much while the Precision falls very quickly. It justifies our choice of using NS equals 1. 

 
Fig. 14: Vortex ring ppp=0.056. Left, Precision and Recall as a function of the normalized sparsity. Right: 

Precision and Recall as a function of the fraction of true particle detected in the first time step. 

 

This leads to the conclusion that our approach alone cannot be used to produce a high fraction of long tracks.  

To reach this goal, there are several possible solutions that may be implemented synergistically:  

- Strap down with a prediction mechanism based on kinetic to increase the Recall without affecting 

the Precision.  

- Tracklet (ie. short tracks) stitching through the use of instantaneous interpolated vector field is also a 

promising approach. 

- Use the almost sure matched particles to revert to the reconstruction and refine it by subtracting 

these particles from the images. 

 

However, it should be stressed that given that the acceleration of a particle can be computed with 3 time 

steps, according to the 0.9
n-1

 rule our method can yield acceleration for at least 80% of the particles in the 

volume and yield a reliable acceleration map.  
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