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Abstract: Photoacoustic tomography (PAT) is a hybrid imaging modality 

that takes advantage of high optical contrast brought by optical imaging and 

high spatial resolution brought by ultrasound imaging. However, the 

quantification in photoacoustic imaging is challenging. Multiple optical 

illumination approach has proven to achieve uncoupling of diffusion and 

absorption effects. In this paper, this protocol is adopted and synthetic 

photoacoustic data, blurred with some noise, were generated. The influence 

of the distribution of optical sources and transducers on the reconstruction 

of the absorption and diffusion coefficients maps is studied. Specific 

situations with limited view angles were examined. The results show 

multiple illuminations with a wide field improve the reconstructions. 

©2014 Optical Society of America 

OCIS codes: (170.0170) Medical optics and biotechnology; (170.5120) Photoacoustic imaging. 
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1. Introduction 

Photoacoustic tomography (PAT) is a multiwave imaging modality that potentially combines 

the high optical contrast brought by the optics and high spatial resolution by ultrasound 

probing. The interests in using this technique for biomedical sensing are growing since 1990s, 

and its applications are in breast cancer detection [1,2], small animal molecular imaging [3,4], 

subcutaneous structures imaging [5], functional imaging [6], and other applications. 

The principle consists in illuminating a sample with a local absorbing optical contrast 

(vasculature, presence of a tumor for example). The absorbed energy converts into heat and 

the temperature of the object increases, causing thermal expansion that generates an acoustic 

pressure wave. The energy deposited is proportional to the fluence and the local absorption 

coefficient of the tissues. Hence, the primary aim of PAT is to retrieve the spatial 3D 

distribution of the absorption coefficient of the probed tissue. This absorption coefficient, 

proportional to the concentration of the different chromophores composing the tissue, is an 

intrinsic marker of the physiology and the metabolism. In the red and near infrared, PAT has 

been applied to mapping hemoglobin concentrations that can reveal the presence of a cancer, 

through oxy- and deoxy-hemoglobin concentrations which are markers of the oxygen 

consumption in the tissues [7]. Glucose monitoring with PAT has also been reported [8]. 

However, usually the technique is applied to probing tissues at small depths (small animals, 

subcutaneous examination), for which the fluence can be modelled as a Beer-Lambert’s law 

by considering light scattering is not perturbing too much the quantification. For deep tissues 

imaging, because of their high level of scattering, diffusion of light has to be taken into 

account in the evaluation of the fluence that depends non-linearly on both the absorption and 

diffusion coefficients. Isolating the absorption contribution from the energy deposited is the 

challenge in quantitative PAT (QPAT), as the fluence does depend itself on the optical 

parameters (absorption and diffusion coefficients) distributions. 

In a first approximation, PAT can be limited to a purely acoustic problem: from time-

resolved measurements collected at the periphery, acoustic sources are localized through the 

reconstruction of the initial pressure distribution, from which one can obtain the absorption 

coefficient distribution by making the assumption of a simple photon propagation model or a 

uniform distribution of light. The problem is similar to seismology passive sensing: one seeks 

at localizing the sources that produced the collected acoustic signal. For all these approaches, 

a wide field illumination is preferable in order to produce a homogenized initial pressure. To 



go further in the quantification, different strategies have been adopted taking advantage of 

specific experimental protocols. 

There exist basically four approaches in QPAT which consists in recovering: 

i. the absorption coefficient directly. Supposing the diffusion coefficient is known, Ripoll 

et al. [9] recovered the absorption map with a point source accounting for 

instrumental factors such as the source strength, the shape of the optical pulse, and 

the impulse response and finite size of the transducers; Cox et al. [10] reconstructed 

the absorption coefficient assuming the scattering coefficient is known a priori by 

use of a fixed-point iterative method; Banerjee et al. [11] recovered the absorption 

coefficient directly from boundary pressure measurements. Very recently, Zhou et 

al. [12] have introduced a calibration-free method based on the direct measurement 

of the counts of particles through the statistical analysis of the photoacoustic signal 

fluctuations. 

ii. the absorption coefficient and the fluence. The fluence contribution can be filtered by 

making use of a contrast agent of known absorption coefficient with photoacoustic 

signal measurements performed before and after injection [13]. Daoudi et al. [14] 

proposed to combine photoacoustics with acousto-optics allowing also to overcome 

the contribution of the fluence in the initial pressure measurement. The fluence map 

can be explicitly measured through Diffuse Optical Tomography [15] (DOT). By 

introducing prior knowledge on the spatial frequency of the two quantities, 

Rosenthal et al. [16] extracted both the absorption coefficient (high frequency) and 

the fluence (low frequency) from the photoacoustic image. As this algorithm is not 

based on the explicit solution the theoretical light transport equation, it does not 

require explicit knowledge of the illumination geometry. 

iii. the absorption and diffusion coefficients simultaneously by introducing prior 

knowledge (spectra of known species, diffusion spectral profile) with multiple 

wavelength illuminations; Bal and Ren [17] have proven that, when multiple 

wavelength data are available, the absorption, diffusion and Grüneisen coefficients 

can be reconstructed simultaneously under additional minor prior assumptions. 

iv. the absorption and diffusion coefficients simultaneously by introducing active probing 

with multiple optical illuminations. In the last decade, a lot of efforts have been 

produced to improve the quantification through the uncoupled reconstructions of the 

different physical parameters contained in the initial pressure distribution map, that 

is: absorption and diffusion coefficients and the Grüneisen coefficient accounting 

self-consistently on the acoustic properties of the tissue [18]. Tarvainen et al. [19] 

reconstructed both the absorption and diffusion coefficients, by considering both the 

radiative transport and diffusion equations as light transport models; Bal and Ren 

[20] recovered the absorption, diffusion, and Grüneisen coefficient mathematically 

when the propagation of radiation is modelled by a second-order elliptic equation; 

Shao et al. [21] estimated the absorption, scattering and Grüneisen distributions from 

reconstructed initial pressure map with multiple optical sources; In their updated 

work [22], they recovered the absorption and diffusion coefficients directly from 

measured acoustic pressure. 

With this last approach, the probing becomes active and similar with what occurs in 

geophysics when searching for buried objects, petroleum layers, cracks... In the present work, 

this approach is adopted and tested under different sources and detectors geometries. The 

purpose is to test its robustness under potential experimental situations with single 

wavelength illumination, point scanning single element transducer and limited view angle 

examination. The paper is organized as follows: Section 2 presents the theoretical 

background, the results are presented and discussed in Section 3, Section 4 is the conclusion. 



2. Theory 

Hereafter are recalled the definitions of the physical quantities involved in the photoacoustic 

phenomenon and the main lines leading to the expression of the solution of the forward 

model. The inverse problem is also presented. It was formulated according to the method 

proposed by Shao et al. [22] for multiple illuminations and detections situation. 

2.1 Photoacoustic phenomenon modelling in biological tissues 

The amount of heat generated by tissue is proportional to the strength of the radiation. Within 

the conditions of thermal and stress confinements, light pulse is typically few ns, the heating 

function can be treated as an instantaneous function proportional to a Dirac ( )tδ  function: 

 ( , ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ).a aH t t t E tµ φ µ φ δ δ= ≈ =r r r r r r  (1) 

Here ( , )H tr  is the heating function defined as the thermal energy converted at spatial 

position r  and time t  by the electromagnetic radiation per unit volume per unit time. ( )φ r is 

the light fluence [W.cm−2], ( )aµ r  [cm−1] is the absorption coefficient. When large tissues are 

considered, with illumination in the wavelength range (600-1200 nm) for which light 

scattering mean free path length is much shorter than the absorption mean free path length, 

the Diffusion Approximation holds [23] and the spatial distribution of light fluence can be 

obtained through the resolution of the following diffusion equation: 

 ( ) ( ) .( ( ) ( )) ( )a D Qµ φ φ− ∇ ∇ =r r r r r  (2) 

( )D r  [cm] is the diffusion coefficient and ( )Q r [W.cm−3] is the illumination light source 

density. The absorbed energy converts into heat and the temperature of the tissue increases, 

and thermal expansion takes place, generating an initial acoustic pressure in the medium 

expressed as 0 ( , ) ( ) ( ) ( , )ap µ φ= Γr u r r r u , Γ being the Grüneisen parameter, dimensionless 

quantity representing the efficiency of conversion of absorbed energy to pressure, and 

[ ]T

a=u D . The photoacoustic pressure ( , , )p tr u then propagates at the speed of sound in 

the medium sv as: 
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which solution in free space is well known. For simplicity, to avoid the calculation of time 

derivatives, the measurable quantity considered in this work is the model ( , , )p tr u  defined as a 

quantity directly proportional to the velocity potential [4]: 
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2.2 Inverse problem formulation 

From limited number M of measured pressures, at points ir , due to a limited number S of 

sources, we want to recover the maps of the optical properties [ ]T

a
=u D . Within a 

perturbation approach, one can always express any optical map distribution as 0 δ= +u u u , 

where 0u is the vector representing the maps of the optical properties of a reference medium, 

with known optical properties distribution, and δu being considered as the vector 



representing the perturbation to these reference maps. If 0δ <<u u , one can express the 

measurements as a Taylor series expansion, truncated here at first order (Born 

approximation): model

0 0 0( , , ) ( , , ) ( )s

s d s d d
p t p tτ τ τδ δ+ = +r u u r u J u u , 

0

model

0( ) ( , , )s

d s dp tτ τ =
= ∂ ∂

u u
J u r u u  is the Jacobian matrix. Hence, the global forward problem, 

for all considered sources [ ]1,s S∈  and detectors [ ]1,d M∈ , at any time [ ]1,t Tτ ∈ , can be 

formulated linearly with the following matrix form: 

 ( )T Tδ δ= Δ ⇔ =J J u J H u b  (5) 

Here modelΔ = −p p , H  is the Hessian. The multiplication by T
J  allows handling an inversion 

process with smaller dimensions of the matrices involved (reduced to the dimension of the 

chosen reconstruction mesh). The main problem remains in expressing J . The medium is 

first meshed into L voxels of volume lVΔ . Introducing ( ) ( , )s

l a l s lE µ φ= r r u  and 

dl d lR = −r r , the model for the considered measurable quantity at time [ ]0,t Tτ ∈ , detected 

by point transducer [ ]1,d M∈  with position dr , due to source [ ]1,s S∈ , becomes: 

 model
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and the Jacobian matrix: 
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ΓΔ
= −  is a time evolution transfer matrix propagating the pressure created 

at initial time at position lr  to point detector located at dr ; , 0( ( ))l s jβ u r represents the 

sensitivity of the energy instantaneously deposited due to the optical perturbation δu located 

at positions jr , jr  belonging to the reconstruction mesh: 
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ljδ is the Kronecker symbol. Within the perturbation approach, knowing the Green’s function 

0G of the diffusion Eq. (2): 
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In order to avoid infinite values of 0G  and φ  at positions j l=r r , the reconstruction mesh 

( [ ], 1,j j J∈r , jVΔ  pixel surface) for the values of the optical properties was chosen to be 

slightly different from the modelling mesh ( [ ], 1,l l L∈r ). 

2.3 Computation of the Jacobian matrix 

In the following case studies, the simulations were conducted in 2D. The chosen test object 

(Fig. 1) was basically the same as in [22]: a 6 cm × 6 cm square, in the center area of which a 

2 cm × 2 cm square was selected as the reconstruction area (Fig. 1, left). The background 

absorption and diffusion coefficients are respectively -1

0 0.1cmaµ =  and 0 0.03 cmD =  . The 

computation area contains a diffusion perturbation 0.003 cmDδ =  (centered, dimensions: 

0.5cm × 0.5cm) and two absorption perturbations 
-10.01cm

a
δµ =   (dimensions: 0.3cm × 

1.1cm and 0.3cm × 0.3cm, 0.6 cm from the center). The perturbations were chosen relatively 

small (10%) in order to fulfil the Born approximation. The values correspond to optical 

properties measured in various situations with DOT (for instance in breast cancer imaging 

[24]). If the perturbations are high compared to the background optical properties, non-linear 

reconstruction algorithms have to be used [22]. The sources are located 0.3 cm away from the 

reconstruction area, both the number and the length of the sources are variable. Point 

detectors are located 2 cm from this computation area, right at the periphery of the object. 

 

Fig. 1. Left: Geometry of the simulated object, light sources and transducers are placed 

respectively 0.3 cm and 2 cm away from the object. In the reconstruction area are placed the 

perturbations: two absorbers (
a

δµ , positions: (0.6cm;1cm) and (1.6cm;1cm), dimensions: 

0.3cm × 1.1cm and 0.3cm × 0.3cm) and one diffuser ( Dδ , position: (1cm;1cm), dimensions: 

0.5cm × 0.5cm). Right: Different meshes used in the simulations: left, FEM mesh { }
Δ

r ; 

middle, reconstruction square mesh { }
j

r ; right: modelling square mesh { }
l

r . 

2.3.1 Optical energy deposition matrix: 
, 0( ( ))l s jβ u r  

The computation of this matrix is obtained through the calculation of several matrices 

involving the resolution of sets of diffusion Eqs. (2): 
0

( , ( ))
j s j

φ −r r u r , and 

0 0( , ( ))l j jG −r r u r  and their gradients in Eq. (9), and 
0 0( , ) ( , ( ))s l l s jφ φ= −r u r r u r . The 

diffusion Eq. (2) is solved here numerically with the Finite Element Method (FEM) with 

Dirichlet boundary conditions at the external frontier of the domain and Neumann boundary 

conditions elsewhere. The optical parameters are assigned to the different subdomains, point 

or line sources, with unit intensity and different lengths are distributed along the above 



described square. The medium is meshed with triangles { }Δr  (Fig. 1, right) and the equations 

are solved for different sources geometries in order computing 
0( , ( ))sφ Δ Δ−r r u r , and 

0 0( , ( ))j jG Δ −r r u r  and their gradients in Eq. (9). As the meshes have to be changed with the 

sources positions and geometry, the resulting matrices are then projected into the regular 

meshes { }j
r  and { }lr . In practice, as mentioned above, the reconstruction mesh { }j

r  was 

chosen such that 
l j≠r r , hence 0ljδ =  in (8) and one never has to calculate explicitly 

0 0( , ) ( , ( ))s l l s jφ φ= −r u r r u r  in (8) (that is no projection into the modelling mesh{ }lr ). The 

FEM mesh typically contains 4300 elements, the modelling mesh is a regular grid of 61 × 61 

pixels (pixel size: 0.1 cm), and the reconstruction mesh is 21 × 21 pixels, 1 pixel shifted in 

horizontal and vertical with the modelling mesh. , 0( ( ))l s jβ u r  is then obtained by assembling 

the sensitivity matrices, and its dimension is ( ) 2S L J× × . 

2.3.2 Time evolution transfer matrix propagating the pressure ,dl τα  

This matrix represents the acoustic propagation between each pixel of the modelling mesh 

and the transducer. It carries essentially the information on the distance between detectors and 

the different pixels of the modelling mesh 
dl d lR = −r r . It is calculated by considering the 

points located at the center of each pixel of the modelling mesh{ }lr . lVΔ  is the surface of 

each pixel, The Grüneisen coefficient is chosen to be a classical one in biological tissues 

0.225Γ =  and the speed of sound 11500m.s
s

v −= . 204 time steps are considered with a time 

interval of 0.2 µs. The dimension of 
,dl τα  is ( )M T L× × . 

The dimension of the Jacobian matrix J  is large ( ) 2T M S J× × ×  but the Hessian H  

dimension is reduced 2 2J J× . Vector Δ  representing the discrepancy between model and 

measurements has dimension ( ) 1T M S× × ×  and b is only 2 1J × . The largest matrices J and 

Δ  are computed once and are not involved in the reconstruction process. 

2.4 Resolution of the inverse problem 

Two different reconstruction methods were tested: 

- Singular value decomposition (SVD) method for which the Hessian matrix was 

decomposed into: T= × ×H U S V . S  is a diagonal matrix with same dimension as 

H  containing nonnegative singular values iσ  ordered in decreasing order, U and 

V are unitary matrices. The inversion of (5) becomes: 1 Tδ −=u VS U b . A Tikhonov 

regularization was adopted to avoid instabilities caused by poor conditioning of H : 

the values of the diagonal of 1−
S are replaced by ( )2 2

i i
σ σ λ+ , λ is the Tikhonov 

regularization parameter. 

- The algebraic reconstruction technique (ART) [25] that searches iteratively for the 

solution δu such that: ( ) 21 ,n n n

nδ δ δ
−+  = + −   u u b H u H H , n  is a 

hyperparameter that can be tuned in order to regularize or to speed up the 

reconstruction. In all what follows, n  was kept constant and equal to 1. Non 

negative values constraint is also introduced in the algorithm. 



These reconstruction methods are tested for different noise levels. For small noise levels, 

SVD provides sufficiently good results but is known to be unstable and very sensitive to 

noise, while the ART behaves better, especially when constrained. 

3. Simulation study on sources and detectors geometries 

Sets of synthetic data were generated by solving the forward problem and introducing a 

fraction of random noise with normal distribution. Hereafter are presented the results of 

simulations performed on the synthetic phantom (Fig. 1) with the above-described method. 

The purpose of the study is to highlight the effects of different sources and detectors 

distributions and geometries on the reconstruction of the perturbation of the optical 

parameters [ ]T

aδ δ δ=u D , in terms of accuracy and robustness to noise. To that end, the 

following aspects were considered: (i) using different reconstruction methods with different 

noise level: this preliminary step allowed to select the proper reconstruction algorithm; (ii) 

number of point sources distribution: the point source illumination has been specifically 

studied in [22], here the results are shown as reference; (iii) point detectors distributions: the 

purpose is to understand which transducers distribution would be the best, for a given number 

of measurements; (iv) using extended sources instead of the point sources: point sources have 

been studied but, in practice, extended sources are easier to handle experimentally; (v) limited 

angle examination: this corresponds to actual experimental situations, here the transmission 

geometry, where sources and detectors belong to different half-spaces, is studied. 

3.1 Different reconstruction methods 

Four point sources and sixty detectors (15 detectors on each side of the object) are considered 

for this study. A first point that can be stressed is the poor conditioning of the Hessian: after 

performing the SVD, and examining the spectrum of the singular values iσ  of H, the 

condition number obtained for this configuration is max( ) min( )i icond σ σ=  = 1.46 × 1010. 

Reconstructions are expected to be unstable and highly sensitive to noise. 

The two different reconstruction methods, SVD (with regularization when indicated) and 

ART (with non-negative constraint, 1000 iterations, and 1,n nλ = ∀ ) were tested under 

different noise levels (0 up to 10−2). Figure 2 (Left) shows the maps of the reconstructed 

perturbations on the absorption ( aδ ) and diffusion (δ D ) coefficients through the different 

reconstruction methods with increasing noise levels. On Fig. 2 (Right) are represented cross-

plots extracted from these maps along a horizontal line through the middle of the 

reconstruction area. 

As expected, reconstructions are highly sensitive to noise, a high value of the 

regularization parameter has to be introduced in the SVD, showing only few elements of H 

out of noise may be useful for the reconstruction, even at low noise level. With the 

introduction of non-negative constraint, ART seems to have better potential in the recovery of 

the optical parameters at higher noise levels. It is interesting to notice that, though ART 

reconstructs the perturbations with a higher contrast. In all what follows, ART was chosen as 

the reconstruction algorithm. 

Hence, the aim of the following studies is to improve the conditioning of H such that the 

reconstructions are less sensitive to noise, by optimising the data acquisition geometry. 



 

Fig. 2. Comparison of different reconstruction methods at different noise levels: Left, results of 

the reconstructions of the perturbations on the absorption 
a

δ  and diffusion δ D  coefficient 

maps; Right: cross-plots of the values extracted from a horizontal line in the middle of the 

vertical axis in the reconstruction areas. 

3.2 Sources distributions 

In this study, 60 point detectors were distributed around the object and the sources number 

was varied (2, 4, 8 and 16 sources considered). Examining the condition number of H as a 

function of the number of sources (Fig. 3), the reconstructions should be indeed more stable 

as the number of sources increases. Although the inversion is mathematically demonstrated, 2 

sources are not enough to obtain uncoupled robust reconstructions. Figure 3 Left Top shows 

the reconstructions obtained: with 2 sources the diffusion coefficient perturbation is almost 

not detected, but interestingly, the absorption perturbations are well recovered. The gain 

obtained in the reconstructions can be quantified through the quadratic error (QE, Fig. 3 Left 

Bottom) between the reconstructed values  { },ˆ
aX Dδµ δ=  and the target values 

{ },aX Dδµ δ= , in the reconstruction area: ( )
2

2

, ,/i j ij ij i j ijQE X X X= −  . The error in 

the reconstruction values decreases from 1 with 2 sources to 0.4 with 4. An improvement of a 

factor 10 in the condition number (Fig. 3, Right Top) is obtained by adding only two more 

sources. However, the improvement in increasing the number of sources might be reduced 

after 8 sources and the gain in the reconstructions might be small even if the number of 

measurements (and hence the duration of the examination) is increased. This is all-the-more 

visible in the cross-plots shown in Fig. 3 Right Bottom: the values reconstructed become 

closer to the target values, the edges of the objects are sharper and the reconstruction artifacts 

decrease. 



 

Fig. 3. Influence of the number of sources. Left Top: reconstructed perturbation absorption 

a
δ and diffusion δ D coefficient maps with (a) 2, (b) 4, (c) 8 and (d) 16 point sources 

illuminations. Left Bottom: Quadratic errors on the reconstructions of the absorption (black 

circles) and diffusion (blue squares) coefficients perturbations as a function of the number of 

point sources. Right Top: Normalized singular values (Left) and condition number of (H) as a 

function of the number of sources (Right). Right Bottom: cross-plots of the values extracted 

from a horizontal line in the middle of the vertical axis in the reconstruction areas. 

3.3 Detectors distributions 

Four sources and 60 point detectors are now considered, the number of measurements is now 

kept constant but the distribution of the detectors is varied. Five situations, schematized in 

Fig. 4, were examined: a) even and sparse distribution around the object; b) 4-sides 

examination but short spacing between detectors; c) same situation but with even shorter 

(compressed) spacing; d) 2-sides examination horizontal detection; e) 2-sides examination 

vertical detection. 

Examining the reconstructions (Fig. 4 Top Left), the quadratic errors (Fig. 4 Bottom Left) 

and the conditioning of H (Fig. 4 Top Right) obtained for these five situations shows no 

major improvement in the reconstructed images. Through the values of the condition number 

and the quadratic errors, one may conclude that distributing the detectors evenly (Fig. 4 

situation (a)) may be the most favorable situation. However, reducing the field of view of the 

detection to the area of interest (Fig. 4 situations (b) and (c)) seems to improve the 

quantification while not degrading to much the localization. Figure 4 situations (d) and (e) 



show explicitly the influence of the positioning of the detectors in comparison to the object 

geometry, especially in the rectangular absorption perturbation: situation (d), when detectors 

are probing the object through its thinnest width, the emitted acoustic signal is better defined 

in time and higher in frequency (small objects producing sharper time-resolved acoustic 

signals), while in situation (e), the resolution is much more degraded in the direction parallel 

to the detectors (crossplots, Fig. 4 Right Bottom). 

 

Fig. 4. Influence of the detectors distributions. Left Top: reconstructed perturbation absorption 

a
δ and diffusion δ D coefficient maps. (a) the detectors are evenly distributed around the 

object (15 detectors on each side); (b) on each side, the detectors cover a length that is half the 

length of the object; (c) the length covered by the detectors is half of (b); (d) 30 detectors 

evenly distributed on each of the two vertical sides of the object; (e) 30 detectors evenly 

distributed on each of the two horizontal sides of the object. Left Bottom: Quadratic errors on 

the reconstructions of the absorption (black circles) and diffusion (blue squares) coefficients 

perturbations for the five different configurations. Right Top: Normalized singular values 

(Left) and condition number of (H) as a function of the number of sources (Right). Right 

Bottom: cross-plots of the values extracted from a horizontal line in the middle of the vertical 

axis in the reconstruction areas. 

3.4 Point sources versus wide field illumination 

QPAT has been demonstrated by using point sources illumination [22]. However, in practice, 

a wide field illumination is easier and safer to handle experimentally because the irradiation 



dose can be decreased by distributing the energy over a larger area. For this study, four line 

sources illuminating the four sides of the reconstruction area were considered (Fig. 5). 

 

Fig. 5. Influence of the sources shape. Left Top: reconstructed perturbation absorption 

a
δ and diffusion δ D coefficient maps with (a) 4 points sources; 4 line sources with a length 

of (b) 0.2 mm; (c) 4 mm; (d) 8 mm; (e) 26 mm; (f) full field of view probing with one single 

source composed of lines. Left Bottom: Quadratic errors on the reconstructions of the 

absorption (black circles) and diffusion (blue squares) coefficients perturbations as a function 

of the length of the four sources (“Integral” represents situation (f), reconstructions obtained 

with a single measurement but with full field of view source illumination). Right Top: 

Normalized singular values (Left) and condition number of (H) as a function of the number of 

sources (Right). Right Bottom: cross-plots of the values extracted from a horizontal line in the 

middle of the vertical axis in the reconstruction areas. 

Their lengths were varied from zero, corresponding to the point source situation, up to the 

maximum length allowing a full angle probing of the reconstruction area. Increasing the 

length of the source brings major improvements in the conditioning of H (Fig. 5 Right Top) 

and, hence, in the reconstructions (Fig. 5 Left Top). These results show that the quantification 

(see QE Fig. 5 Left Bottom) and localization (see crossplots Fig. 5 Right Bottom) are both 



definitively improved by using wider field illumination. Hence, the number of measurements 

required for obtaining accurate reconstructions in terms of localization and quantification can 

be reduced. When comparing reconstruction results shown in Fig. 3 for situation (c) and those 

in Fig. 5 for situations (b) to (e), with two times less measurements, the reconstructions 

obtained are better with 4 line sources illuminations than with 8 point sources (QEs are 

sensibly the same). However, the medium has still to be probed under multiple points of 

views: as shown for comparison on Fig. 5 situation (f), using one single wide source does not 

bring sufficient information to discriminate absorption and diffusion. In this last test case, the 

absorption coefficient is well reconstructed while the diffusion coefficient is far 

underestimated, showing that this illumination protocol senses essentially absorption 

abnormalties (see cross-plots on Fig. 5 Right Bottom). 

3.5 Example of simulations for experimental situations with limited angle examination 

Examining the object under all angles may be experimentally complicated or simply not 

feasible. Here are reported reconstructions obtained under constrained examination geometry: 

the medium is probed exclusively under transmission geometry, sources and detectors can 

rotate and probe the object on its four sides. The purpose of these calculations is to test if 

satisfying reconstructions can be obtained under less favorable situations corresponding 

nevertheless to simpler experimental protocols. Figure 6 Top Left shows the five different 

synthetic experiments considered here. For all of them, the four sides of the object are probed 

in transmission, sequentially (this corresponds to 4 measurements with an object rotating 

around its center of gravity with rotation angles 0°, 90°, 180° and 270°), with (a) 1 point 

source illumination on one side and 15 point detectors evenly distributed on the other side; 

from this reference situation, the illumination source was enlarged, (b) 1 line source (length: 

26 mm) and 15 detectors; then the number of detectors was reduced up to a very limited 

number (c) same line source and 1 detector only (in this situation, sources and detectors are 

interchanged compared to situation (a)); (d) same as (c) but with 2 point detectors; (e) same as 

(c) with 3 point detectors. The condition numbers and quadratic errors obtained for the 

corresponding reconstructions are also reported Fig. 6. 

A first remark is the reconstructions obtained with point or line sources illuminations (Fig. 

6 situations (a) and (b)) are improved compared to those for which the detectors are collecting 

signal from all the sides of the object: when the object is probed in transmission, although the 

condition numbers are several orders of magnitude higher, still one can get reconstructions of 

satisfying quality (QE≤0.4) with highly reduced number of measurements (60 measurements 

only). Figure 6(c) is the oversimplified situation, a single wide source and a single point 

detector: the absorption coefficient is satisfyingly reconstructed while the diffusion 

coefficient is not. However, slightly increasing the number of detectors (2 or 3 point detectors 

per view Fig. 6(d) and 6(e)) allows recovering reconstructions of improved quality. 

This result shows the possibility of using simplified experimental PAT setups. Reducing 

the number of detectors points, up to 3 only here, corresponding to 12 measurements only, of 

course worsens the quality of the reconstructions but still allows getting better results than 

with complete angle detection: in comparison with Fig. 5(e), obtained with 240 

measurements, the number of measurements is reduced by a factor 20. Additionally, one may 

think in combining the measurements in order to improve the quality of the reconstructions: 

the absorption coefficient seems to be fairly well reconstructed with the simplest situation (1 

source, 1 detector, Fig. 6 (c)), these results could be used as prior knowledge in a second step 

reconstruction using 2 or 3 additional measurements (Fig. 6(d) or 6(e)). 



 

Fig. 6. Top Left: Schemas of the experimental situations. For each situation, only 4 

measurements were performed at 0°, 90°, 180° and 270°, the rotation angles corresponding to 

rotations around the axis located at point O (cross marker), and perpendicular to the object 

plan. Schemas correspond to the measurement taken at 0°: (a) 4 points sources, 15 detectors; 

(b) 4 line sources with length 26 mm, 15 detectors; (c) same line sources, 1 detector; (d) same 

line sources, 2 detectors; (e) same line sources, 3 detectors; for each situations, four synthetic 

measurements were considered: these configurations (0°), and object rotated by 90°, 180° and 

270°. The condition numbers of the corresponding (H) are reported for each situation. Top 

Right: reconstructed perturbation absorption 
a

δ and diffusion δ D coefficient maps. Bottom: 

Quadratic errors (QE) on the reconstructions of the absorption (black circles) and diffusion 

(blue squares) coefficients perturbations for the five different configurations. 

4. Conclusion 

In the present work, a multiple illumination photoacoustic tomography algorithm has been 

implemented according to the method suggested in [22]. The method is quantitative in the 

sense that it allows reconstructing both the absorption and diffusion coefficient while the 



conventional approaches in PAT, with a single wide field illumination give the access to the 

initial pressure distribution map. A description with explicit practical implementation details 

was provided. Different linear reconstruction algorithms were tested: the ART with non-

negative constraints was shown to be less sensitive to noise than SVD or LSQR. Even if not 

involved in these reconstruction loops, the computation of the Jacobian matrix is still a 

burden, especially if one seeks to extend the approach to the non-linear case. Gradient-based 

methods may be used instead because more memory-efficient as they require only gradient 

information to approximate the Hessian matrix [17,26,27]. 

With this tool, a 2D simulation study on a variety of sources and detectors geometries 

situations was conducted. The sets of simulations were conducted through the examination of 

the conditioning of the Hessian matrix. The reconstructions highlighted several important 

results: 

- Optical parameters are reconstructed with improved quality by using wide field 

illuminations: this study demonstrates that it is preferable to use enlarged sources 

instead of multiplying the number of point sources illuminations. 

- The position of the detectors with respect to the perturbations to be reconstructed is 

crucial and deserves additional prospections. When comparing the influence of 

sources and detectors, the role of the illumination and detection schemes are nested 

and complex. The illumination scheme seems to play a major role in the 

quantification, while the detection in the localization with high resolved time-of-

flight measurement. An important result is that probing the sample under 

transmittance geometry only provides better reconstructions than with full angular 

coverage detection. 

- Different simple experimental situations were tested and good quality reconstructions 

were obtained with a number of measurements extremely reduced. 

Experimental validations may support these findings that may influence future 

experimental setups designs. The present study has highlighted the importance of the data 

acquisition protocol. A smart combination between different types of measurements will 

undoubtedly improve the quality of the reconstructions. An example of such a process would 

be to combine one measurement taken under a full angle illumination, with a field of 

illumination as wide as possible, and a set of data acquired under different illumination 

angles. The first measurement would serve in a first reconstruction loop that would provide 

initialization and constraint values for a second reconstruction loop, performed with the 

second series of data. 
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