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Using multifiber beams to account for shear and torsion
Applications to concrete structural elements

J. Mazars a, P. Kotronis a,*, F. Ragueneau b, G. Casaux b

a Laboratoire Sols, Solides, Structures (3S), Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, France
b Laboratoire de Me´canique et Technologie, 94235 Cachan Cedex, France 
The purpose of this work is to investigate solutions for an enhanced multifiber beam element accounting for shear and torsion. Higher 
order interpolations functions are used to avoid any shear locking phenomena and the cross section warping kinematics is extended to 
non-linear behavior using advanced constitutive laws. The efficiency of the proposed modeling strategies is tested with experimental 
results of concrete structural elements subjected to severe loading.
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1. Introduction

In order to design and study the behavior of reinforced concrete (R/C) buildings in high seismicity areas, one usually
follows the capacity design procedure [1–3] and uses tools such as modal analysis or push-over analysis [4–6]. An alterna-
tive choice is to perform non-linear time history calculations assuming an accurate description of materials, a 2D or 3D
spatial discretization and to apply transient loadings on the structure (natural or artificial ground motions, [4]). This is cur-
rently the most refined tool of analysis for predicting the ultimate behavior of concrete structures.

However, due to excessive computational costs this approach is not commonly used in Earthquake Engineering. Non-
linear dynamic analysis of complex civil engineering structures based on a detailed finite element model requires large-scale
computations and involves delicate solution techniques. The necessity to perform parametric studies due to the stochastic
characteristic of the input accelerations imposes simplified numerical modeling that reduces the computational cost. In this
work, the latter is achieved by adopting a multifiber beam model for representing the global behavior of the structural com-
ponents of a complex civil engineering structure. The constitutive laws remain however sufficiently general to take into
account all the different inelastic phenomena (cracking by damage, permanent deformation by plasticity and crack-closing
by unilateral contact condition).

The classical approach when using multifiber beam elements is to neglect shear effects and to consider that sections
remain plane and perpendicular to the neutral axis of the beam (Euler–Bernoulli hypothesis). The purpose of this article
is to study solutions for a multifiber beam element capable of reproducing shear (sections remain plane but not necessarily
perpendicular to the neutral axis—Timoshenko theory) or shear due to torsion. For the first case the possibility of using
higher order interpolation functions to avoid any shear locking phenomena is investigated. For the second case, in order to
* Corresponding author. Tel.: +33 4 76 82 51 75; fax: +33 4 76 82 70 00.
E-mail address: Panagiotis.kotronis@inpg.fr (P. Kotronis).
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account for non-linear torsion the cross section warping kinematics is studied in the framework of elasticity and extended
to non-linear behavior using advanced constitutive laws. The effects of warping on the damage kinematics and the crack
pattern of the cross section are studied and their influences on the global behavior of structural members are analyzed.

The efficiency of the proposed modeling strategies is validated with experimental results on three concrete elements sub-
mitted to severe loading. A cantilever-type R/C column specimen, a U-shaped R/C wall and a plain concrete beam subject
to pure torsion. Comparisons between experiments and computations give an insight into the approach.

2. Constitutive laws

Both steel and concrete are described within the thermodynamic framework for irreversible processes [7]. In order to
reproduce correctly the behavior of reinforcement bars, we choose a classical plasticity model accounting for the non-linear
kinematic hardening of Armstrong and Frederick [8]. A typical stress–strain response curve predicted by this model is given
in Fig. 1.

Constitutive laws for concrete are based on the principles of damage mechanics following the usual approach [7]: After
choosing the state variables and the expression of free energy, derivations give the state laws that lead to the constitutive
equations. Two different models are presented hereafter, the first adapted to monotonic loadings having one scalar damage
variable, and the second adapted to cyclic loadings having two scalar damage variables and including crack closure and
permanents effects.

2.1. Mazars damage model for concrete [9]

Concrete—like most of the geomaterials and ceramics—is perceived like brittle in tension and more ductile under com-
pression loading. During experimental tests, a network of microscopic cracks nucleates perpendicularly to the direction of
extension, which coalesce until complete rupture. Whereas under uniaxial tension a single crack propagates, under com-
pression and due to the presence of heterogeneities in materials (aggregate surrounded by a cement matrix) tensile trans-
verse strains generate a self-equilibrated stress field orthogonal to the loading direction. A pure mode I (extension) is thus
considered to describe the behavior in compression.

The influence of microcracking due to external loads is introduced via a single scalar damage variable D ranging from 0
(undamaged material) to 1 (completely damaged material). The free energy w for this model takes the following form:

qw ¼ 1

2
e : HðDÞ : e; ð1Þ

H(D) is the Hooke elasticity tensor depending on the actual value of D through the form H(D) = H0(1 � D), H0 being the
elasticity tensor for the virgin material. From the state equations, r = qow/oe, the constitutive state law for a scalar damage
model coupled to elasticity leads to

r ¼ ð1� DÞ K TrðeÞIþ 2G e� 1

3
TrðeÞI

� �� �
ð2Þ

or

e ¼ 1=Eð1� DÞ ð1þ mÞr� mTrðrÞI½ �; ð3Þ
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Fig. 1. Cyclic behavior for the steel model.
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K and G are the bulk modulus and the shear modulus respectively, E and m the Young�s modulus and the Poisson�s ration. I

denotes the identity tensor. In order to introduce the non-symmetric behavior of concrete, the failure criterion is expressed
in terms of the principal extensions. An equivalent strain is defined as

eeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

heii2þ

vuut ; ð4Þ

where h•i+ is the Macauley bracket and ei are the principal strains. The yield criterion of damage follows accounting for
isotropic hardening j(D):

f ðe; dÞ ¼ eeq � jðDÞ. ð5Þ
Two evolution laws for damage are considered for tension and compression (index i refers either to traction or

compression):

Di ¼ 1� ed0ð1� AiÞ
eeq

� Ai expð�Biðeeq � ed0ÞÞ; ð6Þ

ed0 is the initial damage threshold; Ai and Bi are material parameters. The resulting damage to be introduced in the con-
stitutive equation is a combination of those two scalar damage variables using the following weighting coefficients at and ac

[9]:

D ¼ ab
t Dt þ ab

c Dc. ð7Þ
We call r+ and r� (r = r+ + r�) the tensors in which appear only the positive and negative principal stress, respectively,

and et, ec the strain tensors defined as

et ¼ K�1 : rþ and ec ¼ K�1 : r�; ð8Þ
K(d) is a fourth-order symmetric tensor interpreted as the secant stiffness matrix and it is a function of damage. The weights
at and ac are defined by the following expressions:

at ¼
X3

1

H i
etiðeti þ eciÞ

e2
eq

; ac ¼
X3

1

Hi
eciðeti þ eciÞ

e2
eq

; ð9Þ

at and ac define the contribution of each type of damage. at (respectively ac) ranges from 0 (pure 3D compression state—
respectively traction state) to 1 (pure 3D traction state—respectively compression state). Hi = 1 if ei = eci + eti P 0, other-
wise Hi = 0. From Eq. (9) it can be verified that for uniaxial tension at = 1, ac = 0, D = Dt and vice versa for compression.
b is a shear factor, generally equal to 1.06. Responses under compression and tension of this model are presented in Fig. 2.

2.2. La Borderie damage model for concrete [10]

A model suitable for cyclic loading has to take into account some observed phenomena such as decrease in material
stiffness due to cracking, stiffness recovery which occurs at crack closure and inelastic strains concomitant to damage.
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Fig. 2. Response of the Mazars damage model for concrete in tension and compression.
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Fig. 3. Uniaxial response of the La Borderie damage model for concrete under cyclic loading.
Due to the crack closure effect, damage is deactivated and inelastic strains in the direction of extension disappear when
passing from the tension to compression. To simulate this behavior two different scalar variables are used, D1 for damage
in tension and D2 for damage in compression [10]. Inelastic strains are taken into account thanks to an isotropic tensor.
The Gibbs free energy of this model in its 3D formulation can be expressed as

v ¼ hriþ : hriþ
2Eð1� D1Þ

þ hri� : hri�
2Eð1� D2Þ

þ m
E

r : r� Trðr2Þ
� �

þ b1D1

Eð1� D1Þ
f ðrÞ þ b2D2

Eð1� D2Þ
TrðrÞ; ð10Þ

f(r) is the crack closure function. h.i+ denotes the positive part of a tensor. E is the initial Young�s modulus and m the Pois-
son ratio. b1 and b2 are material constants. From this, the state laws lead to the expression of the total strain:

e ¼ ee þ ein; ð11Þ

ee ¼ hriþ
Eð1� D1Þ

þ hri�
Eð1� D2Þ

þ m
E
ðr� TrðrÞIÞ; ð12Þ

ein ¼ b1D1

Eð1� D1Þ
of ðrÞ

or
þ b2D2

Eð1� D2Þ
I; ð13Þ

with ee the elastic strains and ein the inelastic strains. One can notice that if D1 = D2 = D, Eq. (12) is the same as Eq. (3) and
if ein is not considered (b1 = b2 = 0) the two models are the same.

Damage criteria are expressed as fi = Yi � Zi (i = 1 for tension or 2 for compression, Yi is the associated force to the
damage variable Di and Zi a threshold dependent on the hardening variables). The evolution laws for the damage variables
Di are written as

Di ¼ 1� 1

1þ AiðY i � Y 0iÞ½ �Bi
; ð14Þ

Y0i = initial elastic threshold (Y0i = Zi(Di = 0)), Ai, Bi material constants. of(r)/or controls the crack-closure effects
depending on the actual stress state as follows:

TrðrÞ 2 ½0;þ1Þ ! of ðrÞ
or

¼ I;

TrðrÞ 2 ½�rf ; 0Þ !
of ðrÞ

or
¼ 1� TrðrÞ

rf

� �
I;

TrðrÞ 2 ð�1;�rfÞ !
of ðrÞ

or
¼ 0 � I;

8>>>>>><
>>>>>>:

ð15Þ

rf being the crack closure stress.
Fig. 3 gives a schematic stress–strain response of that model for a uniaxial traction–compression loading path.

3. Multifiber beam accounting for shear

In order to simulate—in a simplified manner—the 3D behavior of concrete elements under cyclic or dynamic loading, a
3D multifiber Timoshenko beam element has been developed [11–13]. The element is displacement-based (see also [14] or
[15] for an element with a forced based formulation) and can be implemented to any general-purpose finite element code
without major modifications. The user defines at each fiber a material and the appropriate constitutive law. The element
4



takes into account deformations due to shear and has higher order interpolation functions to avoid any shear locking phe-
nomena (cubic and quadratic Lagrangian polynomials are used for the transverse and rotational displacements respec-
tively). The interpolation functions take the following form [16]:

fU sg ¼ ½N �fUg; ð16Þ
fU sgT ¼ usðxÞ vsðxÞ wsðxÞ hsxðxÞ hsyðxÞ hszðxÞf g; ð17Þ
fUgT ¼ u1 v1 w1 hx1 hy1 hz1 u2 v2 w2 hx2 hy2 hz2f g ð18Þ

being 1 and 2 the two nodes of the beam, x the axis of the beam, s the subscript defining ‘‘section variables’’, u, v, w the
displacements and hx, hy, hz the rotations according to the x, y, z axis respectively (Fig. 4). [N] is the matrix containing the
interpolation functions

½N � ¼

N 1 0 0 0 0 0 N 2 0 0 0 0 0

0 N 3 0 0 0 N 4 0 N 5 0 0 0 N 6

0 0 N �3 0 �N �4 0 0 0 N �5 0 �N �6 0

0 0 0 N 1 0 0 0 0 0 N 2 0 0

0 0 �N �7 0 N �8 0 0 0 �N �9 0 N �10 0

0 N 7 0 0 0 N 8 0 N 9 0 0 0 N 10

2
666666664

3
777777775
; ð19Þ
Fig. 4. Using a multifiber beam to model a R/C structural element.
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with N �i ¼ N ið/�Þ, / and /* the stiffness ratios due to flexion and shear according to

/ ¼ 12

L2

Z
S

Ey2 dSZ
S

GdS

0
BB@

1
CCA and /� ¼ 12

L2

Z
S

Ez2 dSZ
S

GdS

0
BB@

1
CCA ð26Þ

L being the length and S the section of the beam, E and G Young�s and shear moduli of the fiber.
For slender structures / and /* equal zero and the resulting stiffness and mass matrices are reduced to the ones of the

Euler–Bernoulli beam theory. The interpolations functions depend on the materials properties and are calculated only
once, during the first step (a loop at the section level helps defining the properties of the material of each fiber. After that,
the interpolations functions are kept constant). If {F} and {D} are the section ‘‘generalized’’ stresses and strains respec-
tively, the section stiffness matrix [Ks] is calculated as [18]

fF g ¼ ½Ks�fDg with fF gT ¼ N T y T z Mx My Mzf g; ð27Þ

with N and T axial and shear forces respectively and M moments

fDgT ¼ ½u0sðxÞ� ½v0sðxÞ � hszðxÞ� ½w0sðxÞ þ hsyðxÞ� ½h0sxðxÞ� ½h
0
syðxÞ� ½h

0
szðxÞ�

 �
; ð28Þ

½Ks� ¼

Ks11 0 0 0 Ks15 Ks16

Ks22 0 Ks24 0 0

Ks33 Ks34 0 0

Ks44 0 0

Ks55 Ks56

sym Ks66

2
666666664

3
777777775
; ð29Þ

Ks11 ¼
Z

S
E dS; Ks15 ¼

Z
S

EzdS; Ks16 ¼ �
Z

S
Ey dS; Ks22 ¼ ky

Z
S

GdS; ð30Þ

Ks24 ¼ �ky

Z
S

GzdS; Ks33 ¼ kz

Z
S

GdS; Ks34 ¼ kz

Z
S

Gy dS; ð31Þ

Ks44 ¼
Z

S
G kzy2 þ kyz2
� �

dS; Ks55 ¼
Z

S
Ez2 dS; Ks56 ¼ �

Z
S

EyzdS; ð32Þ

Ks66 ¼
Z

S
Ey2 dS. ð33Þ

ky, kz shear correction factors dependent upon the material definition and cross section geometry [17].

4. Applications

4.1. Bending of a R/C column

The implementation of the element was made in the library FEDEAS [19] of the finite element code FEAP [20]. In order
to validate the performance of the proposed numerical strategy the 3D multifiber Timoshenko element is used hereafter to
simulate the inelastic behavior of a column under a general three dimensional load history, tested in the Joint Research
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Center in Italy [21]. The specimen has a 0.25-m-square cross section, a free length of 1.5 m and is considered fixed at the
base. Longitudinal reinforcement consisted of eight 16 mm diameter bars, uniformly distributed around the perimeter of
the section. The concrete cover of the stirrups is 15 mm thick (Fig. 5). Reinforcement bars showed yield stress and ultimate
strength of 460 MPa and 710 MPa respectively, the latter at a uniform elongation of 11%. Two tests are simulated (the tests
S1 and S7 of the experimental campaign [21]): For the first test uniaxial displacement cycles in pairs of linearly increasing
amplitude are alternately applied in the two transverse directions at the top of the column—Figs. 5 and 6(a). During the
second test the column is bi-axially displaced according to the nested squares centered at the origin presented in Figs. 5 and
6(b)—four displacement squares are applied with half-side lengths of 0.04 m, 0.06 m, 0.08 m and 0.10 m. A constant axial
force of 0.21 MN is applied during both tests, through the center of a loading plate at the top of the column with an actu-
ator located inside a steel-cup-shaped chamber. The chamber is secured in place through two vertical steel arms, which pass
through the column base and exert the resultant reaction force at the center of the bottom face of the foundation block. In
this way second-order (P � D) effects are avoided.
Fig. 5. R/C column: description of the specimen and the experimental setup [21].

Fig. 6. R/C column: displacement load histories: (a) first test and (b) second test.
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Ten multifiber Timoshenko beam elements having 2 Gauss points are used to model the column. Each section has 36
fibers for concrete and 8 fibers for steel. Base slab is not simulated and the specimen is considered fixed at the base. 1D
constitutive laws are adopted for concrete and steel based on damage mechanics and plasticity respectively (shear and tor-
sion are considered linear) [10]. Confinement effects are not considered. In order to resolve the non-linear equations the
iterative implicit Newton–Raphson solution procedure is followed, where the secant stiffness matrix is used insuring con-
vergence in most cases. This choice leads to a linear rate of convergence instead of the quadratic rate of the classical New-
ton–Raphson scheme [22], but is usually the choice when using constitutive laws based on damage mechanics [23]. Specific
values for the materials are presented in Tables 1 and 2. Comparison of the numerical and experimental results for the eight
levels of loading is represented in Figs. 7 and 8. The model simulates correctly the global behavior of the mock-up in terms
of displacements and forces in both directions. Calculation is not time consuming (less than one hour with a modern com-
puter) and allows for parametrical studies.

In order to evaluate the effectiveness of the proposed beam element, a second analysis of the S7 test using a coarser mesh
is presented in Fig. 9. The number of fibers in the section is again equal to 36. Results are quite similar to the ones using a
dense mesh and the hysteretic cycles are well reproduced.

4.2. U-shaped wall submitted to cyclic loading

The second example concerns the experimental results of a R/C U-shaped wall tested at the reaction wall of the ELSA
laboratory at JRC Ispra [24]. The 3.6 m height—1.0 scaled—specimen is composed of the U-shaped wall, a lower slab and
an upper slab and its design follows Eurocode 8 provisions (Fig. 10). The upper slab is used as the horizontal load appli-
cation point while six vertical post-tensioning bars apply a normal force of 2 MN. These bars are disposed in such a way
that the force is applied close to the inertial center in order to avoid spurious bending on the structure. Torsional rotation is
prohibited during the tests inducing important shear stresses in the specimen. The wall is loaded in both directions accord-
ing to ‘‘the butterfly path’’ presented in Fig. 10.

Eleven multifiber Timoshenko beam elements are used for the numerical simulation of the U-shaped wall. 177 fibers
simulate the concrete and 46 fibers the steel. Two Gauss points are considered at each element. Base slab is not simulated
and the wall is considered fixed at the base. The behavior of the top slab is considered linear elastic and rotation of the
upper part is prohibited in order to reproduce correctly the boundary conditions of the test. The uniaxial version of the
La Borderie damage constitutive law is used for concrete (shear and torsion are considered linear). In order to take into
account the influence of the stirrups the compression strength of the confined concrete is increased up to 30 MPa. The
properties of the materials used for the calculations are presented in Tables 3 and 4.

Comparison of numerical and experimental results for the eight steps of loading is represented in Fig. 11 (A, B, C letters
refer to Fig. 10). Again the secant Newton–Raphson scheme is used and the calculation takes only a couple of hours. One
Table 2
R/C column: material parameters for steel

Steel

Young�s modulus (steel) 200000 MPa
Yield strength 460 MPa
Ultimate strength 710 MPa
Ultimate deformation 11%

Table 1
R/C column: material parameters for concrete

La Borderie damage model

Young�s modulus 20000 MPa
Poisson coefficient 0.2
A1 6000 MPa�1

A2 5 MPa�1

B1 1
B2 1.6
b1 1 MPa
b2 �40 MPa
Y01 3.8 · 10�4 MPa
Y02 9 · 10�2 MPa
rf 3.5 MPa
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Fig. 7. R/C Column (first test): numerical vs experimental results.
can observe the ability of the model to simulate the global behavior of the specimen in terms of displacements and forces in
both directions up to failure. However, differences on the hysteretic loops of the numerical and experimental model are
more apparent than in the first two examples. This difference is attributed probably to the effect of non-linear shear stresses
that are not taken into account. The specimen is mainly responding in shear to resist high torsion.

5. Multifiber beam accounting for torsion

The analysis of concrete structures subject to severe loading including torsion can be apprehended in different ways
depending on the level of refinement and accuracy needed. Following the recent developments in structural mechanics,
complete non-linear 3D computations are now feasible. Although the question of material modeling is accurately treated
even for complex loading paths (see [25] for a recent development), some assumptions and simplifications should be made
when large-scale computations are needed.

One possibility is to stay within the classical beam theory and to use a global formulation taking into account the nor-
mal, flexural and torsional interactions [26,27]. This approach allows handling large-scale structures with low computa-
tional cost but has the disadvantage of loosing important information on the local level. Classical 3D finite element
computations may also be used in linear elasticity in order to treat the problem of general warping of an homogeneous
elastic beam [28] or of a composite material like a R/C bar [29]. Modeling of the non-linear behavior of the cross section
of a concrete beam can also be done using the Finite Volume Method [30].
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Fig. 8. R/C Column (second test): numerical vs experimental results.
In order to simulate correctly torsional behavior using multifiber beams, the influence in the crack pattern of the section
has to be considered. There are various ways:

• linear: generally used,
• globally non-linear: with a non-linear relation connecting torque moment and rotation,
• locally non-linear: by using a 3D local behavior on each fiber. This approach is difficult because very few concrete con-

stitutive relations are efficient and robust enough under cyclic or dynamic loading. Moreover, two possibilities appear:
with or without section warping. The relevancy of considering complex kinematics of the section and 3D local consti-
tutive relationships in the framework of a simplified approach is discussed in the following.

5.1. Linear elastic torsion and warping

The aim of the study is to obtain the strain field due to pure torsion for each fiber by solving the warping problem for a
section composed of several materials (for example reinforced concrete). Initially the problem is solved within the linear
elastic framework of the free torsion of Saint Venant.
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Fig. 9. R/C Column (second test): results of the numerical model using different number of Timoshenko multifiber beam elements.
Let us consider a R/C section assuming that there is no discontinuity between steel and concrete. Under the hypothesis
of small displacements, the solution of the problem is assumed as

uðx; y; zÞ ¼ a � uðy; zÞ; vðx; y; zÞ ¼ �a � x � z and wðx; y; zÞ ¼ a � x � y; ð34Þ

where u, v, w are the three components of the displacement vectors, (O,x,y,z) is the Cartesian frame reference (Fig. 12),
u(y,z) the warping function of the section, a = (h2 � h1)/L,~x is the longitudinal axis of the beam (length L) and h1 and h2

denote the rotation of its two edges. Solution of the problem consists in defining the displacement field ~Uðu; v;wÞ under an
external load ~Mx that respects the equilibrium equations, the boundary conditions and the constitutive equations (linear
elasticity). The classical solution follows as

Duðy; zÞ ¼ 0. ð35Þ
5.2. Numerical implementation [31]

In order to solve this plane problem for a section composed of several materials, a warping-conduction analogy method
is used [32]. The problem of the calculation of the warping function for a section made up of several elastic materials (shear
modulus Gi) is transformed into a problem of 2D conduction in a plate made up of several materials (thermal conductivity
ki). Indeed, the solution of Laplacian equations is trivial in heat transfer. Thus, if the boundary conditions are known, the
problem can be solved with a usual finite element code.

The notations for the mechanical problem of torsion warping are: u(y,z) is the warping function—homogeneous with a
displacement squared—and Gi the shear modulus of the elastic material i.

For the thermal conduction problem, notations are as follows: T(y,z) is the temperature function, ki is the thermal con-
ductivity of the isotropic material i and U(y,z) = kgradT(y,z) the thermal density flux.

For torsion one obtains Du(y,z) = 0 in the surface of each material. This equation corresponds to the equation of heat
for conduction in steady state DT(y,z) = 0. The shear modulus of the elastic material Gi is equivalent to ki, the thermal
conductivity of the isotropic material.

In order to find the boundary conditions on external contour for torsion, one writes that there are no external forces
applied to the contour of the section (external surface of the beam), with n, the unit vector leaving normal to contour
dS, of component ny and nz. Continuity between two materials is expressed by insuring continuity of the function
u(y,z) and continuity of the forces on the border between two materials.

The conduction problem equivalent to the torsion warping function problem is as follows:

DT ðy; zÞ ¼ 0. ð36Þ
11



Fig. 10. U-shaped wall: description of the specimen and loading history.
For the flow imposed on the free face:

Ui � n ¼
kiz

�kiy

� �
ny

nz

� �
ð37Þ
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Table 3
U-shaped wall: material parameters for concrete

La Borderie damage model

Young�s modulus 28900 MPa
Poisson coefficient 0.25
A1 6000 MPa�1

A2 5 MPa�1

A2 (confined) 6.7 MPa�1

B1 1
B2 1.6
b1 0.4 MPa
b1 (confined) 1 MPa
b2 �40 MPa
Y01 2.3 · 10�4 MPa
Y02 0.1 · 10�2 MPa
rf 3.5 MPa

Table 4
U-shaped wall: material parameters for steel

Steel

Young�s modulus (steel) 200000 MPa
Yield strength 515 MPa
Ultimate strength 615 MPa
Ultimate deformation 24%

-1.2E+06

-8.0E+05

-4.0E+05

0.0E+00

4.0E+05

8.0E+05

1.2E+06

-0.09 -0.06 -0.03 0 0.03 0.06 0.09

Displacement X (m)

S
h

ea
r 

F
o

rc
e 

X
 (

N
)

Test

Model

-8.0E+ 05

-4.0E+ 05

0.0E+00

4.0E+05

8.0E+05

-0.09 -0.06 -0.03 0 0.03 0.06 0.09

Displacement Y (m)

S
h

ea
r 

F
o

rc
e 

Y
 (

N
) Test

Model

C

B

A

A

C
B

Fig. 11. U-shaped wall: numerical vs experimental results.
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Fig. 12. Beam model in torsion.
and ‘‘jump’’ of flow imposed between two materials:

ðUi � UjÞ � ni ¼
ðki � kjÞz
ð�ki þ kjÞy

� �
ni

y

ni
z

� �
. ð38Þ

Thus, by applying these boundary conditions, the problem can be solved with any finite element code able to solve ther-
mal conduction problems (the following computations are made using the finite element code CASTEM 2000).
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This warping function calculation method is used to determine the torsion shear strains all over a beam section:
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. ð39Þ

As in [28], the torque moment is obtained by integrating the stresses at the elastic torsion center:

Mx ¼
Z

S
ðyrxz � zrxyÞdS. ð40Þ

The multifiber framework is a natural integration domain allowing an easy numerical implementation of this approach
into any general-purpose finite element code.

5.3. Non-linear extension

The crack pattern initiated by torsion is assumed to remain constant during crack propagation after nucleation. The
strain field along the cross section due to torsion and warping may initiate the non-linear behavior but the global shape
of the crack pattern is not be affected by local damage. The warping function is thus computed on the basis of a linear
elastic material and is kept constant during the non-linear range.

6. Application

6.1. Torsion of plain concrete beams

The experimental studies used hereafter are from [33]. Several plain concrete beams have been tested in pure torsion. The
beams are composed of three parts: two reinforced end parts (properly reinforced, so as to remain elastic) and one plain
concrete part in the middle (where cracking and failure occurred during the tests). A pure torsion loading is applied at both
ends of the beams (Fig. 13). The beams are supported on two roller supports 1.30 apart, ensuring that the beam is free to
twist and to elongate longitudinally. Two types of sections are investigated: a rectangular section specimen (R test) and a
T-section specimen (T test) (Fig. 14).

Calculations of the warping functions are carried out for the two specimens. Non-linear calculations of the concrete sec-
tions in pure torsion are also presented. It is thus possible to compute the stresses using the local scalar damage constitutive
relation [9]. The parameters used for the materials are fixed from the experimental compression and tension tests results of the
R test. However, as the Young�s modulus was unknown it is taken equal to 25000 MPa allowing reproducing the experimen-
tal initial stiffness and m, the Poisson ratio, equal to 0.2. The material parameters used for the computation are given in Table 5.
50cm 50cm60cm

Plain concrete

Fig. 13. Plain concrete beam under pure torsion.

10cm

20
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Fig. 14. T and rectangular cross sections.
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Table 5
Plain concrete beam: material parameters for concrete

Mazars damage model

Young�s modulus 25000 MPa
Poisson coefficient 0.2
Initial threshold ed0 1 · 10�04

ACompression 1.4
BCompression 1900
Atension 0.8
Btension 17000
Shear correction b 1.06
The calculated warping functions for both sections are presented in Fig. 15. In order to highlight the importance of the
warping function for the initial stiffness but also in the non-linear range, two types of analysis have been carried out: either
by taking into account the warping function, or by neglecting it (i.e. by giving it a zero value all over the sections). For both
sections, the curves giving the evolution of the torque moments (by integrating the stresses upon the section) with the rota-
tion angle are plotted in Figs. 16 and 17. Those results show the importance of considering the warping function in order to
reproduce correctly the experimental results. The model without the warping function has an initial elastic stiffness higher
than the model considering warping. The maximum torque moment is also poorly evaluated. This can be explained by the
fact that the warping function modifies a lot the strain distribution in the section before crack initiation, and thus the dam-
age in the section, as shown in Fig. 18. Even though the estimation of the cross section shear strain field using warping is
necessary to describe correctly the maximum bearing capacity of a reinforced concrete member under torsional loading, the
basic assumption made in computing this warping function (constant) seems to be adequate.

The damage patterns in Fig. 18 show that the pattern without warping is similar to the one of a circular section (where
no warping occurs—damage is almost zero near the center of the section) and completely different from the one considering
warping. This has a crucial consequence on the bending behavior of a beam subjected to both torsion and bending. In
Fig. 19, the evolution of its bending stiffness is studied, while applying a pure torsion loading and using two types of model:
with and without warping. At crack initiation, both models give the same response in terms of stiffness. While cracks prop-
agate in the cross section, the two different damage profiles induce a completely different behavior for bending.

Work is in progress in order to apply the proposed modeling strategy to a R/C section.
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Fig. 16. R test: torque moment (kN cm) vs rotation (10�4 rad/cm) comparisons.

Fig. 15. Warping function obtained for the rectangular and T-cross sections.
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Fig. 18. R test: damage field on the rectangular cross section, without and with warping.
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Fig. 19. Flexural stiffness evolution (106 N m) in function vs rotation (10�4 rad/cm) for a model with or without warping.
7. Conclusions

This work investigates the use of multifiber beam elements in order to account for shear and torsion. Constitutive laws
are based on damage mechanics and plasticity and applications are presented for concrete structural elements. More
specifically:

At the first part of the paper, the formulation of a Timoshenko multifiber beam element is elaborated. The element has
higher order interpolations functions to avoid any shear locking phenomena. The element is used successfully to simulate
the global response of R/C columns and U-shaped walls subjected to complex biaxial loading.
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For those simulations, shear stresses are considered linear and torsion and shear are uncoupled. However, the formu-
lation of the Timoshenko element is presented in a general way and so the element is ready to be used, without any further
development, with models able to couple shear and torsion. The implementation of a 3D robust constitutive model for
concrete under cyclic loading would certainly improve the results at the global but also at the local level.

It is necessary though to mention the fact that the behavior of R/C sections under shear (or torsion) is a result of the
anisotropic response of the R/C section with cracks developed at a certain inclination with respect to the section�s plane.
The use of isotropic damage models and Timoshenko kinematics (where shear stresses are considered constant in the sec-
tion) limits the domain of application of the proposed strategy to a slenderness more or less close to 1. This is for example
shown for the case of R/C concrete walls having very small slenderness (equal to 0.4) in [34]. A solution—always within the
family of simplified models—is to use some type of truss-analogy models that transfer forces to the longitudinal and trans-
verse reinforcements (Strut-and-Tie models [35], the Compression Field Theory [36], the Rotating-Angle-Softened Truss
model [37], the Equivalent Reinforced Concrete [12,34,38]). The reader can find a detailed presentation of some truss-anal-
ogy models in [39].

Furthermore, it is now well known that the use of local constitutive relationships provides results that are mesh-depen-
dent in the post-cracking regime. Localized failure is caused by strain softening, which cannot be described by classical
models, because they lack a length scale. The use of a non-local damage model [40] or a local strain-gradient model
[41,42] can provide a remedy in this particular problem.

At the second part of the paper it is shown that for a non-linear analysis with multifiber beams subject to torsion, the
introduction of warping is crucial in order to reproduce the torque—rotation evolution. Damage profiles are completely
different depending on considering or not warping and consequently the global behavior is modified: torsion and bending
stiffness, maximum torque, etc. In this paper the assumption made is that the warping function is constant, determined on
elastic assumptions even during crack propagation. The model gives good results for rectangular sections as well as for T-
sections in accordance with the experimental results. The next step will be to test the proposed strategy for R/C sections
under cyclic loading.
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