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Abstract

This paper deals with the semiparametric estimation of multivariate long-range dependent
processes. The parameters of interest in the model are the vector of the long-range dependence
parameters and the long-run covariance matrix. The proposed multivariate wavelet-based
Whittle estimation is shown to be consistent for the estimation of both the long-range
dependence and the covariance matrix. A simulation study confirms the satisfying behaviour
of the estimation, which improves the univariate estimation and gives similar results than
multivariate Fourier-based procedure. For real data applications, the correlation between time
series is an important feature. Usual estimations can be highly biased due to phase-shifts caused
by the differences in the properties of autocorrelation in the processes. The long-run covariance
matrix provides an interesting estimator for characterizing coupling between time series, also
called functional connectivity in neuroscience. A real data application in neuroscience highlights
the utility of the wavelets-based method, which is more flexible than Fourier-based procedures.
Time series measuring the brain activity are analysed, so as to obtain the characterization of their
long-memory behaviour and a measure of the functional connectivity of the brain.

Keywords: multivariate processes, long memory, fractional integration, semiparametric
estimation, covariance matrix, wavelets, neuroscience application, functional connectivity
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1 Introduction

The long-range dependence has attracted lots of interest in statistics and in many applications since
the seminal paper of Mandelbrot in 1950. First the Brownian motion model was introduced as the
unique Gaussian process having stationary increments (Mandelbrot and Van Ness, 1968). This
model is characterized by one parameter called the Hurst exponent. Since then, several extensions
were introduced in order to get more complex modellings that can be closer to real data. One
can cite ARIMA, FD, FIN. . . We refer to Percival and Walden (2006) and references therein for an
overview of long-range dependence models in literature. These models were used in a large scope
of applications, for example to finance (Gençay et al, 2001) (see also the references in Nielsen and
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Frederiksen (2005)), to internet traffic (Abry and Veitch, 1998), to physical sciences (Papanicolaou
and Sølna, 2003; Percival and Walden, 2006), to geosciences (Robinson, 1995a) and to neuroimagery
(Maxim et al, 2005).

Nowadays, it is common to record data having multiple sensors, such as neuroimagery with
fMRI or EEG. Each sensor records the activity of a specific part of the brain. However, the brain
is a complex system with complex interactions between its different parts, so researchers were
interested in modelling the sensors as multivariate time series. A similar representation is suited
for data acquired in geosciences where, for example, time series correspond to temperatures in
several part of the earth, like in Whitcher and Jensen (2000). For these two applications, it has been
shown that the univariate time series present long-range dependence behaviour. As a consequence,
researchers got interest in studying multivariate models of long-range dependence time series.
Several models with the possibility to tackle long memory features have been proposed. In Didier
et al (2011), the multivariate Brownian motion was defined. The values of interactions as defined
by the covariance matrix must be carefully chosen so that the model is identified (Coeurjolly et al,
2013). Also, the multivariate extension of fractionally difference models was proposed in Chambers
(1995), which includes the multivariate extension of ARFIMA models with an explicit expression of
the short memory terms. In a recent paper, Kechagias and Pipiras (2014) highlighted the difficulties
to extend the notion of long range dependence to multivariate time series and proposed specific
linear representations of long range dependence. Concerning multivariate extension of ARFIMA
models, Sela and Hurvich (2008) studied two different classes of extension depending on the order
of fractional integration and ARMA models.

Using these long memory models, a typical statistical issue is to estimate the long memory
parameter, since it characterizes the long-term dependence of the series. Another reason is the fact
that many relevant statistics behaviours depend on this parameter. A very large literature exists in
the context of univariate time series. First, parametric approaches were developed (Dahlhaus, 1989;
Fox and Taqqu, 1986; Giraitis et al, 1997) which provide fast rates of convergence. However these
approaches suffer from inconsistency when the short-term component of the model is misspecified.
Semiparametric models were then developed to be robust to model misspecification, where the
spectral density is modelled only near zero frequency. In the frequency domain, two popular
estimators among the semiparametric ones are the Geweke-Porter-Hudak developed by Geweke
and Porter-Hudak (1983) and the local Whittle estimator of Robinson (1995a). Wavelet-based
estimators were also studied, and proved to be adequate for studying fractal time series. In
Abry and Veitch (1998), the authors developed an estimator using log-regression of the wavelet
coefficient variance on the scale index. Moulines et al (2008) studied the asymptotic properties of a
wavelet Whittle estimator.

Considering multivariate fractionally integrated processes (Chambers, 1995), the estimation of
memory parameters and covariance matrix have been first studied in Robinson (1995b). Then
Lobato (1999) proposed a semiparametric two-step estimator. Shimotsu (2007) extended this
latter approach including phase-shift consideration. Nielsen (2011) proposed an extension based
on Abadir et al (2007)’s extended Fourier transform to estimate long memory parameters for
nonstationary time series. In a different approach, Sela and Hurvich (2012) proposed an estimator
based on the average periodogram for a power law in coherency. All these approaches were
developed using Fourier log-periodogram. In comparison, there are few wavelet-based estimators
of long-range memory parameters in multivariate settings. Frías et al (2008); Wang and Wang
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(2013) propose estimation schemes based on multidimensional wavelet basis. In many real data
applications such as geosciences, internet traffic or neurosciences, the number of time series is
huge, as the real data example of Section 6 illustrates. The latter works thus do not seem well
adapted. Achard et al (2008) study a two-dimensional estimation, based on univariate wavelet
basis, which define the estimators through the regression of the cross-covariance between the
wavelet coefficients. This approach also appears difficult to generalize to any multidimensional
settings. The present work defines a wavelet Whittle estimator for multivariate models. The
extension to multivariate processes presents two issues. First, a vector of long memory parameters
has to be estimated along with the covariance matrix that is modelling the interactions between
the time series. Second, as noted in Robinson (1994b); Shimotsu (2007), the multivariate extension
of the fractional integrated model introduces a phase-shift that has to be taken into account in the
estimation procedures. The new proposed methodology using wavelets is shown to be adequate
for nonstationary long range dependence models.

The paper is organised as follows. Section 2 is introducing the specific framework of multivariate
long memory processes based on the definition of the spectral density matrix. The multivariate
wavelet Whittle estimators of the long memory parameters jointly to the covariance matrix are
defined in Section 3. The properties of this new estimation scheme are derived in Section 4 where
consistency of both estimations are established. Finally, simulated results in Section 5 show that the
wavelet Whittle estimators have comparable performances as the Fourier-based ones in addition to
provide a very flexible approach to handle both stationary and nonstationary processes.

2 The semiparametric multivariate long-memory framework

Let X = {Xℓ(k), k ∈ Z, ℓ = 1, . . . , p} be a multivariate stochastic process. Each process Xℓ is not
necessarily stationary. Denote by ∆Xℓ the first order difference, (∆Xℓ)(k) = Xℓ(k) − Xℓ(k − 1),
and by ∆DXℓ the D-th order difference. For every component Xℓ, there exists Dℓ ∈ N such
that the Dℓ-th order difference ∆DℓXℓ is covariance stationary. Following Achard et al (2008);
Chambers (1995); Moulines et al (2007), we consider a long memory process X with memory
parameters d = (d1, d2, . . . , dp). For any D > d − 1/2, we suppose that the multivariate process
Z = diag(∆Dℓ , ℓ = 1, . . . , p)X is covariance stationary with a spectral density matrix given by:

for all (ℓ, m) , f
(Dℓ,Dm)
ℓ,m (λ) =

1

2π
Ωℓ,m(1 − e−iλ)−ds

ℓ(1 − eiλ)−ds
m f S

ℓ,m(λ), λ ∈ [−π, π],

where the long memory parameters are given by dS
m = dm − Dm for all m. The functions f S

ℓ,m(·)
correspond to the short memory behaviour of the process. The generalized cross-spectral density
of processes Xℓ and Xm can be written:

fℓ,m(λ) =
1

2π
Ωℓ,m(1 − e−iλ)−dℓ(1 − eiλ)−dm f S

ℓ,m(λ), λ ∈ [−π, π].

As it will be explained in Section 2.1, this model does not deal with cointegrated time series, where
one would have an additional multiplicative term of the form eiϕ, see e.g. Kechagias and Pipiras
(2014); Sela and Hurvich (2012).
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In the case of a multivariate setting, the spectral density of the multivariate process X is thus,

f (λ) = Ω ◦ (Λ0(d) f S(λ)Λ0(d)∗), λ ∈ [−π, π], with Λ
0(d) = diag((1 − e−iλ)−d) (1)

where d = D + ds. The exponent ∗ is the conjugate operator and ◦ denotes the Hadamard product.

In this semiparametric framework, the spectral density f S(·) corresponds to the short-memory
behaviour and the matrix Ω is called fractal connectivity by Achard et al (2008) or long-run covariance
matrix by Robinson (2005). Similarly to Moulines et al (2007) we assume that f S(·) ∈ H(β, L)
with 0 < β 6 2 and O < L. The space H(β, L) is defined as the class of non-negative symmetric
functions g(·) on [π, π] such that for all λ ∈ (−π, π), ‖g(λ)− g(0)‖∞ 6 L‖g(0)‖∞|λ|β.

The spectral density specifies that the two processes Xℓ and Xm have long-memory parameters
respectively dℓ and dm. The parameters are not necessarily taken inside (-1/2,1/2) (if D > 1)
allowing nonstationary time series. If orders are different, the estimation of the memory parameters
is still available but some bias issues occur for the estimation of the underlying correlation Ω. This
will be explained later in the manuscript in Section 3.

In order to derive semiparametric estimations of the memory parameters and the matrix Ω, the
term inside the matrix Λ

0(d) can be simplified using the equality 1 − e−iλ = 2 sin(λ/2)ei(π−λ)/2.
Consequently, when λ tends to 0, the spectral density matrix can be approximated at the first order
by:

f (λ) ∼ Ω ◦ (Λ̃(d) f S(0)Λ̃(d)∗), λ ∈ [−π, π], with Λ̃(d) = diag(|λ|−de−iπd/2). (2)

A similar approximation has been carried out in Lobato (1997) or Phillips et al (2004), while

Shimotsu (2007) derived a second order approximation. Lobato (1999) used Λ̃(d) = diag(λ−d)
as an approximation of f (·). Whereas Shimotsu (2007) chose to approximate f (·) using Λ̃(d) =

diag(λ−de−i(π−λ)d/2), which corresponds to a second order approximation due to the remaining
term λ in the exponential. As mentioned by Shimotsu (2007), intriguingly, the two defined
estimators of long memory parameters are consistent, but only for the estimation of d. The
estimation of the covariance matrix is affected by the choice of Λ̃(d). The approach proposed
in the sequel of the paper is using approximation (2), which is a trade-off between Lobato (1999)
and Shimotsu (2007). The resulting estimator for d is equivalent to the one defined in Lobato
(1999). However a specific correction for the estimation of the covariance matrix overcomes the
bias caused by the presence of a phase-shift through the complex exponential term. This point has
also been raised in the context of detecting cointegration, when the cross-spectral density presents
an additional phase parameter comparing to the case studied in this paper.

2.1 Examples of processes

Since the papers of Robinson (1994a,b, 1995a,b) the semiparametric approach has known a growing
interest. The key point is that any misspecification of the short-range dependence properties of
the process may produce inconsistent estimates, while such issues are excluded thanks to the
semiparametric formulation. This section provides some examples of processes which satisfy our
semiparametric modelling.
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The matrix Ω has been defined via the spectral representation of the process, the link between
Ω and the covariance of the multivariate process in the temporal space is detailed hereafter. Let
X = 1

N ∑
N
t=1 X(t) be the empirical mean of the process. If the cross-spectral density is defined and

continuous at the frequency λ = 0, Fejer’s theorem states that n1/2X → 2π f (0). When the cross-
spectral density satisfies an approximation (1), Robinson (2005) indicates that

DnE(XX
T
)Dn → 2πΩ ◦ Q(d)

where Dn = diag(n1/2−d) and Qℓ,m(d) =
sin(πdℓ)+sin(πdm)

Γ(dℓ+dm+2) sin(π(dℓ+dm))
.

2.1.1 Fractionally integrated processes

This section presents some multivariate fractionally integrated processes that satisfy the spectral
density approximation (2). Let L be the lag-operator and define the p-vector process X by



(1 −L)d1 0

. . .

0 (1 −L)dp







X1(t)
...

Xp(t)


 =




u1(t)
...

up(t)


 (3)

where u is a p-vector covariance stationary process. In the particular case where u is a vector
ARMA process, X is a multivariate ARFIMA process. We refer to Bollerslev and Wright (2000);
Brunetti and Gilbert (2000); Henry and Zaffaroni (2003) for an overview of fractionally integrated
processes and applications in finance.

Suppose u admits a spectral density f u(·) bounded above and away from zero at the zero frequency.
Then the spectral density of the process X can be written

f (λ) = diag((1 − e−iλ)−dℓ , ℓ = 1, . . . , p) f u(λ)diag((1 − e−iλ)−dℓ , ℓ = 1, . . . , p))∗,

see Hannan (1970), page 61.

Assume now that at the neighbourhood of the zero frequency the approximation f u(·) ∼ Ω ◦ f S(·)
holds. This assumption is satisfied whenever each component of the process u admits a Cramer-
Wold representation: for all ℓ = 1, . . . , p, for any t ∈ Z, uℓ(t) = Cℓ(L)εℓ(t) with a polynomial Cℓ(·)
finite and full rank. Such an expression is available for example if for all ℓ = 1, . . . , p the time series
uℓ is an ARMA process with possibly correlated innovations, i.e. the correlation matrix of εℓ(t) is
independent of t ∈ Z but possibly not equal to the unity matrix. The spectral density of the process
X satisfies approximation (2). The matrix Ω is related in this model to the correlation between the
initial processes ε.

A more detailed presentation of multivariate ARFIMA processes can be found in Didier et al
(2011); Lobato (1997); Sela (2010); Sela and Hurvich (2012). As it can be seen in these references,
multivariate ARFIMA processes are not easy to characterize since it is not equivalent to apply
fractional diffraction on a vectorial ARMA process or to define a vectorial ARMA process with
fractionally integrated noise. In this paper, the model specification does not take into account the
possibility of cointegration, namely we cannot consider u(t) = C(L)ε(t) with C(·) a polynomial
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defined on Rp. Indeed in such configurations the approximation (2) can no longer be written with
a diagonal matrix Λ̃(d). Cointegration in vectorial ARFIMA processes is difficult to handle with
and may concern future research. Some insight on estimation in presence of cointegration can be
found in Kechagias and Pipiras (2014); Robinson (2008); Sela and Hurvich (2012).

2.1.2 Discrete fractional Brownian motion

Another example is a discrete-time version of fractional Brownian motion. For a given H ∈
(0, 1)p, let (BH(k))k∈Z be a sequence of observations of a p-multivariate Brownian motion (mFBM)
(BH(t))t∈R. Recall that a p-dimensional mFBM is a process satisfying the three following
properties:

• BH(t) is Gaussian for any t ∈ R;

• BH is self-similar with parameter H, i.e. for every t ∈ R and a > 0, (BH1(at), . . . , BHp(at)) has
the same distribution as (aH1 BH1(t), . . . , aHp BHp(t));

• the increments are stationary.

Coeurjolly et al (2013) characterize the spectral behaviour of the increments of a mFBM: if fℓ,m

denotes the cross-spectral density of (BHℓ, BHm), then

fℓ,m(λ) = τℓ,m(sign(λ))
1 − cos(λ)

|λ|Hℓ+Hm+1
,

with τℓ,m(sign(λ)) = reℓ,m(τ) − i sign(λ)imℓ,m(τ), where reℓ,m(τ) and imℓ,m(τ) are real constants
depending on Hℓ, Hm and on the correlations between BHℓ(1), BHm(1), BHℓ(−1) and BHm(−1).
Actually, the cross-spectral density of the process (BH(k))k∈Z can be expressed on the form (1),
with d = H − 1/2 ∈ (−1/2, 1/2)p, Ωℓ,m = |τℓ,m(1)| and with

f S
ℓ,m(λ) = 2

τℓ,m(sign(λ))

|τℓ,m(sign(λ))|
1 − cos(λ)

λ2

(
1 − e−iλ

λ

)Hℓ+Hm+1

.

The spectral density f S(·) is bounded and, for any (ℓ, m), f S
ℓ,m(λ) tends to 1 when λ tends to 0.

The matrix Ω is related to the correlation between the processes but the link does not appear as
clearly as in the previous model. To be more precise, when dℓ + dm 6= 0, the following expression
holds:

Ω2
ℓ,m = Γ(dℓ + dm)

2
[
Corr(BHℓ(1), BHm(1))

2 cos2(π(dℓ + dm)/2))

+(2 − 2dℓ+dm−1)2(Corr(BHℓ(1), BHm(−1))− Corr(BHℓ(−1), BHm(1)))
2 sin2(π(dℓ + dm)/2)

]
.

The estimation of the matrix Ω gives information on the cross-behaviour of the processes. In
Amblard and Coeurjolly (2011) an estimation of Cov(BHℓ(1), BHm(1)) is proposed but it is said
that Cov(BHℓ(1), BHm(−1)) − Cov(BHℓ(−1), BHm(1)) seems difficult to identify. Using the result
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of Amblard and Coeurjolly (2011) together with the estimation of Ω and d developed in this
manuscript can solve this difficulty.

Clearly the semiparametric setting omits the dependence of the function f S(·) and of the matrix
Ω on the Hurst parameters vector H. If the fBM is effective, a well-driven estimation under the
parametric model will lead to better results than under the semiparametric one. In particular, when
considering a mFBM, the between-scale behaviour of the wavelets coefficients is different from our
particular setting (see Coeurjolly et al (2013)). Yet our model is more robust to misspecification of
the short-run dynamics.

3 Multivariate Wavelet Whittle estimation

The estimation is done through a wavelet representation of the time series. This section first defines
the wavelet transform of the processes and then gives some results on the cross behaviour of the
wavelet coefficients. The main point is the presence of a phase-shift caused by the differences
in the long-memory parameters. Finally the proposed estimation scheme is derived, defining
simultaneous estimators of the long-memory parameters and of the long-run covariance, which
take into account the phase-shift.

3.1 The wavelet analysis

Let (φ(·), ψ(·)) be respectively a father and a mother wavelets. Their Fourier transforms are given
by φ̂(λ) =

∫ ∞

−∞
φ(t)e−iλtdt and ψ̂(λ) =

∫ ∞

−∞
ψ(t)e−iλtdt.

At a given resolution j > 0, for k ∈ Z, we define the dilated and translated functions φj,k(·) =

2−j/2φ(2−j · −k) and ψj,k(·) = 2−j/2ψ(2−j · −k). The same convention as in Moulines et al (2007)
and Moulines et al (2008) is used in the sequel of the paper.

Let X̃(t) = ∑k∈Z X(k)φ(t − k). The wavelet coefficients of the process X are defined by

Wj,k =
∫

R

X̃(t)ψj,k(t)dt j > 0, k ∈ Z.

For given j > 0 and k ∈ Z, Wj,k is a p-dimensional vector Wjk =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)

where Wj,k(ℓ) =
∫
R

X̃ℓ(t)ψj,k(t)dt.

The following assumptions are formulating regularity conditions on the wavelet transform, and
they are supposed to be verified in the sequel of the paper:

(W1) The functions φ(·) and ψ(·) are integrable, have compact supports,
∫
R

φ(t)dt = 1 and∫
ψ2(t)dt = 1;

(W2) There exists α > 1 such that supλ∈R |ψ̂(λ)|(1 + |λ|)α < ∞, i.e. the wavelet is α-regular;
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(W3) The mother wavelet ψ(·) has M > 1 vanishing moments.

(W4) The function ∑k∈Z kℓφ(· − k) is polynomial with degree ℓ for all ℓ = 1, . . . , M − 1.

(W5) For all i = 1, . . . , p, (1 + β)/2 − α < di 6 M.

These conditions are not restrictive, and many standard wavelet basis satisfy them. Among
them, Daubechies wavelets are compactly supported wavelets parametrized by the number of
vanishing moments M. They are α-regular with α an increasing function of M going to infinity
(see Daubechies (1992)). Assumptions (W1)-(W5) will hold for Daubechies wavelet basis with
sufficiently large M.

Remark. The couple of functions (φ(·), ψ(·)) can be associated with a multiresolution analysis, but
this condition is not necessary. Similarly, the orthogonality of the family {ψj,k(·)} is not required.
See Moulines et al (2007), Section 3.

Under assumption (W3), the wavelet transform performs an implicit differentiation of order M.
Thus it is possible to apply it on nonstationary processes. In Fourier analysis, tapering procedures
are necessary to consider directly nonstationary frameworks, see e.g. Velasco and Robinson (2000)
and references therein. Some recent works propose a procedure that differentiate the data before
tapering, (Hurvich and Chen (2000) and references therein). Another extension of Fourier to
nonstationary frameworks has been proposed by Abadir et al (2007) and used by Nielsen (2011)
in multivariate analysis.

In practice, a finite number of realisation of the process X, say X(1), . . . X(N), is observed. Since the
wavelets have a compact support only a finite number nj of coefficients are non null at each scale
j. Suppose without loss of generality that the support of ψ(·) is included in [0, T] with T > 1. For
every j > 0, define

nj := max (0, 2−j(N − T + 1)). (4)

Then for every k < 0 and k > nj, the coefficients Wj,k are set to zero because all the observations are

not available. In the following, n = ∑
j1
j=j0

nj denotes the total number of non-zero coefficients used

for estimation.

3.2 Spectral approximation of wavelet coefficients

Let us recall some results of Moulines et al (2007) for the wavelet transform of an univariate process.
Let Wj,k denotes the wavelet coefficient of an unidimensional process X, with a spectral density of

the form f (λ) = |1 − eiλ|−2d0 f S(λ) where d0 can be outside of the interval [−1/2, 1/2]. Moulines
et al (2007) state that under assumptions (W1)-(W5), the wavelet coefficients process (Wj,k)k∈Z
is covariance stationary for any given j > 0, however they also stress that the between-scale
coefficients are not decorrelated. Exact decorrelation occurs when the wavelet bases is orthonormal
and d0 = 0 but is not acquired in general framework. Many estimators of long-memory, see
among others Abry and Veitch (1998); Gonzaga and Hauser (2011); Jensen (1999); Wornell and
Oppenheim (1992), suppose the approximate decorrelation of wavelet coefficient. Following Bardet
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et al (2000) or Moulines et al (2008), the present work takes into account the within and between
scales behaviour.

Let j > 0 and j′ = j − u 6 j be two given scales. In Moulines et al (2007), The between-scale process
is defined as the sequence {Wj,k, Wj−u,2uk+τ, τ = 0, . . . 2u − 1}k∈Z. Let Dj,u(·; d0) be the spectral
density of this process. Theorem 1 in Moulines et al (2007) establishes that under assumptions
(W1)-(W5) there exists C such that for all λ ∈ (−π, π),

∣∣∣Dj,u(λ; d0)− f S(0)22jd0 D∞,u(λ; d0)
∣∣∣ 6 C f S(0)2j(2d0−β),

where

D∞,u(λ; d0) := ∑
t∈Z

|λ + 2tπ|−2d0 ψ̂∗(λ + 2tπ)2−u/2ψ̂(2−u(λ + 2tπ))eu(λ + 2tπ)

with eu(ξ) =
(

1 e−i2−uξ . . . e−i2−u(2u−1)ξ
)T

. The exponent T denotes the transpose operator.

The key point of our estimation is the extension of results obtained by Moulines et al (2007) to
the multivariate framework. Due to the complexity of the multivariate setting, we choose not to
characterize the behaviour of the wavelet coefficients in terms of cross spectral densities.

First, in order to extend the results of Moulines et al (2007) to a multivariate framework, the
covariance behaviour of Wj,k for given (j, k) is derived. Let θℓ,m(j) denotes the wavelet covariance
at scale j between processes Xℓ and Xm, θℓ,m(j) = Cov(Wj,k(ℓ), Wj,k(m)) for any position k. Using
the spectral density representation, θℓ,m(j) can be written:

θℓ,m(j) =
∫ π

−π
(1 − e−iλ)−dℓ(1 − eiλ)−dm Ωℓ,m f S

ℓ,m(λ)|Hj(λ)|2 dλ,

where Hj is the gain function of the wavelet filter.

Proposition 1. For any j > 0, let define the function Kj(·) by

Kj(δ) =
∫ π

−π
λ−(dℓ+dm) cos(2−jλ(dℓ − dm)/2)|ψ̂(2jλ)|2 dλ, δ ∈ (−α, M).

Under assumptions (W1)-(W5), there exists a constant C0 depending on β, mini di, maxi di, φ and ψ such
that, for all j > 0,

|θℓ,m(j)− Ωℓ,m f S
ℓ,m(0)2

j(dℓ+dm) cos(π(dℓ − dm)/2)Kj(dℓ + dm)| 6 C0 f S
ℓ,m(0)L2(dℓ+dm−β)j. (5)

The proposition above corresponds to a second order approximation of the spectral density at a
neighbourhood of zero, such as the one derived in Shimotsu (2007). In the following a first order
approximation will be used, given by the following proposition:

Proposition 2. Let define the function K(·) by

K(δ) =
∫ ∞

−∞
|λ|−δ|ψ̂(λ)|2 dλ, δ ∈ (−α, M).

Under assumptions (W1)-(W5), there exists a constant C depending on β, mini di, maxi di, φ and ψ such
that, for all j > 0,

|θℓ,m(j)− Ωℓ,m f S
ℓ,m(0)2

j(dℓ+dm) cos(π(dℓ − dm)/2)K(dℓ + dm)| 6 C f S
ℓ,m(0)L2(dℓ+dm−β)j. (6)
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As mentioned earlier, one crucial issue in the extension to multivariate long-memory processes
is the introduction of a phase-shift that has to be taken into account for the estimation of the
covariance Ω. This can be seen directly using expression (5) where θℓ,m(j) is proved to be close
to a term proportional to cos(π(dℓ − dm)/2). Then, if dℓ ∈ [−1/2, 1/2] and dm = 2T + 1 + dS

ℓ

with T ∈ N, Proposition 2 implies that for all j, θℓ,m(j) is negligible meaning that the covariance
of the wavelet coefficients is close to zero. Consequently, using the covariance of the wavelet
coefficients does not allow to estimate the matrix Ω accurately. This example corresponds to a
process Xℓ covariance stationary and a process Xm such that ∆Xm is covariance stationary, both with
the same long-memory parameter dℓ. This is illustrated in Section 5.3, Figure 1, where correlated
processes are simulated, and the computed wavelet coefficients covariances are found to be close
to zero. However, it is shown in this paper that even in the case where the estimation of the matrix
Ω is biased by the consequence of Proposition 2, the long-memory parameters can be estimated
consistently.

The covariance behaviour for the between scale process is derived in the following proposition.

Proposition 3. For all u > 0 and for all λ ∈ (−π, π), let define,

D̃u,τ(λ; δ) = ∑
t∈Z

|λ + 2tπ|−δψ̂∗(λ + 2tπ)2−u/2ψ̂(2−u(λ + 2tπ))e−i2−uτλ (7)

and

Ku,τ(v; δ) =
∫ π

−π
D̃u,τ(λ; δ)eiλv dλ. (8)

Under assumptions (W1)-(W5), there exists a constant C depending on β, mini di, maxi di, φ and ψ such
that, for all j > 0, for all u, v > 0, τ = 0, . . . , 2u − 1,
∣∣∣E[Wj,k(ℓ)Wj−u,2−uk′+τ(m)]− Ωℓ,m f S

ℓ,m(0)2
j(dℓ+dm) cos(π(dℓ − dm)/2)Ku,τ(k − k′; dℓ + dm)

∣∣∣

6 C f S
ℓ,m(0)L2(dℓ+dm−β)j.

When u = 0 and 2uk′ + τ = k, the quantity K0,0(0; dℓ + dm) is equal to
∫ ∞

−∞
|λ|−(dℓ+dm)|ψ̂(λ)|2dλ.

Let us remark that K0,0(·) is equal to the function K(·) defined in Proposition 2.

3.3 Wavelet Whittle estimation

Let 0 6 j0 6 j1 be respectively the minimal and the maximal resolution levels that are used
in the estimation procedure. The estimation is based on the vectors of wavelets coefficients{

Wj,k, j0 6 j 6 j1, k ∈ Z
}

.

The wavelet Whittle approximation of the negative log-likelihood is denoted L(·). The criterion
corresponds to the negative log-likelihood of the vectors (Wj,k(ℓ))j,k,ℓ when they are supposed
to follow a multivariate Gaussian distribution. In addition, it as been shown by Fox and Taqqu
(1986); Hannan (1973) that the Whittle approximation is giving satisfactory results for nongaussian
processes. In our framework, the wavelet Whittle criterion is defined as,

L(G(d), d) =
1

n

j1

∑
j=j0

[
nj log det

(
Λj(d)G(d)Λj(d)

)
+ ∑

k

WT
j,k

(
Λj(d)G(d)Λj(d)

)−1
Wj,k

]
, (9)
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where Λj(d) and the matrix G(d) are obtained with Proposition 2:

Λj(d) = diag
(

2jd
)

and the (ℓ, m)-th element of the matrix G(d) is Gℓ,m(d) = f S(0)Ωℓ,mK(dℓ + dm)cos(π(dℓ − dm)/2).

For each j > 0, the quantity ∑k WT
j,k

(
Λj(d)G(d)Λj(d)

)−1
Wj,k has a dimension equal to 1 so it is

equal to its trace. Thus,

L(G(d), d) =
1

n

j1

∑
j=j0

[
nj log det

(
Λj(d)G(d)Λj(d)

)
+ trace

((
Λj(d)G(d)Λj(d)

)−1
I(j)

)]
, (10)

where I(j) = ∑
nj

k=0 Wj,kWT
j,k. This expression is very similar to the multivariate Fourier Whittle

estimator of Shimotsu (2007), replacing the periodogram by the wavelet scalogram I(j).

Remark. In Fourier analysis, e.g. in Shimotsu (2007), the periodogram is normalized. In wavelet
analysis, the normalization factor may depends on the resolution j, and the scalogram is not
normalized. For every j the scalogram I(j) should be normalized by nj. It is more convenient
here to keep the initial I(j).

By deriving expression (10) with respect to the matrix G, it is written,

∂L
∂G

(G, d) =
1

n

j1

∑
j=j0

[
njG

−1 − G−1
Λj(d)

−1I(j)Λj(d)
−1G−1

]
.

Hence, the minimum for fixed d is attained for

Ĝ(d) =
1

n

j1

∑
j=j0

Λj(d)
−1I(j)Λj(d)

−1. (11)

When replacing G(d) by the expression Ĝ(d), the criterion R(d) is obtained,

R(d) := L(Ĝ(d), d)

=
1

n

j1

∑
j=j0

nj log det
(

Λj(d)Ĝ(d)Λj(d)
)

= log det(Ĝ(d)) +
1

n

j1

∑
j=j0

nj log(det
(
Λj(d)Λj(d)

)

= log det(Ĝ(d)) + 2 log(2)

(
1

n

j1

∑
j=j0

jnj

)(
p

∑
ℓ=1

dℓ

)
(12)

The vector of the long-memory parameters d is estimated by d̂ = argmin
d

R(d). In a second step of

estimation we define Ĝ(d̂), estimator of G(d). Finally it is needed to correct the phase-shift when
estimating the covariance matrix Ω, as given in (13),

Ω̂ℓ,m = Ĝℓ,m(d̂)/(cos(π(d̂ℓ − d̂m)/2)K(d̂ℓ + d̂m)). (13)
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Equation (13) is correctly defined as the probability that d̂ℓ − d̂m is exactly congruent to 1 modulo 2 is
null. Consequently estimator Ω̂ is defined almost surely. Yet, in Section 5.3, it is shown empirically
that when dℓ − dm is near from to 1 modulo 2, the estimation of Ω can be strongly biased. In

a univariate framework or when the matrix Ω is diagonal, the estimator d̂ is equal to the one
introduced in Moulines et al (2008).

4 Main results

Now that the estimation scheme has been defined, this section deals with the asymptotic behaviour
of the estimators. The consistence of the estimators is established, under a condition which controls
the variance of the empirical wavelet cross-covariances. The first part of this section introduces this
condition and characterizes a class of processes for which it is satisfied. The second part details the
asymptotic results of convergence.

4.1 Additional condition

The following condition is an additional assumption, which gives an asymptotic control of the
wavelet scalogram:

Condition (C)

For all ℓ, m = 1, . . . , p, sup
n

sup
j>0

1

nj
Var

(
Iℓ,m(j)

θℓ,m(j)

)
< ∞

This condition corresponds to a slightly more restrictive case of condition (9) of Moulines et al
(2008) in an univariate framework. The difference lies in their assumption on the spectral density
of the process which is only defined on a neighbourhood of zero. Similar assumption could be
considered in future work.

In the multivariate setting, Condition (C) is shown to be a valid one. The following proposition
gives a class of processes such that Condition (C) holds.

Proposition 4. Suppose that there exists a sequence {Au}u∈Z in Rp×p such that ∑u ‖Au‖2
∞ < ∞ and

∀t, ∆DX(t) = µ + ∑
u∈Z

At+uε(t)

with ε(t) weak white noise process, in Rp. Let Ft−1 denotes the σ-field of events generated by
{ε(s), s 6 t − 1}. Assume that ε satisfies E[ε(t)|Ft−1] = 0, E[εa(t)εb(t)|Ft−1] = 11a=b and
E[εa(t)εb(t)εc(t)εd(t)|Ft−1] = µa,b,c,d with |µa,b,c,d| 6 µ∞ < ∞, for all a, b, c, d = 1, . . . , p.
Then, under assumptions (W1)-(W5), Condition (C) is verified.

Proof is given in appendix B.
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This assumption of a Cramer-Wold type decomposition of the process X with a linear fourth-order
stationary process has been employed among others by Lobato (1999), Shimotsu (2007), Giraitis
et al (1997), or Theorem 1 of Moulines et al (2008). As discussed in Lobato (1999), this assumption
does not cover all models with density (1) but is not either very restrictive.

4.2 Convergence

We consider N observations of a multivariate p-vector process X, namely X(1), . . . X(N) with a
spectral density satisfying an approximation (2) around the zero frequency. For given functions
(φ, ψ), and for given levels 0 6 j0 6 j1, the estimator of d is the argument minimizing (12) and the

matrix G is estimated by Ĝ(d̂) with Ĝ(·) defined in (11). The true parameter values are denoted
by the superscript 0.

The following results are showing the consistency of the estimators and the rate of convergence.
The proofs are given in Appendix.

Theorem 5. Assume (W1)-(W5) and Condition (C) hold. If in addition j0 and j1 are chosen such that
2−j0β + N−1/22j1/2 → 0 then

d̂ − d0 = oP(1),

Ĝ(d̂)− G(d0) = oP(1).

It follows immediately that Ω̂ converges in probability to Ω.

Moulines et al (2008) obtain a similar result in the univariate case with the assumption 2−j0 +
N−1/22j0/2 → 0. Our hypothesis is weaker in a general framework, but since they assume (S-1)
j1 − j0 is constant, or (S-2) j1 − j0 → ∞, both assumptions are equivalent.

Theorem 6. Assume (W1)-(W5) and Condition (C) hold. If in addition j0 and j1 are chosen such that
2−j0β + N−1/22j0/2 → 0 then

d̂ − d0 = ©P(2
−j0β + N−1/22j0/2),

∀(ℓ, m) ∈ {1, . . . , p}2, Ĝℓ,m(d̂)− Gℓ,m(d
0) = ©P(j1(2

−j0β + N−1/22j0/2)),

Ω̂ℓ,m − Ωℓ,m = ©P(j1(2
−j0β + N−1/22j0/2)).

Corollary 7. Assume (W1)-(W5) and Condition (C) hold. Taking 2j0 = N1/(1+2β),

d̂ − d0 = ©P(N−β/(1+2β)).

The optimal rate is obtained, see Giraitis et al (1997). Fourier Whittle estimators in Lobato (1999)
and Shimotsu (2007) attain the rate m1/2 where m is the number of discrete frequencies used in
the Fourier transform. When m ∼ cNζ with c positive constant, the convergence is obtained for
0 < ζ < 2β/(1 + 2β). Wavelet estimators thus give a slightly better rate of convergence.

Result of Corollary 7 stresses that it is necessary to fix the highest level of the wavelet procedure
at a given scale depending on the regularity β of the density f S(·). A possible extension in future
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work is to develop an estimation which is adaptive relatively to the parameter β. This is done e.g. in
univariate Fourier analysis by Iouditsky et al (2001).

Further results on asymptotic normality, and in particular the asymptotic variance of the estimators,
would give an important information to quantify the quality of the estimators. In particular it
would be a theoretical mean of comparison between the Fourier-based and the wavelet-based
approaches or between the univariate and the multivariate estimations of d. This work is in
progress and will be established in a future paper. In the present paper, the comparison is done
hereafter with a simulation study.

5 Simulations

In this section, simulated data are used to study the behaviour of the proposed procedure. Three
examples of bivariate time series are studied:

• an ARFIMA(0, d, 0) with a long-run correlation matrix Ω =

(
1 ρ
ρ 1

)
and ρ = 0.4;

• the same as previously but with ρ = −0.8;

• an ARFIMA(1, d, 0) with no cointegration. The AR coefficient is taken equal to A =(
0.8 0
0 0.6

)
and the correlation between the innovation processes equal to ρ = 0.4. More

precisely let ε be a bivariate white noise process with covariance matrix

(
1 ρ
ρ 1

)
and let

u be the AR(1) process defined by u(t) + Au(t − 1) = ε(t). The time series observation
X(t) at time t satisfies (1 − L)dX(t) = u(t). The matrix Ω in approximation (2) is equal to(

1/1.82 ρ/(1.6 · 1.8)
ρ/(1.6 · 1.8) 1/1.62

)
, see e.g. Sela (2010), page 34.

The proposed multivariate wavelet Whittle (MWW) estimators are computed for N = 512
observations and 1000 Monte-Carlo replications. Codes are available on request.

For each of these examples, a set of different values of d is considered. First the choices are restricted
to settings where the two components of the processes share the same order of stationarity. This
is motivated by the fact that it seems natural to suppose that time series measuring similar
phenomena have similar stationary properties. On the second hand the case of different order
of stationarity is studied and more precisely the problem of identifiability of the matrix Ω in such
a framework.

A comparison between our estimators and multivariate Fourier Whittle (MFW) estimators
developed by Shimotsu (2007) is done. The procedure MFW is only available for stationary
processes. In nonstationary cases, Nielsen (2011) proposed a similar approach based on the
extended Fourier transform of Abadir et al (2007). However in our simulations, this approach gives
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satisfactory results only for d < 1.5. Due to this restriction we prefer to focus on the comparison
with standard Fourier estimates. For nonstationary processes an usual extension of Fourier is
tapered Fourier. The comparison between wavelet Whittle estimation and such an extended
Fourier-based Whittle estimation, with differencing and tapering, has been done extensively in Faÿ
et al (2009) for univariate time series. It shows that both approaches lead to similar results, even if
the wavelet-based procedure gives globally better quality estimators. As it is expected to get the
same results when working in a multivariate framework, our study focusses on the comparison
with standard Fourier estimates

It is worth noticing while comparing to Fourier-based approaches that the main advantage of
wavelets is their flexibility. Wavelet-based estimators can be applied for a large set of data,
whatever the degree of stationarity is (if still smaller than the number of vanishing moments) and
even if the processes contain polynomial trends. In real data applications, this flexibility represents
a crucial asset.

5.1 Estimation of the long-memory parameters d

Parameters in estimation.

The wavelet basis used in estimation is the Daubechies wavelet with M = 4 vanishing moments.
Its regularization parameter is α = 1.91. Note that with a lower number of vanishing moments
the quality of the wavelet-based estimators would be improved. This can be seen in Faÿ et al
(2009) for univariate estimation. Similar results are observed in multivariate estimation. They are
not presented here for the sake of concision. The explication is due to the fact that the number
of coefficients affected by bound effects, and thus removed from the estimation, increases with the
length of the wavelet support, which is proportional to M. On the other side, taking a small number
of vanishing moments decreases the flexibility of application due to the condition sup

ℓ
dℓ 6 M.

The two main parameters that must be chosen are the scales j0 and j1. The finest scale j1 is fixed
equal to log2(N) while the value of j0 giving the optimal mean square error is taken. In general
increasing j0 leads to a smaller bias but a higher variance since less coefficients are used in the
estimation process. As noted previously, an adaptive procedure would be interesting. An insight
on the behaviour of the wavelet coefficients at different scales can be found in Achard et al (2008)
and in Faÿ et al (2009). Principally, as stated by Theorem 5, the finest scales have to be removed
from estimation to get rid of the presence of the short-range dependence f S(·).

A comparison with the quality of estimation of d using univariate wavelet Whittle estimators for
each components of the multivariate process has also been computed. The multivariate estimations
are done on Rp while each of the univariate estimations is done on the interval [1/2 − α, M].

Concerning MFW estimation, the main parameter is the number m of frequencies used in the
procedure. An usual choice in literature is m = N0.65 (see e.g. Shimotsu (2007) or Nielsen and
Frederiksen (2005)). Additionally MFW estimators are evaluated using values of m giving the same
number of Fourier coefficients than of wavelet coefficients. The final m kept is the one giving the
optimal mean square error. The parallel between the number of wavelet scales and the number of
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Fourier frequencies has been discussed in Faÿ et al (2009).

Measures of quality.

The quality of the estimators is measured by the bias, the standard deviation (std) and the RMSE
which is equal to the square root of (bias2 + std2). In order to have an easy comparison between
the univariate and the multivariate approaches, we compute the ratio between the RMSE obtained
with the multivariate wavelet Whittle estimation and the RMSE obtained with univariate wavelet
Whittle estimations. It is denoted ratio M/U in the following. A similar quantity is defined for the
comparison with MFW estimation. Let ratio W/S be the ratio between the RMSE respectively using
wavelet-based estimators and Fourier-based estimators.

Multivariate wavelet Whittle estimation.

Results for the estimation of d within the three examples are presented in Tables 1, 3, and 5. The
ratio M/U points out that the quality of estimation is increased with the multivariate approach,
with respect to the univariate procedure. This is an illustration of the fact that when the series are
correlated, it is worth using this correlation to estimate the long-memory parameters.

The estimation is still satisfactory in nonstationary settings but is slightly deteriorated with respect
to stationary frameworks. The flexibility of the wavelet-based procedure is noticeable since there
is no need of modification of the estimators to apply them. The only adjustment is done through
the parameter j0, but the calibration of this scale parameter is not specific to the transition from
stationary to nonstationary settings. As noticed above, an equivalent Fourier-based procedure
would be based on tapered Fourier. Faÿ et al (2009) compared the performance of tapered
Fourier-based and wavelet-based Whittle estimators for univariate processes and established
on simulations the good quality of wavelet-based estimators. A similar result for multivariate
processes can be expected.

Comparison with Fourier Whittle estimation.

Tables 2, 4, and 6 display the results of the MFW estimators described in Shimotsu (2007). In the
first two examples, with the usual number of frequencies m = N0.65 in Fourier-based estimation,
our wavelet-based procedure leads to lower RMSEs, as it can be seen with the ratio W/F. More
precisely the good performance of our scheme of estimation is due to a lower variance, even if the
bias is higher. With a higher number of frequencies in Fourier-based estimation, taking a value
that minimizes the RMSE, the MWW estimators are no more preferable to MFW. Yet, the ratio W/F
stays close to 1 and the analysis of the bias and variances reveals similar orders of magnitude.

In the third example, the ARFIMA(1, d, 0), two values of j0, j0 = 2 or j0 = 3, lead to similar RMSE.
Table 5 presents the results for j0 = 2 due to the fact that the quality of the estimation of Ω is
better. With j0 = 3, the bias of our wavelet-based procedure are similar to the values observed with
Fourier-based estimators. With our choice of the parameter j0, the variance is decreased but the
bias is higher. The quality with the MWW estimation is lower than the MFW estimation with the
usual number of frequencies or with an optimized choice. The ratio are lower than 2.2 stressing
that nevertheless the order of magnitude are the same.
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[Tables 1 to 6]

5.2 Estimation of the long-run covariance Ω

This section deals with the estimation of the long-run covariance matrix Ω. It is also of interest
to look at the quality of estimation of the correlation Ω12/

√
Ω11Ω22. This quantity corresponds in

literature to the power-law coherency between the two time series (Sela and Hurvich, 2012) or to
the fractal connectivity (Achard et al, 2008).

The parameters of the procedures (j0 for MWW and m for MFW) are taken equal to the values of
the previous part. They are thus optimized for the estimation of d and not for Ω.

Multivariate wavelet Whittle estimation.

The indicators of the performance of the MWW estimation of the covariance and of the correlation
are given respectively in Tables 7, 9 and 11 for the three examples. The quality is satisfactory in all
settings, especially in the stationary ones. Actually the RMSE is less than 0.1 for the estimation of
the correlation in nearly all simulated frameworks.

Comparison with Fourier Whittle estimation.

The results for MFW estimation are displayed in Tables 8, 10, and 12. When MFW is applied with
m = N0.65 frequencies, the ratio W/F is less than 1 in the ARFIMA(0, d, 0) examples. Like for the
estimation of d the good performance of MWW estimators is principally due to a smaller variance.
Recall that the number of wavelet coefficients is much higher than the one considered in MFW
procedure in this case, and thus this observation is coherent. In general, the correlation is also
estimated with a lower RMSE using the MWW procedure. With ARFIMA(0, d, 0) processes, when
MFW estimators are implemented with a higher number of frequencies, giving optimal results for
the estimation of d, the difference between MWW and MFW procedures decreases. The quality of
the two estimation schemes are similar, with comparable values for bias and variances.

Concerning the estimation of the long-run covariance matrix Ω with ARFIMA(1, d, 0) processes,
the ratio between the RMSEs of the MWW estimators and of the MFW estimators is always greater
than 1, for the optimal as for the usual number of frequencies in the Fourier-based procedure. Yet,
with the usual number of frequencies m = N0.65 in MFW, the estimation of the correlation has
a higher quality with the wavelet-based estimation. Still, even if Fourier estimators give better
results, the quality of estimation with our wavelet-based procedure is satisfactory; the values for
RMSEs are very similar comparing Fourier and wavelets multivariate Whittle estimation.

[Tables 7 to 12]

The simulation study highlights that the multivariate Wavelet estimation have satisfactory results.
First the multivariate approach increases the quality of estimation of the long-memory parameters
d in comparison with an univariate estimation. Second, in stationary frameworks, the performance
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is very similar to multivariate Fourier Whittle estimation, when estimating the vector d or the
long-run covariance matrix or the fractal connectivity. The main advantage of our wavelet-based
procedure is then its flexibility. By contrast with Fourier-based estimation, our estimators can
be applied in a larger scope of situations, with nonstationary processes or in the presence of
polynomial trends in the time series.

5.3 Discussion on bias correction

The simulation study above considers time series with the same order of stationarity. In practical
applications, this assumption seems natural. However, as remarked previously, when two time
series have long-memory parameters dℓ and dm satisfying dℓ − dm = 1 the long-run covariance
matrix Ω is no longer identifiable. Indeed, Proposition 2 states that the covariance θℓ,m(j) tends
to 0 when the scale j tends to infinity. Figure 1 illustrates this approximation for a bivariate
ARFIMA(0, (0.2, 1.2), 0).

When d̂ℓ − d̂m = 1, the estimator (13) is no-longer defined. In practice, the quantity d̂ℓ − d̂m cannot
be exactly equal to 1. Nevertheless, as dividing by a cosinus of this difference, a small error in
the estimation of (dℓ, dm) will lead to an important bias in the estimation of Ωℓ,m. As it can be
seen in Figure 2, the resulting bias increases in the neighbourhood of the non-identifiable lines
dℓ − dm = ±1.

Figure 1: Boxplots of the covariance of the wavelet coefficients at different scales for a bivariate
ARFIMA(0, (d1, d2), 0). The index of the horizontal axis displays the number of coefficients
available. Subfigures (a) and (b) use different limits on the vertical axis. Calculation was done
on N = 512 observations and among 1000 replications.
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When this situation occurs, say when the difference between dℓ − dm is between 0.75 and 1.25,
the estimation of d is not affected. But the user must take care about the estimation of Ω. One
solution is to differentiate or integrate one of the two processes. For example, Table 13 illustrates the
non-identifiability of Ω in a bivariate ARFIMA(0,

(
0.2 1.2

)
, 0). When differentiating the second

component (with d2 = 1.2) the performance of the estimator is no more affected.
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Figure 2: Absolute bias in the estimation of the cross-covariance term Ω12 with respect to
(d1, d2). Estimation was done using multivariate Wavelet Whittle estimator in a bivariate
ARFIMA(0, (d1, d2), 0). Subfigure (b) represents a contour plot of subfigure (a). Calculation was
done on N = 512 observations and among 1000 replications.
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[Table 13]

6 Application on neuroscience data

So as to illustrate the utility of the method for real data, we apply our approach to neuroscience
data. The brain connectivity has attracted lots of interest in the neuroscience community. It
is evaluated generally using correlations at different frequencies between time series measuring
the brain activity. As shown previously, the presence of long-memory dependence affects the
estimation of correlation, through the presence of a phase-shift. It is thus important to correct
the estimation.

The study concerns MEG data acquired from a healthy 43 year old woman studied during rest with
eyes open at the National Institute of Mental Health Bethesda, MD using a 274-channel CTF MEG
system VSM MedTech, Coquitlam, BC, Canada operating at 600 Hz. The data were previously used
in Achard et al (2008). We consider N = 215 time points for each of the 274 time series.

Figure 3 displays the representation of the time series for arbitrary four channels. It is clear that
they present nonlinear trends. Consequently, Fourier methods are not adequate to analyse such
data. It stresses the advantage of wavelets in real applications.
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Figure 3: MEG recordings for 4 arbitrary channels.
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Our procedure was applied using scales 4 to 8. It corresponds to frequencies between 1 to 20
Hz. This choice was motivated by discussions with neuroscientists: it takes into account first
the presence of high-frequency noise which is modelled by f S(·) in our model and second the
preprocessing of the data at low-frequencies. Figure 4 presents the results of the estimation of the
long-memory parameters d and of the long-run covariance matrix Ω.

Figure 4: Results obtained by multivariate wavelet Whittle estimators on the MEG dataset:
histogram of the estimated long-memory parameters d (a) and estimated fractal connectivity matrix
(b).
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On the first hand, the histogram of the estimate d̂ shows that the maximal difference between the
values of the long-memory parameters is less than 0.5. The problem of identifiability does not
occur with the data. Similarly the closeness of long-memory parameters was observed in fMRI
data by Maxim et al (2005). This allows us to give an estimate of the fractal connectivity. It is
worth noticing that clusters appear in the correlation matrix. Most of them are situated along the
diagonal, corresponding to spatially closed channels. Some channels are still correlated, even far
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from each others. It would be interesting to relate this result to a neuroscience interpretation. This
will be investigated in future work.

Conclusion

Many application fields are concerned with high-dimensional time series. A challenge is to
characterize their long-memory properties and their correlation structure. The present work
consider a semiparametric multivariate model, including a large class of multivariate processes
such as the multivariate Brownian motion and some fractionally integrated processes. We propose
an estimation of the long-dependence parameters and of the fractal connectivity, based on the
Whittle approximation and on a wavelet representation of the time series. The theoretical
properties of the estimation show the asymptotic optimality. A simulation study confirms the
satisfying behaviour of the procedure on finite samples. Finally we propose an application to the
estimation of a human brain functional network based on MEG data sets. Our study highlights
the benefit of the multivariate analysis, namely improved efficiency of estimation of dependence
parameters and estimation of long term correlations. Future work may concern the asymptotic
normality of the estimators, since the development of tests may present a significant benefit for real
data applications.
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A Proof of Propositions 2 and 3

This section deals with the proof of Propositions 1 and 2. The proof of Proposition 3 is based on
similar arguments and is omitted.

The covariance between Wj,k(ℓ) and Wj,k(m) can be written with the cospectrum: θℓ,m(j) =∫
R

Re( fℓ,m(λ))|Hj(λ)|2 dλ, more precisely,

θℓ,m(j) = Ωℓ,m

∫

R

(2 sin(λ/2))−(dℓ+dm) cos((π − λ)(dℓ − dm)/2) f S
ℓ,m(λ)|Hj(λ)|2 dλ.

Indeed as the cross-spectral density is hermitian, its imaginary part is an odd function. Using again
the fact that the sinus function is odd,

θℓ,m(j) = Ωℓ,m cos(π(dℓ − dm)/2)
∫

R

(2 sin(λ/2))−(dℓ+dm) cos(λ(dℓ − dm)/2) f S
ℓ,m(λ)|Hj(λ)|2 dλ.

The proof is very similar to Theorem 1 of Moulines et al (2007). Let define the quantities Aℓ,m(j)
and Rℓ,m(j) by

Aℓ,m(j) = Ωℓ,m2j cos(π(dℓ − dm)/2)
∫ π

−π
(2 sin(λ/2))−(dℓ+dm) cos(λ(dℓ − dm)/2)

f S
ℓ,m(λ)|φ̂(λ)ψ̂(2jλ)|2 dλ

Rℓ,m(j) = θℓ,m(j)− Aℓ,m(j)

Following the proof of Moulines et al (2007), rewrite the term Aℓ,m(j) as:

Aℓ,m(j) = Ωℓ,m2j cos(π(dℓ − dm)/2)
∫ π

−π
gℓ,m(λ)λ

−(dℓ+dm) f S
ℓ,m(λ)|φ̂(λ)|2|ψ̂(2jλ)|2 dλ

with gℓ,m(λ) =

(
2 sin(λ/2)

λ

)−(dℓ+dm)

for all λ ∈ (−π, π). (14)

• The assumption that f S(·) ∈ H(β, L) states that

∣∣∣∣
f S
ℓ,m(λ)

f S
ℓ,m(0)

− 1

∣∣∣∣ 6 L|λ|β for all λ ∈ (−π, π).

• Under assumption (W1) the function|φ̂(·)|2 is infinitely differentiable and bounded on
(−π, π).

• Using a Taylor expansion, the function g(·) belongs to H(2, Lg) with Lg =
sup

ℓ,m=1,...,p supλ∈(−π,π) |gℓ,m”(λ)|.

Using remarks above imply that there exists a constant C depending on φ such that:

∣∣∣∣Aℓ,m(j)− Ωℓ,m2j cos(π(dℓ − dm)/2) f S
ℓ,m(0)

∫ π

−π
λ−(dℓ+dm) cos(λ(dℓ − dm)/2)|ψ̂(2jλ)|2 dλ

∣∣∣∣

6 CL2j
∫ π

−π
|λ|(β−dℓ−dm)|ψ̂(2jλ)|2dλ.

22



With a change of variable,

∣∣∣Aℓ,m(j)− Ωℓ,m2j(dℓ+dm) cos(π(dℓ − dm)/2) f S
ℓ,m(0)Kj(dℓ + dm)

∣∣∣

6 CL2j(dℓ+dm−β)
∫ ∞

−∞
|λ|(β−dℓ−dm)|ψ̂(λ)|2dλ,

with Kj(δ) =
∫ π
−π λ−(dℓ+dm) cos(2−jλ(dℓ − dm)/2)|ψ̂(2jλ)|2 dλ.

Finally, the rest Rℓ,m(j) can be bounded by Rℓ,m(j) 6 CL2(dℓ+dm−β)j. This results from the
approximation of the squared gain function of the wavelet filter given in Proposition 9 of Moulines
et al (2007) and from similar arguments than those given for the term Aℓ,m(j). We do not detail the
proof here for the sake of concision and refer to the proof of Theorem 3 in Moulines et al (2007).

If gℓ,m(·) in (14) is defined by

gℓ,m(λ) =

(
2 sin(λ/2)

λ

)−(dℓ+dm)

cos(λ(dℓ − dm)/2) for λ ∈ (−π, π),

a similar approximation can be obtained:

∣∣∣Aℓ,m(j)− Ωℓ,m2j(dℓ+dm) cos(π(dℓ − dm)/2) f S
ℓ,m(0)K(dℓ + dm)

∣∣∣

6 CL2j(dℓ+dm−β)
∫ ∞

−∞
|λ|(β−dℓ−dm)|ψ̂(λ)|2dλ,

with K(δ) =
∫ π
−π λ−(dℓ+dm)|ψ̂(2jλ)|2 dλ.

B Proof of Proposition 4

Since the wavelet ψ admits M vanishing moments, at each scale j > 0, the associated filter

Hj can be factorized on the form Hj(λ) = (1 − eiλ)MH̃j(λ), with H̃j trigonometric polynomial

H̃j(λ) = ∑t∈Z h̃j,te
itλ.

Since M > D, the wavelet coefficients may be written

Wj,k(ℓ) = ∑
t∈Z

h̃j,2jk−t(∆
DXℓ)t = ∑

t∈Z
Bℓ(j, 2jk − t)ε(t),

where Bℓ(j, 2jk − t) = h̃j,2jk−t(∆
M−DAℓ)t. For all ℓ = 1, . . . , p, the sequence {Bℓ(j, u)}u∈Z belongs

to ℓ2(Z).

We first give a preliminary result on the second order moment of Wj,k(ℓ).

θj,k(ℓ, ℓ) = E[Wj,k(ℓ)
2] = ∑

t,t′∈Z
∑

a,b=1,...p

Bℓ,a(j, 2jk − t)Bℓ,b(j, 2jk − t′)E[εa(t)εb(t
′)]
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Using the second-order properties of the process ε, the variance is equal to:

θj,k(ℓ, ℓ) = ∑
t∈Z

∑
a=1,...p

Bℓ,a(j, 2jk − t)2 (15)

Let consider now E[Iℓ,m(j)2].

E[Iℓ,m(j)2] = E



(

∑
k

Wj,k(ℓ)Wj,k(m)

)2



= ∑
k,k′

∑
t,t′,t”,t”′∈Z

∑
a,b,c,d=1,...p

Bℓ,a(j, 2jk − t)Bℓ,b(j, 2jk − t′)Bℓ,c(j, 2jk′ − t”)Bℓ,d(j, 2jk′ − t′′′)

E[εa(t)εb(t
′)εc(t”)εd(t

′′′)]

The fourth order behaviour of ε implies that

E[Iℓ,m(j)2] = ∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

µa,b,c,dBℓ,a(j, 2jk − t)Bm,b(j, 2jk + t)Bℓ,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)

+∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,a(j, 2jk − t)Bℓ,b(j, 2jk′ − t′)Bm,b(j, 2jk′ − t′)

+∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t′)Bℓ,a(j, 2jk′ − t)Bm,b(j, 2jk′ − t′)

+∑
k,k′

∑
t 6=t′

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t′)Bℓ,b(j, 2jk′ − t′)Bm,a(j, 2jk′ − t)

As E[Iℓ,m(j)]2 = ∑k,k′ ∑t,t′ ∑a,b Bℓ,a(j, 2jk − t)Bm,a(j, 2jk − t)Bℓ,b(j, 2jk′ − t′)Bm,b(j, 2jk′ − t′), the
variance of the scalogramm satisfies:

Var(Iℓ,m(j))

= ∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

µa,b,c,dBℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)Bℓ,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)

+∑
k,k′

E[Wj,k(ℓ)Wj,k′(ℓ)]E[Wj,k(m)Wj,k′(m)] + ∑
k,k′

E[Wj,k(ℓ)Wj,k′(m)]E[Wj,k(m)Wj,k′(ℓ)]

−∑
k,k′

∑
t

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,a(j, 2jk − t)Bℓ,b(j, 2jk′ − t)Bm,b(j, 2jk′ − t)

−∑
k,k′

∑
t

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)Bℓ,a(j, 2jk′ − t)Bm,b(j, 2jk′ − t)

−∑
k,k′

∑
t

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)Bℓ,b(j, 2jk′ − t)Bm,a(j, 2jk′ − t)

Finally, Var(Iℓ,m(j)) 6 V1 + V2 + V3 with

V1 = (1 + µ∞)∑
k,k′

∑
t∈Z

∑
a,b,c,d=1,...p

|Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)Bℓ,c(j, 2jk′ − t)Bm,d(j, 2jk′ − t)|

V2 = |∑
k,k′

E[Wj,k(ℓ)Wj,k′(ℓ)]E[Wj,k(m)Wj,k′(m)]|

V3 = |∑
k,k′

E[Wj,k(ℓ)Wj,k′(m)]E[Wj,k(m)Wj,k′(ℓ)]|
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Bounds V2 and V3

Proposition 3 gives

∑
k,k′

E[Wj,k(ℓ)Wj,k′(ℓ)]E[Wj,k(m)Wj,k′(m)] =

Ωℓ,ℓΩm,m f S
ℓ,ℓ(0) f S

m,m(0)2
2j(dℓ+dm) ∑

k,k′
K0,0(k

′ − k; 2dℓ)K0,0(k
′ − k; 2dm).

The quantity K0,0(v; 2dℓ) is equal to
∫ π
−π D̃0,0(λ; 2dℓ)e

−ivλdλ which is the v-th Fourier

coefficient of the function D̃0,0(·; 2dℓ). Consequently, Parseval theorem implies that

∑v∈Z K0,0(v; 2dℓ)K0,0(v; 2dm) converges to I0(2dℓ, 2dm) =
∫ π
−π D̃0,0(λ; 2dℓ)D̃0,0(λ; 2dm)dλ. On the

second hand, Ωℓ,ℓ f S
ℓ,ℓ(0)2

2jdℓK(2dℓ) ∼ θℓ,ℓ(j) via Proposition 2. Then,

1

nj

V2

θℓ,m(j)2
6

θℓ,ℓ(j)θm,m(j)

θℓ,m(j)2

I0(2dℓ, 2dm)

K(2dℓ)K(2dm)
.

Proposition 2 states that
θℓ,ℓ(j)θm,m(j)

θℓ,m(j)2 tends to a constant independent from j. As I0(2dℓ,2dm)
K(2dℓ)K(2dm)

is only

depending on dℓ and dm, it follows that 1
nj

V2

θℓ,m(j)2 is bounded. With a similar argumentation,

1

nj

V3

θℓ,m(j)2
6

I0(dℓ + dm, dℓ + dm)

K(dℓ + dm)2
.

And so 1
nj

V3

θℓ,m(j)2 is bounded by a constant depending only on d, φ and ψ.

Bound V1

The quantity V1 = (1 + µ∞) can be written:

∑
k

∑
t∈Z

∑
t′∈{t+2j(k−k′),k′∈Z}

∑
a,b,c,d=1,...p

|Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)Bℓ,c(j, 2jk − t′)Bm,d(j, 2jk − t′)|.

Applying Minkowski inequality on V1,

V1 6 (1 + µ∞)∑
k

∑
t∈Z

∑
a,b=1,...p

|Bℓ,a(j, 2jk − t)Bm,b(j, 2jk − t)|


 ∑

t′∈{t+2jk′,k′∈Z}
∑

c,d=1,...p

Bℓ,c(j, 2jk − t′)2




1/2
 ∑

t′∈{t−2jk′,k′∈Z}
∑

c,d=1,...p

Bm,d(j, 2jk − t′)2




1/2

.

Hence,

V1 6 (1 + µ∞) ∑
k=0

(

∑
t∈Z

∑
a,b=1,...p

Bℓ,a(j, 2jk − t)2

)1/2(

∑
t∈Z

∑
a,b=1,...p

Bm,b(j, 2jk − t)2

)1/2

(

∑
t′∈Z

∑
c,d=1,...p

Bℓ,c(j, 2jk − t′)2

)1/2(

∑
t′∈Z

∑
c,d=1,...p

Bm,d(j, 2jk − t′)2

)1/2

.
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Together with (15) the following inequality comes: V1 6 (1 + µ∞)nj p
2θℓ,ℓ(j)θm,m(j). To conclude

1

nj

V1

θℓ,m(j)2
6 (1 + µ∞)p2 θℓ,ℓ(j)θm,m(j)

θℓ,m(j)2
.

Condition (C) follows, since
θℓ,ℓ(j)θm,m(j)

θℓ,m(j)2 tends to a constant independent from j thanks to

Proposition 2.

C Preliminary results

Let us take ℓ and m in 1, . . . , p, and define, for any sequence µ = {µj, j > 0},

Sℓ,m(µ) = ∑
j,k

µj

(
Wj,k(ℓ)Wj,k(m)

G0
ℓ,m2j(d0

ℓ
+d0

m)
− 1

)
=

j1

∑
j=j0

µj

(
Iℓ,m(j)

G0
ℓ,m2j(d0

ℓ
+d0

m)
− nj

)
. (16)

Proposition 8. Assume that the sequences µ belong to the set {µj j>0
, |µj| 6 1

nj
}. Under condition (C),

sup{µ,|µj|6 1
nj
} Sℓ,m(µ) is uniformly bounded in d by 2−j0β + N−1/22j1/2 up to a constant, that is,

sup
µ∈{µj j>0

,|µj|6 1
nj
}

sup
d∈Rp

{Sℓ,m(µ(d))} = ©P(2
−j0β + N−1/22j1/2).

Proof. The term Sℓ,m(µ) is decomposed in two terms S
(0)
ℓ,m(µ) and S

(1)
ℓ,m(µ):

S
(0)
ℓ,m(µ) =

j1

∑
j=j0

µj
θℓ,m(j)

G0
ℓ,m2j(d0

ℓ
+d0

m)
∑

k

(
Wj,k(ℓ)Wj,k(m)

θℓ,m(j)
− 1

)
,

S
(1)
ℓ,m(µ) =

j1

∑
j=j0

njµj

[
θℓ,m(j)

G0
ℓ,m2j(d0

ℓ
+d0

m)
− 1

]
.

Following Proposition 2 which derives an approximation of the covariance of the wavelet
coefficients,

|S(0)
ℓ,m(µ)| 6 (1 + C)

j1

∑
j=j0

|µj|
∣∣∣∣∣∑

k

Wj,k(ℓ)Wj,k(m)

θℓ,m(j)
− nj

∣∣∣∣∣ , (17)

|S(1)
ℓ,m(µ)| 6 C

j1

∑
j=j0

2−βjnj|µj|. (18)

Under the assumption that |µj| 6 1
nj

, it comes the inequality: |S(1)
ℓ,m(µ)| 6 C ∑

j1
j=j0

2−βj. The right-

hand bound is equivalent up to a constant to 2−j0β. Concerning S
(0)
ℓ,m(µ), using Condition (C) gives

the inequality:

E


 sup
{µ,|µj|6 1

nj
}

∣∣∣S(0)(µ)
∣∣∣


 6 (1 + C)

j1

∑
j=j0

n−1/2
j .
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As nj ∼ N2−j, the right-hand side of the inequality is equivalent to (1 + C)N−1/22j1/2.

Proposition 9. Assume that the sequences µ belong to the set

S(q, γ, c) = {µj j>0
, |µj| 6

c

n
|j − j0 + 1|q2(j−j0)γ∀j = j0, . . . j1}

with 0 < γ < 1/2. Under condition (C), supµ∈S(q,γ,c) Sℓ,m(µ) is uniformly bounded in d by

2−j0β + N−1/22j0/2 up to a constant, that is,

sup
µ∈S(q,γ,c)

sup
d∈Rp

{Sℓ,m(µ)} = ©P(2
−j0β + N−1/22j0/2).

Proof. Under the assumptions of the proposition, one can deduce from inequality (18) that,

sup
µ∈S(q,γ,c)

|S(1)
ℓ,m(µ)| 6 cC

1

n

j1

∑
j=j0

nj2
−βj+γ)(j−j0)(j − j0 + 1)q

6 cC2−βj0
j1−j0

∑
i=0

2−(1+β−γ)i(i + 1)q.

The sum on the right hand side of the inequality tends to 0 because 1 + β − γ > 0.

Similarly, under the additional Condition (C), inequality (17) is rewritten as,

E

[
sup

µ∈S(q,γ,c)

∣∣∣S(0)(µ))
∣∣∣
]

6 c(1 + C)
1

n

j1

∑
j=j0

n1/2
j 2γ(j−j0)(j − j0 + 1)q

6 c(1 + C)N−1/22j0/2
j1−j0

∑
i=0

2−(1/2−γ)i(i + 1)q.

Proposition follows using the assumption 0 < γ < 1/2.

D Proof of Theorem 5

In order to evaluate the performances of the estimator of the long memory parameters, the first
step consists in proving that the proposed estimator for d is consistent. The equivalent properties
for Ω will be detailed in a second step. The proof is based on the following inequality:

R(d)− R(d0) > L(d − d0) + ∆(d, d0), (19)

where L is a deterministic and convex function of d and the remaining term ∆ tends uniformly to
zero in probability. The proof of Theorem 5 will follow directly from this inequality.

We first establish inequality (19). The difference between the criterion at a point d and the value at
the true long-memory parameters is equal to

R(d)− R(d0) = log det(Ĝ(d))− log det(Ĝ(d0)) + 2 log(2)< J >

(

∑
ℓ

dℓ − d0
ℓ

)
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where < J > = 1
n ∑

j1
j=j0

j nj and n = ∑
j1
j=j0

nj.

The equality can be rewritten:

R(d)− R(d0)

= log det

(
1

n

j1

∑
j=j0

Λ< J >(d − d0)Λj(d − d0)−1 I(j)Λj(d − d0)−1
Λ< J >(d − d0)

)

− log det(Ĝ(d0))

= log det

(
1

n

j1

∑
j=j0

Λj−< J >(d − d0)−1
Λj(d

0)−1 I(j)Λj(d
0)−1

Λj−< J >(d − d0)−1

)

− log det(Ĝ(d0)).

Let also define λj(δ) = 2−(j−< J >)δ for any j > 0 and δ ∈ R.

Recall Oppenheim’s inequality:

Proposition 10 (Oppenheim’s inequality). Let E and B be two semi-definite positive matrices. Then
det(E ◦ B) > det(E)∏ℓ Bℓ,ℓ.

Let A be the
following matrix: A = 1

n ∑
j1
j=j0

Λj−< J >(d − d0)−1
Λj(d

0)−1 I(j)Λj(d
0)−1

Λj−< J >(d − d0)−1.

Oppenheim’s inequality will be applied to matrices B and E(d − d0) where the (ℓ, m)-th element of

B is defined by Bℓ,m = 1
n ∑

j1
j=j0

njλj(dℓ − d0
ℓ
)λj(dm − d0

m) and E(d − d0) = A ◦ B̃ where B̃ℓ,m = B−1
ℓ,m.

The relation A = E(d − d0) ◦ B holds. The (ℓ, m)-th element of E(d − d0) is equal to

Eℓ,m(d) =
j1

∑
j=j0

µj,ℓ,m(d − d0)Iℓ,m(j)2−j(d0
ℓ
+d0

m)

avec µj,ℓ,m(δ) =
2−j(δℓ+δm)2< J >(δℓ+δm)

∑
j1
a=j0

na2−a(δℓ+δm)2< J >(δℓ+δm)
=

2−j(δℓ+δm)

∑
j1
a=j0

na2−a(δℓ+δm)
.

• The matrix E can be written on the form E = ∑j,k W̃j,kW̃j,k. Consequently E is positive semi-
definite being the sum of positive semi-definite matrices.

• The matrix B satisfies B = ∑
j1
j=j0

MjMj with Mj =
(

nj

n

)1/2
Λj−< J >(d − d0)−1. Thus B is

also positive semi-definite.

Oppenheim’s inequality implies log det(A) > log det(E(d − d0)) + ∑ℓ log Bℓ,ℓ.

Let define L(d − d0) by L(d − d0) := ∑
p
ℓ=1 log Bℓ,ℓ. As it can be seen that

j1

∑
j=j0

njλj(δ)λj(δ) = ∑
j

nj2
−2jδ22< J >δ = 22< J >δ

j1

∑
j=j0

nj2
−2jδ,
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the function L satisfies the following equality:

L(d − d0) =
p

∑
ℓ=1

[
log(22< J >(dℓ−d0

ℓ
)) + log(

1

n

j1

∑
j=j0

nj2
−2j(dℓ−d0

ℓ
)))

]
.

One can easily recognize that each term of the sum corresponds to the criterion defined in
Proposition 6 of Moulines et al (2008).

Inequality (19) follows with ∆(d, d0) = log det(E(d − d0))− log det(Ĝ(d0)). We will now control
the two terms in the right hand side inequality (19).

Control of L. L(d − d0) is a multivariate extension of the criterion studied in Proposition 6 of
Moulines et al (2008). It is convex, positive and minimal at d = d0.

Control of ∆. We shall prove that both log det E(d − d0) and log det(Ĝ(d0)) tend uniformly to
log det(G0) for d ∈ Rp.

• The (ℓ, m)-element of the matrix E(d − d0) is written as:

Eℓ,m(d) =
j1

∑
j=j0

µj,ℓ,m(d − d0)Iℓ,m(j)2−j(d0
ℓ
+d0

m) where µj,ℓ,m(δ) =
2−j(δℓ+δm)

∑a na2−a(δℓ+δm)
.

As ∑
j1
j=j0

njµj,ℓ,m(δ) = 1, the quantity Eℓ,m(d − d0) is equal to:

Eℓ,m(d − d0) = G0
ℓ,m

[
1 + ∑

j,k

µj,ℓ,m(d − d0)

(
Wj,k(ℓ)Wj,k(m)

G0
ℓ,m2j(d0

ℓ
+d0

m)
− 1

)]

where G0
ℓ,m = f S

ℓ,m(0)Ωℓ,mK(dℓ + dm) cos(π(d0
ℓ
− d0

m)/2).

Above expression can be rewritten as Eℓ,m(d − d0) = G0
ℓ,m(1 + Sℓ,m(µℓ,m(d − d0)))

with Sℓ,m(µ) as defined previously in equation (16). Since supd |µj(d − d0)| 6 1
nj

,

Proposition 8 states that Eℓ,m(d − d0) → G0
ℓ,m uniformly in d when 2−j1β + N−1/22j0/2 →

0.

• Finally we shall establish that log det Ĝ(d0) tends uniformly to log det(G0) for d ∈ Rp.
Recall

Ĝℓ,m(d
0) = G0

ℓ,m(1 + Sℓ,m(ν)) where νj =
1

n
.

The sequence ν satisfies |νj| 6 1/nj. Applying Proposition 8, the convergence is proved

when 2−j0β + N−1/22j1/2 → 0.

Consistance of the estimation of G and Ω

Let ℓ, m be given indexes in {1, . . . , p}. Any (ℓ, m)-th element of the matrix Ĝ(d) satisfies:

Ĝℓ,m(d) = G0
ℓ,m2< J >(dℓ−d0

ℓ
+dm−d0

m)

[
j1

∑
j=j0

njνj,ℓ,m + Sℓ,m(νℓ,m(d − d0))

]
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where νj,ℓ,m(d − d0) = 1
n 2−(j−< J >)(dℓ−d0

ℓ
+dm−d0

m).

Recall that < J > ∼ j0 + ηj1−j0 with 0 6 ηj1−j0 6 1. As sup
ℓ
|d̂ℓ − d0

ℓ
| = oP(1), for any γ ∈ (0, 1/2),

there exists Nγ such that for any N > Nγ, 2−(j−< J >)(dℓ−d0
ℓ
+dm−d0

m) 6 2γ2(j−j0)γ. For N > Nγ,

the sequence νℓ(d̂ − d0) belongs to S(0, γ, 2γ). Proposition 9 shows that Sℓ,m(νℓ,m(d̂ − d0)) tends to
zero when 2−j0β + N−1/22j1/2 → 0.

Finally, as ∑j njνj,ℓ,m → 1 and as the quantity 2< J >(dℓ−d0
ℓ
+dm−d0

m) tends to 0, Ĝℓ,m(d̂)
P−→ G0

ℓ,m

when d̂ − d0 = oP(1). The rate of convergence of Ĝℓ,m(d̂) is derived from the fact that

2< J >(d̂ℓ−d0
ℓ
+d̂m−d0

m) − 1 ∼ j0(d̂ℓ − d0
ℓ
+ d̂m − d0

m) log(2).

The convergence of Ω is straightforward, thanks to the fact that K(·) is a continuous function of d.

E Proof of Theorem 6

The criterion R is equal to R(d) = log det
(

Λ< J >(d)Ĝ(d)Λ< J >(d)
)

. It is immediate that

d̂ = argmin
d

R(d) satisfies

d̂ = argmin
d

R(d) with R(d) = log det G(d) (20)

and G(d) = Λ< J >(d − d0)Ĝ(d)Λ< J >(d − d0)

When d − d0 = oP(1), it has been proven that the matrix Ĝ(d) converges to G(d0). So does G(d).

The Taylor expansion at first order of the derivative of R at d0 gives:

0 =
∂R(d)

∂d

∣∣∣∣
d̂
=

∂R(d)

∂d

∣∣∣∣
d

0
+

∂2R(d)

∂d∂dT

∣∣∣∣
d
(d̂ − d0)

where d is such that ‖d − d0‖ 6 ‖d̂ − d0‖.

E.1 Derivatives of the criterion

For any a = 1, . . . , p, let ia be a p × p matrix whose a-th diagonal element is one and all other
elements are zero. Let a and b be two indexes in 1, . . . , p. The first derivative of G(d) with respect

to da, ∂G(d)
∂da

, is:

− log(2)
1

n

j1

∑
j=j0

(j −< J >)Λ< J >(d − d0)Λj(d)
−1(iaI(j) + I(j)ia)Λj(d)

−1
Λ< J >(d − d0).
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And the second derivative, with respect to da and db:

∂2G(d)

∂da∂db
= log(2)2

Λ< J >(d − d0)
1

n

j1

∑
j=j0

(j −< J >)2

Λj(d)
−1 (ibiaI(j) + I(j)iaib + ibI(j)ia + iaI(j)ib)Λj(d)

−1Λ< J >(d − d0) (21)

Consequently, the derivatives of the criterion R(d) are equal to:

∂R(d)

∂da
= trace

(
G(d)−1 ∂G(d)

∂da

)
(22)

∂2R(d)

∂da∂db
= −trace

(
G(d)−1 ∂G(d)

∂db
G(d)−1 ∂G(d)

∂da

)
+ trace

(
G(d)−1 ∂2G(d)

∂da∂db

)
(23)

Convergence of
∂2Ga,b(d)

∂da∂db

The proof is derived for

(
∂2Ga,b(d)

∂da∂db

)

a,b

, for a 6= b. The argumentation is similar for the diagonal

terms. The expression (21) is rewritten by introducing a sequence Sa,b:
(

∂2Ga,b(d)

∂da∂db

)

a,b

= G0
a,b log(2)2

[
2< J >(da+db−d0

a−d0
b)

1

n

j1

∑
j=j0

(j −< J >)2 θa,b(j)

G0
a,b2j(da+db)

Ia,b(j)

θa,b(j)

]

= G0
a,b log(2)2

[
Sa,b(ω

(2)
a,b (d − d0)) +

j1

∑
j=j0

njω
(2)
j,a,b(d − d0)

]

where ω
(2)
j,a,b(δ) =

1
n (j −< J >)22−(j−< J >)(δa+δb).

First, ∑
j1
j=j0

njω
(2)
j,a,b(d − d0) ∼ 1

n ∑
j1
j=j0

(j −< J >)2nj = κj1−j0 when d − d0 → 0.

Let d be in a neighbourhood of d0 such that sup
ℓ
|dℓ − d0

ℓ
| < γ with 0 6 γ < 1/2. As

< J > ∼ j0 + ηj1−j0 with 0 6 ηj1−j0 6 1, there exists N0 such that for any N > N0 the sequence

ω
(2)
a,b belongs to the set S(2, γ, 2γ). Using Proposition 9, Sa,b(ω

(2)
a,b (d − d0)) 6 C(2j1β + N−1/22−j1/2)

uniformly on the neighbourhood of d for N > N0. As a consequence,
(

∂2Ga,b(d)

∂da∂db

)

a,b

∼ G0
a,b log(2)2(κj1−j0 + C

(2)
a,b ), (24)

with C
(2)
a,b = ©P(2

j1β + N−1/22−j1/2).

With matrix notations,

∂2G(d)

∂da∂db
= (κj1−j0 + C(2)) log(2)2

(
ibiaG0 + ibG0ia + iaG0ib + G0iaib

)
+ oP(1)

when d = d0 + oP(1).
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Convergence of
∂G(d)

∂da

This section concerns the convergence in probability of

(
∂G(d)

∂da

)

a,b

which is equal to:

(
∂G(d)

∂da

)

a,b

= log(2)2< J >(da+db−d0
a−d0

b)
1

n

j1

∑
j=j0

(j −< J >)2−j(da+db) Ia,b(j) (25)

= G0
a,b log(2)

[
Sa,b(ω

(1)
a,b (d − d0)) +

j1

∑
j=j0

njω
(1)
j,a,b(d − d0)

]
,

where ω
(1)
j,a,b(δ) =

1
n (j −< J >)2−(j−< J >)(δa+δb).

First, ∑
j1
j=j0

njω
(1)
j,a,b(d − d0) = o(1) when d − d0 → 0.

As it was done previously, let d be in a neighbourhood of d0 such that sup
ℓ
|dℓ − d0

ℓ
| < γ with

0 6 γ < 1/2. Then for N > N0, the sequence ω
(1)
a,b belongs to S(1, γ, 2γ). Thanks to Proposition 9

it comes that Sa,b(ω
(1)
a,b (d − d0)) = ©P

(
2βj1 + N−1/22−j1/2

)
uniformly on the neighbourhood.

Consequently, (
∂G(d)

∂da

)

a,b

∼ G0
a,b log(2)C

(1)
a,b (26)

where C(1) = ©P

(
2βj1 + N−1/22−j1/2

)
.

Finally,

∂G(d)

∂da
= C(1) log(2)

(
iaG0 + G0ia

)
+ oP(1)

when d = d0 + oP(1).

E.2 Second derivative

Let us detail the expression of the second derivative ∂2R(d)
∂da∂db

:

∂2R(d)

∂da∂db
= −trace

(
G(d)−1 ∂G(d)

∂db
G(d)−1 ∂G(d)

∂da

)
+ trace

(
G(d)−1 ∂2G(d)

∂da∂db

)

∼ − log(2)2C(1)2trace
(

G0−1(ibG0 + G0ib)G
0−1(iaG0 + G0ia)

)

+ log(2)2(κj1−j0 + C(2))trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)

∼ log(2)2(κj1−j0 + C(2) − C(1)2)trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)

When a 6= b,

trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)
= G

0(−1)
a,b G0

a,b + G
0(−1)
b,a G0

b,a = 2G
0(−1)
a,b G0

a,b,
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where G
0(−1)
ℓ,m denotes the (ℓ, m)-th element of G0−1. When a = b,

trace
(

G0−1(ibiaG0 + ibG0ia + iaG0ib + G0iaib)
)
= 2(1 + G

0(−1)
a,a G0

a,a).

Finally,

∂2R(d)

∂d∂dT
∼ κ̃2 log(2)2

(
G0−1 ◦ G0 + Ip

)
(27)

with κ̃ = κj1−j0 + C(2) − C(1)2.

E.3 Proof of the Theorem

Using the results established previously,

2 log(2)2κ̃(d̂ − d0) = −
(

1

2κ̃

∂2R(d)

∂d∂dT

∣∣∣∣
d

)−1
∂R(d)

∂d

∣∣∣∣
d

0
∼ (G0−1 ◦ G0 + Ip)

−1 ∂R(d)

∂d

∣∣∣∣
d

0

We now study the convergence of ∂R(d)

∂d

∣∣∣∣
d0

. Using equation (25), we have the equivalence:

∂R(d)

∂da

∣∣∣∣
d

0
∼ C(1)2 log(2)∑

b

G
(−1)
a,b (d0)G

0
a,b.

So the asymptotic behaviour of the first derivative of the criterion is: ∂R(d)
∂da

∣∣∣∣
d0

= ©P(2
j1β +

N−1/22−j1/2).

When plugging this result into the expression above, it comes:

κ̃
(

2j1β + N−1/22−j1/2
)−1

(d̂ − d0) = ©P(1).

Recall that κ̃ = κj1−j0 + C(2) − C(1)2 tends to 0. Since κℓ > 0 for ℓ > 1 and κℓ → 2 when ℓ → ∞, the
sequence κ̃ is bounded below by a positive constant. Theorem 6 follows.

E.4 Additional tools

These results correspond to Lemma 13 of Moulines et al (2008)

Let define the sequences ηL and κL for any L > 0 by:

ηL :=
L

∑
i=0

i
2−i

2 − 2−L
(28)

κL :=
L

∑
i=0

(i − ηL)
2 2−i

2 − 2−L
(29)

33



It is straightforward that:

n ∼ N2−j0(2 − 2−(j1−j0)) (30)

< J > ∼ j0 + ηj1−j0 (31)

1

n

j1

∑
j=j0

(j− < J >)2nj ∼ κj1−j0 (32)

For every L > 1 the quantities ηL and κL are strictly positive. When L goes to infinity, the sequences
ηL and κL respectively converge to 1 and 2.

And for all u > 0,
1

κL

L−u

∑
i=0

2−i

2 − 2−L
(i − ηL)(i + u − ηL) → 1 when L → ∞ (33)
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Table 1: Multivariate Whittle wavelet estimation of d for a bivariate ARFIMA(0, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions.

d1 d j0 bias std RMSE ratio M/U

0.2 0.2 1 -0.0267 0.0413 0.0492 0.9080
-0.2 0.0379 0.0430 0.0574 1.0595

0.2 1 -0.0298 0.0428 0.0522 0.9631
0.0 -0.0002 0.0438 0.0438 0.9504

0.2 1 -0.0330 0.0456 0.0563 0.9713
0.2 -0.0333 0.0443 0.0554 0.9831

0.2 1 -0.0304 0.0429 0.0526 0.9583
0.4 -0.0571 0.0461 0.0734 0.9701

1.2 1.2 2 -0.0380 0.0830 0.0913 0.9728
0.8 -0.0298 0.0775 0.0831 0.9643

1.2 2 -0.0360 0.0818 0.0894 0.9702
1.0 -0.0346 0.0808 0.0879 0.9626

1.2 2 -0.0463 0.0853 0.0970 0.9677
1.2 -0.0393 0.0850 0.0936 0.9688

1.2 2 -0.0369 0.0799 0.0880 0.9589
1.4 -0.0482 0.0863 0.0989 0.9648

2.2 2.2 2 -0.0452 0.0950 0.1052 0.9642
1.8 -0.0418 0.0935 0.1025 0.9657

2.2 2 -0.0432 0.0962 0.1054 0.9712
2.0 -0.0459 0.0930 0.1037 0.9524

2.2 2 -0.0516 0.0953 0.1084 0.9815
2.2 -0.0513 0.0955 0.1084 0.9812

2.2 2 -0.0489 0.0962 0.1079 0.9840
2.4 -0.0573 0.0986 0.1141 0.9797



Table 2: Multivariate Whittle Fourier estimation of d for a bivariate ARFIMA(0, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions. ⌊x⌋ denotes the closest integer smaller than x.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

0.2 -0.0087 0.0707 0.0712 0.6908
-0.2 -0.0001 0.0824 0.0824 0.6958

0.2 -0.0037 0.0679 0.0680 0.7674
0.0 -0.0010 0.0778 0.0778 0.5630

0.2 -0.0078 0.0691 0.0695 0.8101
0.2 -0.0043 0.0733 0.0735 0.7546

0.2 -0.0038 0.0705 0.0706 0.7445
0.4 0.0012 0.0788 0.0788 0.9320

Number of frequencies m = ⌊N0.876⌋ = 236.

0.2 -0.0174 0.0318 0.0362 1.3581
-0.2 0.0158 0.0323 0.0359 1.5964

0.2 -0.0170 0.0315 0.0358 1.4558
0.0 -0.0025 0.0318 0.0319 1.3728

0.2 -0.0200 0.0321 0.0378 1.4875
0.2 -0.0189 0.0320 0.0372 1.4905

0.2 -0.0201 0.0325 0.0382 1.3759
0.4 -0.0317 0.0366 0.0484 1.5169



Table 3: Multivariate Whittle wavelet estimation of d for a bivariate ARFIMA(0, d, 0) with ρ =
−0.8, N = 512 with 1000 repetitions.

d1 d j0 bias std RMSE ratio M/U

0.2 0.2 1 0.0127 0.0396 0.0416 0.7685
-0.2 0.0797 0.0405 0.0894 1.6425

0.2 1 -0.0161 0.0380 0.0413 0.7625
0.0 0.0129 0.0371 0.0393 0.8980

0.2 1 -0.0334 0.0384 0.0509 0.8780
0.2 -0.0331 0.0391 0.0512 0.8966

0.2 1 -0.0164 0.0392 0.0425 0.7742
0.4 -0.0439 0.0387 0.0585 0.7836

1.2 1.2 2 -0.0130 0.0773 0.0784 0.8360
0.8 -0.0048 0.0703 0.0704 0.8248

1.2 2 -0.0277 0.0744 0.0794 0.8614
1.0 -0.0255 0.0699 0.0744 0.8363

1.2 2 -0.0440 0.0730 0.0852 0.8498
1.2 -0.0411 0.0714 0.0824 0.8475

1.2 2 -0.0321 0.0700 0.0770 0.8394
1.4 -0.0371 0.0732 0.0820 0.8538

2.2 2.2 2 -0.0267 0.0898 0.0937 0.8587
1.8 -0.0282 0.0866 0.0911 0.8266

2.2 2 -0.0372 0.0856 0.0933 0.8599
2.0 -0.0366 0.0838 0.0915 0.8337

2.2 2 -0.0507 0.0812 0.0957 0.8669
2.2 -0.0529 0.0838 0.0991 0.8762

2.2 2 -0.0419 0.0832 0.0931 0.8492
2.4 -0.0430 0.0869 0.0969 0.8395



Table 4: Multivariate Whittle Fourier estimation of d for a bivariate ARFIMA(0, d, 0) with ρ =
−0.8, N = 512 with 1000 repetitions.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

0.2 0.0008 0.0628 0.0628 0.6626
-0.2 0.0033 0.0641 0.0642 1.3934

0.2 -0.0000 0.0595 0.0595 0.6941
0.0 -0.0017 0.0582 0.0583 0.6746

0.2 -0.0057 0.0580 0.0583 0.8730
0.2 -0.0054 0.0582 0.0585 0.8764

0.2 0.0034 0.0652 0.0653 0.6506
0.4 0.0053 0.0684 0.0686 0.8536

Number of frequencies m = ⌊N0.876⌋ = 236.

0.2 -0.0098 0.0273 0.0290 1.4366
-0.2 0.0133 0.0274 0.0304 2.9392

0.2 -0.0138 0.0271 0.0304 1.3583
0.0 -0.0043 0.0264 0.0268 1.4686

0.2 -0.0191 0.0266 0.0327 1.5565
0.2 -0.0196 0.0269 0.0333 1.5398

0.2 -0.0194 0.0275 0.0337 1.2613
0.4 -0.0296 0.0293 0.0416 1.4064



Table 5: Multivariate Whittle wavelet estimation of d for a bivariate ARFIMA(1, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions.

d1 d j0 bias std RMSE ratio M/U

0.2 0.2 2 -0.1457 0.0755 0.1641 0.9660
-0.2 -0.1274 0.0744 0.1476 0.9597

0.2 2 -0.1485 0.0749 0.1663 0.9862
0.0 -0.1337 0.0717 0.1517 0.9851

0.2 2 -0.1499 0.0765 0.1683 0.9950
0.2 -0.1393 0.0749 0.1581 0.9898

0.2 2 -0.1512 0.0747 0.1687 0.9898
0.4 -0.1402 0.0721 0.1576 0.9914

1.2 1.2 2 -0.1352 0.0859 0.1602 0.9675
0.8 -0.1299 0.0774 0.1513 0.9649

1.2 2 -0.1397 0.0845 0.1633 0.9891
1.0 -0.1310 0.0756 0.1512 0.9903

1.2 2 -0.1391 0.0861 0.1636 0.9920
1.2 -0.1305 0.0844 0.1554 0.9857

1.2 2 -0.1399 0.0839 0.1631 0.9899
1.4 -0.1296 0.0889 0.1572 0.9917

2.2 2.2 2 -0.1081 0.0973 0.1455 0.9737
1.8 -0.1158 0.0947 0.1496 0.9752

2.2 2 -0.1103 0.0965 0.1465 0.9844
2.0 -0.1070 0.0947 0.1429 0.9869

2.2 2 -0.1110 0.0947 0.1459 0.9858
2.2 -0.1084 0.0945 0.1439 0.9789

2.2 2 -0.1102 0.0939 0.1448 0.9879
2.4 -0.1014 0.0943 0.1385 0.9793



Table 6: Multivariate Whittle Fourier estimation of d for a bivariate ARFIMA(1, d, 0) with ρ = 0.4,
N = 512 with 1000 repetitions.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

0.2 0.0438 0.1862 0.1913 0.8580
-0.2 0.0738 0.2702 0.2801 0.5268

0.2 0.0350 0.1831 0.1864 0.8924
0.0 0.0166 0.1603 0.1612 0.9410

0.2 0.0321 0.1785 0.1813 0.9279
0.2 -0.0025 0.1035 0.1035 1.5278

0.2 0.0364 0.1769 0.1806 0.9340
0.4 0.0055 0.0907 0.0908 1.7351

Number of frequencies m = ⌊N0.754⌋ = 110.

0.2 -0.0669 0.0612 0.0907 1.8087
-0.2 -0.0492 0.0487 0.0692 2.1312

0.2 -0.0686 0.0661 0.0953 1.7457
0.0 -0.0564 0.0474 0.0736 2.0600

0.2 -0.0716 0.0521 0.0885 1.9009
0.2 -0.0597 0.0483 0.0768 2.0604

0.2 -0.0667 0.0552 0.0866 1.9484
0.4 -0.0548 0.0582 0.0800 1.9711



Table 7: Wavelet Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions.

d1 d j0 bias std RMSE

0.2 (0.2,-0.2) Ω1,1 1 0.0342 0.0710 0.0788
Ω1,2 0.0387 0.0605 0.0718
Ω2,2 -0.0402 0.0709 0.0815

correlation 0.0400 0.0496 0.0637

(0.2,0.0) Ω1,1 1 0.0309 0.0697 0.0762
Ω1,2 0.0176 0.0540 0.0568
Ω2,2 -0.0012 0.0732 0.0733

correlation 0.0113 0.0417 0.0432

(0.2,0.2) Ω1,1 1 0.0297 0.0733 0.0790
Ω1,2 0.0116 0.0518 0.0530
Ω2,2 0.0282 0.0725 0.0778

correlation -0.0003 0.0386 0.0386

(0.2,0.4) Ω1,1 1 0.0356 0.0703 0.0788
Ω1,2 0.0328 0.0568 0.0655
Ω2,2 0.0707 0.0728 0.1015

correlation 0.0106 0.0422 0.0435

1.2 (1.2,0.8) Ω1,1 2 0.0037 0.1473 0.1474
Ω1,2 0.0478 0.1199 0.1290
Ω2,2 0.0052 0.1303 0.1304

correlation 0.0462 0.1041 0.1139

(1.2,1.0) Ω1,1 2 -0.0031 0.1411 0.1411
Ω1,2 0.0182 0.1003 0.1019
Ω2,2 0.0027 0.1357 0.1357

correlation 0.0176 0.0781 0.0800

(1.2,1.2) Ω1,1 2 0.0055 0.1442 0.1443
Ω1,2 0.0060 0.0921 0.0923
Ω2,2 -0.0033 0.1456 0.1456

correlation 0.0052 0.0685 0.0687

(1.2,1.4) Ω1,1 2 0.0001 0.1496 0.1496
Ω1,2 0.0155 0.1039 0.1051
Ω2,2 0.0135 0.1610 0.1615

correlation 0.0125 0.0802 0.0812

2.2 (2.2,1.8) Ω1,1 2 -0.0300 0.1906 0.1930
Ω1,2 0.0408 0.1527 0.1581
Ω2,2 -0.0167 0.1739 0.1747

correlation 0.0537 0.1375 0.1476

(2.2,2.0) Ω1,1 2 -0.0351 0.1957 0.1988
Ω1,2 0.0080 0.1159 0.1162
Ω2,2 -0.0197 0.1923 0.1933

correlation 0.0204 0.0883 0.0906

(2.2,2.2) Ω1,1 2 -0.0342 0.1945 0.1975
Ω1,2 -0.0085 0.1081 0.1085
Ω2,2 -0.0284 0.2016 0.2036

correlation 0.0054 0.0804 0.0806

(2.2,2.4) Ω1,1 2 -0.0270 0.1961 0.1980
Ω1,2 0.0039 0.1253 0.1253
Ω2,2 -0.0225 0.2001 0.2014

correlation 0.0145 0.0962 0.0973



Table 8: Fourier Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

(0.2,-0.2) Ω1,1 0.0394 0.2253 0.2287 0.3444
Ω1,2 0.0091 0.1156 0.1160 0.6189
Ω2,2 0.0145 0.2308 0.2313 0.3525

correlation -0.0002 0.0774 0.0774 0.8229

(0.2,0.0) Ω1,1 0.0245 0.2245 0.2259 0.3373
Ω1,2 0.0124 0.1154 0.1161 0.4892
Ω2,2 0.0163 0.2341 0.2347 0.3121

correlation 0.0061 0.0793 0.0795 0.5428

(0.2,0.2) Ω1,1 0.0319 0.2319 0.2341 0.3376
Ω1,2 0.0141 0.1191 0.1199 0.4423
Ω2,2 0.0236 0.2331 0.2343 0.3321

correlation 0.0041 0.0781 0.0782 0.4935

(0.2,0.4) Ω1,1 0.0264 0.2255 0.2271 0.3470
Ω1,2 0.0107 0.1232 0.1237 0.5298
Ω2,2 0.0276 0.2462 0.2478 0.4096

correlation 0.0001 0.0783 0.0783 0.5548

Number of frequencies m = ⌊N0.876⌋ = 236.

(0.2,-0.2) Ω1,1 0.0492 0.0679 0.0839 0.9395
Ω1,2 0.0009 0.0498 0.0498 1.4414
Ω2,2 -0.0470 0.0640 0.0794 1.0273

correlation 0.0006 0.0387 0.0387 1.6464

(0.2,0.0) Ω1,1 0.0449 0.0666 0.0803 0.9486
Ω1,2 0.0105 0.0506 0.0517 1.0985
Ω2,2 -0.0008 0.0677 0.0677 1.0819

correlation 0.0014 0.0383 0.0383 1.1259

(0.2,0.2) Ω1,1 0.0450 0.0708 0.0839 0.9417
Ω1,2 0.0176 0.0520 0.0549 0.9666
Ω2,2 0.0438 0.0690 0.0818 0.9517

correlation -0.0006 0.0382 0.0382 1.0099

(0.2,0.4) Ω1,1 0.0489 0.0682 0.0839 0.9392
Ω1,2 0.0313 0.0531 0.0616 1.0632
Ω2,2 0.1052 0.0705 0.1267 0.8012

correlation 0.0002 0.0384 0.0384 1.1307



Table 9: Wavelet Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = −0.8, N = 512
with 1000 repetitions.

d1 d j0 bias std RMSE

0.2 (0.2,-0.2) Ω1,1 1 0.0342 0.0710 0.0788
Ω1,2 -0.0749 0.0777 0.1079
Ω2,2 -0.0381 0.0686 0.0784

correlation -0.0768 0.0425 0.0878

(0.2,0.0) Ω1,1 1 0.0309 0.0697 0.0762
Ω1,2 -0.0284 0.0641 0.0701
Ω2,2 -0.0062 0.0667 0.0670

correlation -0.0182 0.0236 0.0298

(0.2,0.2) Ω1,1 1 0.0297 0.0733 0.0790
Ω1,2 -0.0263 0.0656 0.0706
Ω2,2 0.0318 0.0731 0.0798

correlation -0.0013 0.0172 0.0173

(0.2,0.4) Ω1,1 1 0.0356 0.0703 0.0788
Ω1,2 -0.0632 0.0659 0.0913
Ω2,2 0.0708 0.0706 0.1000

correlation -0.0195 0.0232 0.0303

1.2 (1.2,0.8) Ω1,1 2 0.0037 0.1473 0.1474
Ω1,2 -0.0847 0.1519 0.1739
Ω2,2 0.0076 0.1307 0.1309

correlation -0.0807 0.0982 0.1271

(1.2,1.0) Ω1,1 2 -0.0031 0.1411 0.1411
Ω1,2 -0.0178 0.1219 0.1232
Ω2,2 -0.0039 0.1314 0.1315

correlation -0.0207 0.0480 0.0523

(1.2,1.2) Ω1,1 2 0.0055 0.1442 0.1443
Ω1,2 -0.0072 0.1200 0.1202
Ω2,2 0.0022 0.1413 0.1413

correlation -0.0040 0.0305 0.0308

(1.2,1.4) Ω1,1 2 0.0001 0.1496 0.1496
Ω1,2 -0.0177 0.1363 0.1374
Ω2,2 -0.0017 0.1543 0.1543

correlation -0.0181 0.0499 0.0531

2.2 (2.2,1.8) Ω1,1 2 -0.0300 0.1906 0.1930
Ω1,2 -0.0712 0.2183 0.2296
Ω2,2 -0.0103 0.1839 0.1842

correlation -0.0900 0.1441 0.1699

(2.2,2.0) Ω1,1 2 -0.0351 0.1957 0.1988
Ω1,2 0.0075 0.1653 0.1655
Ω2,2 -0.0303 0.1915 0.1939

correlation -0.0200 0.0600 0.0633

(2.2,2.2) Ω1,1 2 -0.0342 0.1945 0.1975
Ω1,2 0.0212 0.1592 0.1606
Ω2,2 -0.0277 0.1962 0.1982

correlation -0.0040 0.0389 0.0391

(2.2,2.4) Ω1,1 2 -0.0270 0.1961 0.1980
Ω1,2 0.0069 0.1677 0.1679
Ω2,2 -0.0366 0.2050 0.2083

correlation -0.0210 0.0622 0.0656



Table 10: Fourier Whittle estimation of Ω for a bivariate ARFIMA(0, d, 0) with ρ = −0.8, N = 512
with 1000 repetitions.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

(0.2,-0.2) Ω1,1 0.0132 0.2036 0.2040 0.3862
Ω1,2 -0.0029 0.1662 0.1662 0.6493
Ω2,2 0.0016 0.1987 0.1988 0.3945

correlation 0.0034 0.0349 0.0351 2.5023

(0.2,0.0) Ω1,1 0.0125 0.1980 0.1984 0.3840
Ω1,2 -0.0058 0.1638 0.1639 0.4279
Ω2,2 0.0048 0.2001 0.2002 0.3348

correlation 0.0014 0.0350 0.0350 0.8519

(0.2,0.2) Ω1,1 0.0233 0.2054 0.2067 0.3823
Ω1,2 -0.0179 0.1692 0.1701 0.4153
Ω2,2 0.0199 0.2009 0.2019 0.3949

correlation -0.0001 0.0366 0.0366 0.4716

(0.2,0.4) Ω1,1 0.0083 0.2078 0.2079 0.3789
Ω1,2 -0.0061 0.1714 0.1715 0.5324
Ω2,2 0.0129 0.2104 0.2108 0.4741

correlation 0.0027 0.0357 0.0358 0.8462

Number of frequencies m = ⌊N0.876⌋ = 236.

(0.2,-0.2) Ω1,1 0.0512 0.0677 0.0849 0.9281
Ω1,2 0.0001 0.0592 0.0592 1.8216
Ω2,2 -0.0463 0.0631 0.0783 1.0019

correlation 0.0014 0.0170 0.0171 5.1496

(0.2,0.0) Ω1,1 0.0459 0.0665 0.0808 0.9424
Ω1,2 -0.0149 0.0581 0.0599 1.1703
Ω2,2 -0.0057 0.0635 0.0638 1.0512

correlation 0.0012 0.0165 0.0165 1.8025

(0.2,0.2) Ω1,1 0.0458 0.0706 0.0841 0.9393
Ω1,2 -0.0378 0.0640 0.0743 0.9504
Ω2,2 0.0467 0.0694 0.0836 0.9536

correlation -0.0004 0.0171 0.0171 1.0093

(0.2,0.4) Ω1,1 0.0497 0.0680 0.0842 0.9353
Ω1,2 -0.0614 0.0635 0.0883 1.0344
Ω2,2 0.1061 0.0710 0.1277 0.7831

correlation 0.0010 0.0169 0.0170 1.7875



Table 11: Wavelet Whittle estimation of Ω for a bivariate ARFIMA(1, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions.

d1 d j0 bias std RMSE

0.2 (0.2,-0.2) Ω1,1 2 0.1508 0.0484 0.1584
Ω1,2 0.1003 0.0562 0.1150
Ω2,2 0.1852 0.0620 0.1953

correlation 0.0647 0.0958 0.1157

(0.2,0.0) Ω1,1 2 0.1502 0.0484 0.1578
Ω1,2 0.0741 0.0429 0.0856
Ω2,2 0.1806 0.0634 0.1914

correlation 0.0154 0.0674 0.0692

(0.2,0.2) Ω1,1 2 0.1532 0.0501 0.1611
Ω1,2 0.0678 0.0404 0.0789
Ω2,2 0.1768 0.0633 0.1878

correlation 0.0029 0.0602 0.0603

(0.2,0.4) Ω1,1 2 0.1529 0.0504 0.1610
Ω1,2 0.0716 0.0432 0.0836
Ω2,2 0.1715 0.0617 0.1823

correlation 0.0125 0.0678 0.0690

1.2 (1.2,0.8) Ω1,1 2 0.1134 0.0606 0.1286
Ω1,2 0.0846 0.0569 0.1019
Ω2,2 0.1524 0.0640 0.1653

correlation 0.0678 0.1072 0.1269

(1.2,1.0) Ω1,1 2 0.1149 0.0567 0.1281
Ω1,2 0.0604 0.0430 0.0741
Ω2,2 0.1423 0.0654 0.1566

correlation 0.0194 0.0732 0.0757

(1.2,1.2) Ω1,1 2 0.1166 0.0573 0.1299
Ω1,2 0.0537 0.0415 0.0678
Ω2,2 0.1349 0.0727 0.1532

correlation 0.0070 0.0659 0.0662

(1.2,1.4) Ω1,1 2 0.1149 0.0551 0.1274
Ω1,2 0.0549 0.0459 0.0715
Ω2,2 0.1278 0.0748 0.1480

correlation 0.0136 0.0795 0.0806

2.2 (2.2,1.8) Ω1,1 2 0.0665 0.0701 0.0966
Ω1,2 0.0649 0.0717 0.0967
Ω2,2 0.1039 0.0865 0.1352

correlation 0.0736 0.1449 0.1625

(2.2,2.0) Ω1,1 2 0.0655 0.0714 0.0969
Ω1,2 0.0389 0.0506 0.0638
Ω2,2 0.0869 0.0854 0.1218

correlation 0.0210 0.0914 0.0938

(2.2,2.2) Ω1,1 2 0.0673 0.0688 0.0963
Ω1,2 0.0314 0.0453 0.0551
Ω2,2 0.0811 0.0859 0.1181

correlation 0.0051 0.0806 0.0807

(2.2,2.4) Ω1,1 2 0.0662 0.0705 0.0967
Ω1,2 0.0336 0.0502 0.0604
Ω2,2 0.0688 0.0905 0.1137

correlation 0.0161 0.0924 0.0938



Table 12: Fourier Whittle estimation of Ω for a bivariate ARFIMA(1, d, 0) with ρ = 0.4, N = 512
with 1000 repetitions.

d bias std RMSE ratio W/F

Number of frequencies m = ⌊N0.65⌋ = 57.

(0.2,-0.2) Ω1,1 0.0204 0.0895 0.0918 1.7243
Ω1,2 -0.0025 0.0612 0.0613 1.8775
Ω2,2 0.0132 0.1193 0.1200 1.6270

correlation -0.0319 0.1300 0.1339 0.8641

(0.2,0.0) Ω1,1 0.0257 0.0937 0.0971 1.6242
Ω1,2 0.0034 0.0572 0.0573 1.4948
Ω2,2 0.0275 0.1060 0.1095 1.7486

correlation -0.0234 0.1143 0.1167 0.5930

(0.2,0.2) Ω1,1 0.0260 0.0895 0.0932 1.7288
Ω1,2 0.0066 0.0540 0.0544 1.4496
Ω2,2 0.0357 0.1011 0.1072 1.7519

correlation -0.0179 0.1014 0.1030 0.5856

(0.2,0.4) Ω1,1 0.0219 0.0871 0.0898 1.7922
Ω1,2 0.0051 0.0523 0.0526 1.5901
Ω2,2 0.0282 0.1027 0.1065 1.7124

correlation -0.0146 0.1010 0.1021 0.6758

Number of frequencies m = ⌊N0.754⌋ = 110.

(0.2,-0.2) Ω1,1 0.0957 0.0473 0.1067 1.4834
Ω1,2 0.0383 0.0332 0.0507 2.2682
Ω2,2 0.0956 0.0563 0.1109 1.7601

correlation -0.0003 0.0585 0.0585 1.9785

(0.2,0.0) Ω1,1 0.0970 0.0469 0.1077 1.4650
Ω1,2 0.0395 0.0346 0.0525 1.6292
Ω2,2 0.1006 0.0562 0.1153 1.6604

correlation -0.0010 0.0595 0.0595 1.1628

(0.2,0.2) Ω1,1 0.0977 0.0452 0.1076 1.4973
Ω1,2 0.0418 0.0343 0.0541 1.4597
Ω2,2 0.1105 0.0574 0.1245 1.5087

correlation -0.0000 0.0584 0.0584 1.0323

(0.2,0.4) Ω1,1 0.0943 0.0449 0.1045 1.5410
Ω1,2 0.0428 0.0338 0.0545 1.5328
Ω2,2 0.1188 0.0593 0.1328 1.3727

correlation 0.0007 0.0578 0.0578 1.1943



Table 13: Multivariate Wavelet Whittle estimation of Ω for a bivariate ARFIMA(0, (0.2, 1.2), 0)
with ρ = 0.4, N = 512 with 1000 repetitions.

bias std RMSE

Without differentiation of the second component and j0 = 2.

Ω1,1 0.0039 0.1108 0.1109
Ω1,2 12.464 432.66 432.84
Ω2,2 0.0016 0.1487 0.1488
correlation 9.7231 349.41 349.55

With differentiation of the second component and j0 = 1.

Ω1,1 0.0411 0.0709 0.0819
Ω1,2 0.0163 0.0548 0.0571
Ω2,2 0.0103 0.0745 0.0752
correlation 0.0055 0.0410 0.0414
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