
HAL Id: hal-01079612
https://hal.science/hal-01079612

Submitted on 3 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and Effective Hierarchical Feature Propagation
Jefersson dos Santos, Otavio Penatti, Philippe-Henri Gosselin, Alexandre

Falcão, Sylvie Philipp-Foliguet, Ricardo Torres

To cite this version:
Jefersson dos Santos, Otavio Penatti, Philippe-Henri Gosselin, Alexandre Falcão, Sylvie Philipp-
Foliguet, et al.. Efficient and Effective Hierarchical Feature Propagation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2014, �10.1109/JSTARS.2014.2341175�.
�hal-01079612�

https://hal.science/hal-01079612
https://hal.archives-ouvertes.fr


JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Efficient and Effective Hierarchical
Feature Propagation

Jefersson A. dos Santos, Otávio A. B. Penatti, Philippe-Henri Gosselin, Alexandre X. Falcão,
Sylvie Philipp-Foliguet, and Ricardo da S. Torres

Abstract—Many methods have been recently proposed to deal
with the large amount of data provided by the new remote
sensing technologies. Several of those methods rely on the use
of segmented regions. However, a common issue in region-based
applications is the definition of the appropriate representation
scale of the data, a problem usually addressed by exploiting
multiple scales of segmentation. The use of multiple scales,
however, raises new challenges related to the definition of effective
and efficient mechanisms for extracting features. In this paper, we
address the problem of extracting features from a hierarchy by
proposing two approaches that exploit the existing relationships
among regions at different scales. The H-Propagation propagates
any histogram-based low-level descriptors. The BoW-Propagation
approach uses the bag-of-visual-word model to propagate fea-
tures along multiple scales. The proposed methods are very
efficient as features need to be extracted only at the base of the
hierarchy and yield comparable results to low-level extraction
approaches.

Index Terms—Feature Extraction, Histogram, Bag of Visual
Words, Multiscale Segmentation, Hierarchical Representation,
Remote Sensing Image Classification.

I. INTRODUCTION

Remote sensing images (RSIs) are often used as data source
for land cover studies in many applications (e.g., agricul-
ture [1] and urban planning [2]). A common challenge in
these applications relies on the definition of the representation
scale1 of the data (size of the segmented regions or block
of pixels) [3]. The choice of a segmentation scale depends
on semantic aspects and the correct delineation of the studied
objects. Figure 1 illustrates an example that simulates an image
obtained from a forest region. In a fine scale, the segmented
objects would allow the analysis based on features extracted
from leaves. In an intermediary scale level, we could identify
different kinds of trees. In coarse scales, the segmented objects
may represent groups of trees or even complete forests.

The problem of using a simple scale for region-based clas-
sification is the dependence on the quality of the segmentation
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1It is important to note that, in this paper, we use the term “scale” to refer
to a “level of segmentation”.

Fig. 1. An example of different objects of interest at different scales.

result. If the segmentation is not appropriate to the objects of
study, the final classification result may be harmed.

Several approaches have been proposed for RSI applications
to address the problem of scale selection by exploiting multi-
scale analysis [3–9]. In these approaches, the feature extraction
at various segmentation scales is an essential step. However,
depending on the strategy, the extraction can be a very costly
process. If we apply the same feature extraction algorithm for
all regions of different segmentation scales, for example, the
pixels in the image would need to be accessed at least once
for each scale.

In another research venue, multiscale interactive ap-
proaches [10, 11] have been proposed as suitable alternatives
to address the problem of scale definition. The objective of
these approaches is to allow both the improvement and the
modification of the hierarchy of regions according to the user
interactions. Regions may be included or removed from the
top scales of the hierarchy in each interactive step. In that
scenario, feature extraction should be performed in real time.
That would be intractable if we use many low-level global
descriptors or if the extraction of features from multiple scales
is costly.

Considering a hierarchical topology of regions, there is a
natural logical relationship in the visual properties among
regions from different scales. Using the example presented in
Figure 1, the visual properties of a leaf are not only present in
the tree but also in the entire forest. Hence, it is logical to have
visual properties from leaves present in the feature vectors
that describe trees and forests. By employing a histogram-
based representation, the propagation of such features to other
levels of the hierarchy becomes straightforward. The strategies
used to propagate features and generate the final representation
can be successively applied for each level of the hierarchy.
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Therefore, the feature extraction needs to be performed only
at the finest scale of the hierarchy.

In this paper, we propose two approaches for efficient
hierarchical feature extraction: the H-Propagation and the
BoW-Propagation. The H-Propagation propagates histogram
bins along a hierarchy of segmented regions. The BoW-
Propagation, in turn, exploits the bag-of-visual-words model
to propagate features along multiple scales. The proposed
approaches require the processing of only the image pixels in
the base of the hierarchy (the finest region scale). The features
are quickly propagated to the upper scales by exploiting the
hierarchical association among regions at different scales.

Global color descriptors, like Color Histograms [12] and
Border/Interior Pixel Classification (BIC) [13], have been
successfully used for encoding color/spectral properties in
remote sensing image retrieval and classification tasks [10, 14,
15]. Such descriptors could be easily used by H-propagation
approach to work in a hierarchy of regions.

Bags of visual words (BoW) are very popular in the
computer vision community [16–20] and have already been
used for remote sensing images [21–23]. Such methods could
be easily used by BoW-Propagation in a hierarchy of regions.
BoW descriptors rely on a visual dictionary, which is based
on low-level features extracted from the pixel level (the base
of the hierarchy). Feature space quantization creates the visual
codebook, which is then used to encode image properties. The
features can then be propagated to the other scales. At the end,
all regions in the hierarchy are represented by a bag of visual
words.

The main contributions of this work refer to the demon-
stration that feature propagation is a quick way to represent
a hierarchy of segmented regions, and that it is possible to
propagate features without losses in terms of the quality of
representation. We also show that the proposed approach im-
proves the classification results when compared with strategies
based on the use of global descriptors implemented using
bounding box padding approaches.

Preliminary discussions on the proposed methods are pre-
sented in [22, 24]. We have improved the description of the
proposed approaches, as well as the literature review. We have
also conducted a theoretical complexity analysis of the prop-
agation methods as well as performed additional experiments
to demonstrate the efficiency of the methods.

This paper is organized as follows. Section II covers related
work and presents some background concepts necessary to
understand the proposed approach. Section III briefly explains
basic concepts of the Bag-of-Visual-Words approach also
describing their previous uses in remote sensing applications.
Section IV details the proposed method for hierarchical feature
extraction in remote sensing images. Section V presents the
experimental results. The conclusions and final remarks are
given in Section VI.

II. BACKGROUND AND RELATED WORK

A. Hierarchical Segmentation
In this work, we used the Binary Climbing Algorithm

for segmentation, which is based on the scale-set represen-
tation [25]. This representation is a hierarchy of regions

computed from the pixel level until the complete image.
The algorithm is theoretically strong and ensures a hierar-
chical representation of the image. However, the proposed
approaches for feature propagation are general enough to work
with the hierarchical segmentation results created by any other
technique.

Let I be an image defined over a domain D. A partition
P is a division of D into segmented regions. A partition P1

is coarser than a partition P2 if each region R ∈ P2 is part
of one and only one region of P1. In this case, we can also
say that P2 is finer than P1. The scale-set representation uses
a scale parameter λ for indexing a set of nested partitions
Pλ of D, such that if λ1 ≤ λ2 then P2 is finer than P1.
The transition between Pi and Pi+1 is performed by merging
adjacent regions of Pi by optimizing a criterion. The set of
partitions has a structure of a hierarchy H of regions: two
elements of H that are not disjoint are nested. A partition Pλ
is composed of the set of regions obtained from a cut in the
hierarchy H at scale λ.

For large values of λ, the partition contains few regions
(until only one), then the approximation of each region by a
constant is poor, but the total length of all edges is very small.
However, when λ is small, which is a over-segmented image,
the approximation of each region by a constant is perfect,
but the total length of all edges is very large. Guigues et al.
showed that this algorithm can be performed with the worst
case complexity in O(N2logN), where N is the size of the
initial over-segmentation.

B. Multiscale Feature Extraction

We used a dichotomous cutoff-based strategy as applied
in [25]. It consists of successively splitting the hierarchy of
regions in two. Each division creates a partition Pλ at the
defined scale λ. The scale of cut λ is defined by λ = Λ/2n,
where n is the order of each division in the hierarchy and Λ
is the scale in which the image I is represented by a single
region (maximum scale in the hierarchy H).

Figure 2 shows the feature extraction at the selected scales.
For each region R ∈ Pλ a set of features is computed. The
extraction of some texture features were performed by using
a bounding box with the “mean value padding”, as suggested
in [22, 26].

...

n

n-1

1

(a) (b) (c)

Fig. 2. The standard strategy for feature extraction from regions in a set of
selected scales: (a) a hierarchical representation of the image is created, (b) a
set of partitions are selected, and (c) features are extracted from each region
at each scale.
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III. BAG OF VISUAL WORDS

In this work, we use the notion of global and local descriptor
that is normally employed in content-based image retrieval.
Global descriptors [27, 28] rely on describing an object (image
or region, for example) by using all available pixels. Local
descriptors [29], in turn, are extracted from predefined points
of interest in the object. Hence, if an object has more than
one point of interest in its interior, it can be described by more
than one feature vector. A very effective way to combine local
features that describe an object is to group them through the
visual-word concept [18, 19].

The use of visual dictionaries is very effective for visual
recognition [16–19]. It offers a powerful alternative to the
description of objects based only on global [28] or based
only on local descriptors [29]. The main drawback of global
descriptors – e.g., color histograms (GCH) and co-occurrence
matrices (GLCM) – is the lack of precision in the represen-
tation, which captures few details about the object of interest.
Local descriptors, in turn, are very specific and normally create
a large number of features per image or object, which makes
it costly to assess the similarities among objects. The repre-
sentations based on visual dictionaries have some advantages:
(i) are more precise than global descriptions, (ii) are more
general than pure local descriptions, and (iii) only one feature
vector is generated per image/object. The increase in precision
is due to the employment of local descriptors and the increase
in generality is due to the vector-quantization of the space of
local descriptions.

The representation of object features through visual words
involves the construction of a visual dictionary, which can be
seen as the codebook of representative local visual patterns.

To create a visual dictionary and, then, an image repre-
sentation based on visual words, the Bag of visual Words
(BoW), several steps need to be performed and many vari-
ations can be employed in each step. We can highlight the
following main steps: low-level feature extraction; dictionary
construction (feature space quantization); coding; and pooling.
We briefly introduce each step in the following sections. We
also comment in Section III-E state-of-the-art initiatives that
use BoW in remote sensing applications.

A. Low-Level Feature Extraction
Initially, local low-level features are extracted from images.

Interest-point detectors or simply a dense grid over the image
are used to select images local patches. Literature presents
better results for dense sampling in classification tasks [17].
Each local patch is described by an image descriptor, SIFT
being the most popular one. Figure 3 illustrates a dense
sampling strategy to extract features. For each point in the grid,
low-level features are extracted considering an area around the
point. In Figure 3 (a), the features are extracted from a circle
area around the interest point. In Figure 3 (b), the features are
extracted considering a rectangular area with the interest point
in the center.

B. Feature Space Quantization
The feature space, obtained from low-level feature extrac-

tion, is quantized to create the visual words. Figure 4 illustrates

A A

(a) (b)

Fig. 3. Dense sampling using (a) circles and (b) square windows. The
highlighted area indicates the region from where the features corresponding
to point A are extracted.

the process of building a visual dictionary.

Visual
Dictionary

Visual
WordsQuantizationFeatures

w1w2

w3

w4

w5

w6

w1 w2 w6, ,...,

Fig. 4. Construction of a visual dictionary to describe a remote sensing image.
The features are extracted from groups of pixels (e.g., tiles or segmented
regions), the feature space is quantized so that each cluster corresponds to a
visual word wi.

A common technique used for feature space quantization is
the K-means algorithm [30]. Another strategy relies on per-
forming a random selection of samples to represent each visual
word instead of using clustering strategies. We have used the
random selection in this work since it is much faster than K-
means. Moreover, according to Viitaniemi and Laaksonen [31],
in high-dimensional feature spaces [32], random selection can
generate dictionaries with similar quality to the ones obtained
by using K-means.

C. Coding

Coding is the process of encoding local low-level features
according to the visual dictionary. Some coding strategies
are: Sparse coding [33], Locality-constrained linear coding
(LLC) [30], Hard assignment [19], and Soft assignment [19].

Concerning hard and soft assignments, which are the most
traditional coding strategies, soft assignment is more robust to
feature space quantization problems [19]. While hard assigns
to a local patch the label of the nearest visual word in the
feature space, soft considers all the visual words near to a
local patch, proportionally to their distance. For a dictionary
of k words, soft assignment of a local patch pi can be formally
given by Equation 1 [19]:

αi,j =
Kσ(D(pi, wj))∑k
l=1Kσ(D(pi, wl))

(1)

where j varies from 1 to k, Kσ(x) = 1√
2π×σ × exp(−

1
2
x2

σ2 ),
and D(a, b) is the distance between vectors a and b. The value
of σ represents the smoothness of the Gaussian function: larger
σ, more regions considered/activated. The coding step results
in one k-dimensional vector αi for each local patch in the
image.
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D. Pooling
The pooling step is the process of summarizing the set

of local descriptions into one single feature vector. Average
and max pooling are popular strategies employed, with an
advantage to the latter [18].

Average pooling can be formally defined as follows:

hj =
(
∑N
i=1 αi,j)

N
(2)

Max pooling is given by the following equation:

hj = max
i∈N

αi,j (3)

In both equations, N is the number of points in the image
and j varies from 1 to k.

E. BoWs and Remote Sensing Applications
The bag-of-visual-words (BoW) model has been used [34–

36], evaluated [37], and adapted for remote sensing applica-
tions [21, 23, 38] in several recent works.

Weizman and Goldberger [34] proposed a solution based on
visual words to detect urban regions. They apply a pixel-level
variant of the visual word concept. The approach is composed
of the following steps: build a visual dictionary, learn urban
words from labeled images (urban and non-urban), and detect
urban regions in a new image. Xu et al. [35] proposed a
similar classification strategy based on bag of words. The main
difference is that their approach builds the visual vocabulary
in a patch level by using interest-points detectors and local
descriptors. In [36], Sun et al. used visual dictionaries for
target detection in high-resolution images. Another approach
focused on high-resolution images is described in [38]. Huaxin
et al. [38] proposed a local descriptor that encodes color,
texture, and shape properties. The extracted features are used
to build a visual dictionary by using k-means clustering.

Chen et al. [37] evaluated 13 different local descriptors for
high-resolution image classification. In their experiments, the
SIFT descriptor obtained the best results.

Feng et al. [21] proposed a BoW-based approach to syn-
thetic aperture radar (SAR) image classification. The pro-
posed method starts by extracting Gabor and gray-level co-
occurrence matrix (GLCM) features from segmented regions.
The dictionary is built by using the clonal selection algorithm
(CSA), which is a searching method. Yang et al. [23] also
proposed an approach based on bag of words for synthetic
aperture radar (SAR) image classification. Their approach
relies on a hierarchical Markov model on quadtrees. For each
tile in each level of the quadtree, a vector of local visual
descriptors is extracted and quantized by using a level-specific
dictionary.

Our work differs from most of the above cited ones as it
considers the problem of extracting features in a hierarchy
of regions and proposes a strategy for propagating features
without the need of recomputing them at each scale. In [23],
which is the only paper that uses some kind of hierarchy
with visual dictionaries, low-level feature extraction does not
consider the relationship among the scales, as well as in [5,
10].

IV. THE HIERARCHICAL FEATURE PROPAGATION

In this section, we present the proposed approach for
hierarchical feature propagation. A general strategy, called H-
propagation, is able to propagate any histogram-based feature.
An extension, called BoW-propagation, is based on the Bag-of-
Word concept. We also present a discussion on the complexity
of the proposed approach.

A. H-propagation

The histogram propagation (H-propagation) consists in es-
timating the feature histogram representation of a region R,
given the low-level histograms extracted from the R subre-
gions Γ(R).

Let Pλx
and Pλy

be partitions obtained from the hierarchy
H at the scales λx e λy , respectively. We consider that Pλx

>
Pλb

, i.e, Pλx
is coarser than Pλy

. Let R ∈ Pλx
be a region

from the partition Pλx
. We call subregion of R the region

R̂ ∈ Pλy such that R̂ ⊆ R.
The set Γ(R), which is composed of the subregions of R

in the partition Pλy , is given by:

Γ(R) = {∀R̂ ∈ Pλy
|p ∈ R ∩ p ∈ R̂} (4)

where p is a pixel. The set of subregions of R in a finer scale
are all the regions R̂ that have all pixels inside R̂ and inside
R.

The principle of H-propagation is to compute the feature
histogram hR, which describes region R, by combining the
histograms of subregions Γ(R):

hR = f{hR̂c
| R̂c ∈ Γ(R)} (5)

where f is a combination function.
Algorithm 1 presents the proposed feature extraction and

propagation approach. The first step is to extract low-level
features from finest regions at scale λ1 (line 1). The “propa-
gation loop” is responsible for propagating the features to other
scales (lines 2 to 6). For all regions R from a partition Pλx

,
the histogram hR is computed based on the Γ(R) histograms,
which is described by Equation 5 (line 4).

Algorithm 1 H-Propagation

1 Extract low-level feature histograms from the regions in the
finest scale λ1

2 For i← 2 to n do
3 For all R ∈ Pλi

do
4 Compute the histogram hR based on the Γ(R)

histograms (Equation 5)
5 End for
6 End for

Figure 5 illustrates an example by using the combination
function f to compute the histogram hr of a region r. The
region r ∈ Pλ2 is composed of the set of subregions Γ(r) =
{a, b, c} at the scale λ1. Figure 5 (a) illustrates, in gray, the
region r and its subregions Γ(r) in the hierarchy of regions.
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2

1

r

a b c

a

b
c

r

(a) (b)

Fig. 5. Computing the histogram hr of region r by combining the histogram
features ha, hb, and hc from the subregions a, b, and c.

a

b
c

max
propagation

scale

scale

i

i-1

r

0.2 0.2 0.3 0.2 0.1 0.0 0.2 0.1

0.1 0.0 0.3 0.1 0.1 0.0 0.2 0.0

0.1 0.2 0.1 0.1 0.0 0.0 0.2 0.0

0.2 0.1 0.1 0.2 0.1 0.0 0.1 0.1

Fig. 6. Feature propagation example using a max pooling operation.

In Figure 5 (b), hr is computed based on the function f :
hr = f(ha, hb, hc).

Figure 6 illustrates the computation of hr by using the max
operator as combination function. It is expected that with an
average propagation, the quality of the histograms be the same
as that performed by the extraction directly from the pixels at
all scales of the hierarchy.

B. BoW-propagation

The BoW-propagation extends the H-Propagation by ex-
ploiting the bag-of-word concept to iteratively propagate local
features along the hierarchy from the finest regions to the
coarsest ones. Figure 7 illustrates each step in an example
using three segmentation scales.

We used the term interest points to indicate the points that
are used to extract low-level features at the pixel level. We
have chosen dense sampling to ensure the representation of
homogeneous regions in the dictionary. By using interest-point
detectors, the representation of homogeneous regions is not
always possible since it tends to select only points in the most
salient regions.

Algorithm 2 presents the BoW-propagation. The first step is
to extract low-level features from the interest points obtained
from a dense sampling schema (line 1). Then, the feature space
is quantized, creating a visual dictionary Dk, where k is the
dictionary size (line 2). The low-level features are assigned to
the visual words (line 3). After this step, each interest point
is described by a BoW, which is represented by a histogram.
The “first propagation” consists in computing the BoWs hR
of each region R ∈ Pλ1 based on the interest points (lines 4 to
6). The “main propagation loop” is responsible for propagating
the features to other scales (lines 7 to 10). For all regions R

3

2

1

0

Step 1: dense sampling

3

2

1

00

Step 2: pooling

3

2

1

00

Step 3: propagation 1 (scale 1 to 2)

3

2

1

00

Step 4: propagation 2 (scale 2 to 3)

Fig. 7. The BoW-propagation main steps. The process starts with the dense
sampling in the pixel level (scale λ0). Low-level features are extracted from
each interest point. Then, in the second step, a BoW is created for each
region R ∈ Pλ1

by pooling the features from the internal interest points.
In the third step, the features are propagated from scale λ1 to scale λ2. In
the fourth step, the features are propagated from scale λ2 to the coarsest
considered scale (λ3). To obtain the BoWs of a given scale, the propagation
is performed by considering the BoWs of the previous scale.

from a partition Pλx
, the BoW hR is computed based on the

Γ(R) BoWs, which is described by Equation 5 (line 9).

Algorithm 2 BoW-Propagation

1 Extract low-level features from the interest points
2 Create the visual dictionary Dk

3 Coding: assign the low-level features to visual words
4 For all R ∈ Pλ1

do
5 Compute the BoW hR based on the interest points

inside R
6 End for
7 For i← 2 to n do
8 For all R ∈ Pλi

do
9 Compute the BoWs hR based on the Γ(R) BoWs

(Equation 5)
10 End for
11 End for

In the first propagation (lines 4–6), the BoW hR is obtained
by pooling the features from each point inside the region R.
The dense sampling scheme shown in Figure 8 (a) highlights
in red the points considered for pooling. Figure 8 (b) shows
only the internal points selected and their influence zones. In
this example, although we used a circular extraction area for
each point, any topology can be used. It is important to clarify
that the influence zones outside the region have a very few
impact in the final BoW since the radius of the circumference
is very small. Anyway, the external influence zone can also
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be exploited depending on the application. In the literature, an
alternative approach to represent non-rectangular regions is by
using padding (using a rectangular bounding box and filling
the outer or inner parts with black). We have also performed
experiments to verify the impact of using dense sampling in
comparison with padding, and the results show that padding
is more affected by irregular shaped regions.

(a) (b)

Fig. 8. Selecting points to describe a region (defined by the bold line).
The feature vector that describes the region is obtained by combining the
histograms of the points within the defined region. The internal points are
indicated in red.

Figure 9 illustrates a schema to represent a segmented
region by using dense sampling through a bag of words.
The low-level features extracted from the internal points are
assigned to visual words and combined by a pooling function.
The combination function f has the same properties of the
pooling function. The idea consists in using the same operator
either in the pooling (first propagation in Algorithm 2, lines
4 to 6) or in the combination steps (main propagation loop in
Algorithm 2, lines 7 to 11).

w1w2

w3

w4

w5

w6

w1 w2 w3 w4 w5 w6

Assignment of Visual Words 

...

Assignment Vectors

Pooling

=

Bag of Visual Words

Fig. 9. Schema to represent a segmented region based on a visual dictionary
with dense sampling feature extraction.

The resulting BoW hr, if we consider the use of max
pooling, relies on the maximum values of each bin of the
BoWs ha, hb, and hc. Considering that each BoW value
represents the degree of existence of each visual word in a
region, the propagation using the max operator means that
the region r is described by the visual words that are in the
subregions from the finest scales of the hierarchy.

C. Complexity analysis

To show the advantages of propagating features in com-
parison with computing them at every scale, we conducted a
theoretical complexity analisys of both approaches.

Let |Pλ1
| be the number of regions at the finest scale λ1.

The cost to visit all regions in the hierarchy is O(|Pλ1 | ×
log2(|Pλ1 |)). Let k be the feature vector size (for instance,
the number of histogram bins or the dictionary size). Note
that for a simple combination function, such as avg or max,

the feature combination cost is k. Then, the worst case
complexity to combine features for the entire hierarchy is
O(k × |Pλ1

| × log2(|Pλ1
|)). Analogously, let O(x) be the

complexity for extracting low-level features directly from
pixels. The cost to extract features for the complete hierarchy
is O(x× |Pλ1

| × log2(|Pλ1
|)).

As in most of the situations and specially in high-resolution
images and in coarser scales, where x is very large, k < x.
Therefore, we can see that the propagation strategies are
more efficient than the standard low-level feature extraction. It
means that propagation should be used whenever the feature
vector is smaller than the average region size. This observation
emphasizes the utility of the proposed methods for high-
resolution image analysis. The only case where the propa-
gation could be slower than low-level extraction is when k
is very large and the propagation function is very complex.
However, the assumption of the linear complexity O(x) of
low-level extractors is not always true. We know that there
are descriptors (even global ones) with higher complexity than
linear [28], which would make low-level extraction yet more
slow than the propagation.

V. EXPERIMENTS

In this section, we present the experiments that we per-
formed to validate the proposed approach. The main objective
is to verify the efficiency and the effectiveness of the propaga-
tion. The proposed approach will be attractive if it can prop-
agate features more efficiently than by extracting features at
each scale and if the classification results of using propagated
features are not worse than the ones based on re-extracting the
features at each scale. For achieving such verification, we have
initially performed preliminary experiments for analyzing the
behavior of the propagation in terms of parameter adjustment
and configuration. We have carried out experiments in order
to address the following research questions:
• Are the propagation approaches as effective as the ex-

traction using global descriptors?
• Is the BoW-propagation suitable for both texture and

color feature extraction?
• Is it useful to quantize global color descriptors like BIC

in a BoW-based model?
• Is it possible to achieve the same accuracy results of

global descriptors by propagating features with the H-
Propagation approach?

We designed the experimental protocol to address those
questions in the context of texture and color descriptors. In
Section V-A, we present the datasets and the experimental
protocol. In Section V-B, we present the experimental results
concerning texture features. In Section V-C, we present the
results comparing different strategies to encode color features
from a hierarchy of segmented regions. In Section V-D, we
present a discussion about the efficiency of the proposed
strategies.

A. Setup

1) Dataset: We have used two different datasets in our
experiments. We refer to the images according to the target
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TABLE I
REMOTE SENSING IMAGES DATASETS USED IN THE EXPERIMENTS.

COFFEE URBAN
Terrain mountainous plain
Satellite SPOT QuickBird
Spatial resolution 2.5m 0.6m
Bands composition NIR-R-G R-G-B
Acquisition date 08–29–2005 2003
Location Monte Santo County, MG Campinas,SP

regions: COFFEE and URBAN. Table I presents a brief
overview of each one. The datasets are described in details
in the following sections.

a) COFFEE dataset: This dataset is a composition of
scenes taken by the SPOT sensor in 2005 over Monte Santo de
Minas county, in the State of Minas Gerais, Brazil. This area
is a traditional place of coffee cultivation, characterized by its
mountainous terrain. In addition to common issues in the area
of pattern recognition in remote sensing images, these factors
add further problems that must be taken into account. The
spectral patterns tend to be affected by topography and shad-
ows distortions in mountainous areas. Moreover, the variations
in topography require the cultivation of coffee in different crop
sizes. Therefore, this dataset is an interesting environment for
multi-scale analysis.

We have used a complete mapping of the coffee areas
in the dataset to simulate the user in the experiments. The
identification of coffee crops was manually done in the whole
county by agricultural researchers. They used the original
image as reference and visited the place to compose the final
result.

The dataset is composed of 9 subimages that cover the
studied region. Each image is composed of 1 million pixels
(1000× 1000) with spatial resolution equal to 2.5 meters.

b) URBAN dataset: This dataset is a Quickbird scene
taken in 2003 from Campinas region, Brazil. It is composed of
three bands that correspond to the visible spectrum (red, green,
and blue). We have empirically created the ground truth based
on our knowledge about the region. We considered as urban
the places which correspond to residential, commercial or
industrial regions. Highways, roads, native vegetation, crops,
and rural buildings are considered as non-urban areas.

In the experiments, we have used 9 subimages from
this region. Each image is composed of 1 million pixels
(1000×1000) with spatial resolution equal to 0.62 meters. The
experimental protocol is the same as for COFFEE dataset.

2) Multiscale Segmentation: We considered five different
scales to extract features from λ1 (the finest one) to λ5 (the
coarsest one). We selected the scales according to the principle
of dichotomic cuts (see Section II-B). For the COFFEE
dataset, at λ5 scale, subimages contain between 200 and 400
regions while, at scale λ1, they contain between 9, 000 and
12, 000 regions. Figure 10 illustrates one of the subimages
for COFFEE dataset after multi-scale segmentation. For the
URBAN dataset, at λ5 scale, subimages contain between 40
and 100 regions while, at scale λ1, they contain between
4, 000 and 5, 000 regions. Figure 11 illustrates the multi-scale
segmentation for one of the subimages for URBAN dataset.
For ensuring that all segmented regions are described, we

have used dense sampling in all experiments performed with
local descriptors and BoWs. We have used circles for the
SIFT descriptor and square windows for the BIC descriptor.
Anyway, it should not impact significantly in final results.

λ0 (original RSI) λ1

λ2 λ3

λ4 λ5

Fig. 10. One of the subimages tested and the results of segmentation in each
of the selected scales for COFFEE dataset.

3) Protocol: We used linear SVMs to evaluate the classi-
fication results. We carried out experiments with ten different
combinations of the nine subimages used for each dataset
(three for training and three for testing). The experimental
protocol is the same for both datasets. The results reported
were obtained in the most coarse scale λ5 and at the interme-
diate scale λ3, where the low-level descriptors have obtained
the best results for texture and color properties, respectivelly.

To analyze the results, we computed the Overall Accuracy,
the Kappa index, and the Tau index for the classified im-
ages [39]. The Overall Accuracy metric does not take into ac-
count the size of each class. In binary problems, as the datasets
used, it can disguise the real quality of results. Kappa index
reduces this effect since it computes the agreement between
the ground truth (expected) and obtained results. Finally, Tau
index can be intepreted as an improvement agreement measure
of the classifier in comparison with a random classifier.

B. Texture Description Analysis

1) Study of Parameters for SIFT BoW-Propagation: In
this section, we present a study of parameters for the BoW-
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λ0 (original RSI) λ1

λ2 λ3

λ4 λ5

Fig. 11. One of the subimages tested and the results of segmentation in each
of the selected scales for URBAN dataset.

Propagation strategy by using the SIFT descriptor in a interme-
diary scale of segmentation for the COFFEE dataset. Results
are shown in Table II.

TABLE II
CLASSIFICATION RESULTS FOR BOW REPRESENTATION PARAMETERS

WITH SIFT DESCRIPTOR AT SEGMENTATION SCALE λ5 . (S=SAMPLING;
DS=DICTIONARY SIZE; F=PROPAGATION FUNCTION).

S DS F O.A. (%) Kappa (κ) Tau (τ )

6

102
avg 73.69± 2.77 0.25± 0.04 0.38± 0.04
max 72.71± 2.73 0.22± 0.04 0.38± 0.03

103
avg 71.24± 3.46 0.24± 0.06 0.42± 0.03
max 70.80± 3.19 0.25± 0.05 0.44± 0.03

104
avg 73.48± 3.00 0.19± 0.04 0.30± 0.03
max 73.40± 3.48 0.32± 0.06 0.48± 0.04

4

102
avg 72.93± 2.82 0.22± 0.04 0.35± 0.04
max 73.22± 2.53 0.21± 0.04 0.34± 0.04

103
avg 71.32± 2.96 0.24± 0.05 0.41± 0.03
max 71.68± 2.91 0.29± 0.05 0.46± 0.03

104
avg 73.74± 2.73 0.21± 0.04 0.32± 0.03
max 72.66± 3.74 0.33± 0.06 0.49± 0.04

We have used a very dense sampling in the experiments,
by overlapping circles of radius 4 and 6 pixels [17], as in the
remote sensing images the use of some interest regions can
be very small. The difference in classification is very small
between the two sampling scales, however we have noticed
that the number of regions represented in the finest regions

scale is larger for the circles of radius 4. This happens because
in the COFFEE dataset there are very small regions.

The SIFT features extracted from each region in the dense
sampled images were used to generate the visual dictionary.
We have tested dictionaries of 102, 103, and 104 visual words
and we used soft assignment (σ = 60). The results in Table II
show that larger dictionaries are more representative, specially
considering Kappa and Tau measures.

We have also evaluated the impact of different pooling/prop-
agation functions. Average pooling tends to smooth the final
feature vector, because assignments are divided by the number
of points in the image. If we have many points in the image
strongly assigned to some visual words, this information is
going to be kept in the final feature vector. However, if
only a few points have large visual words associations, they
can become very small in the image feature vector. This
effect is good to remove noise, but it can also eliminate
rare visual words, which could be important for the image
description. Average pooling tends to work badly with very
soft assignments and large dictionaries, due to the fact that
points may have a low degree of membership to many visual
words, and computing their average is going to generate a too
soft vector. We can see this phenomenon in the low values of
Kappa and Tau measures for the dictionary of 104 words in
Table II.

Max pooling captures the strongest activation of each visual
word in the image. Therefore, if only one point has a high
degree of membership to a visual word, this information will
be hold in the image feature vector. Max pooling tends to
present better performance for larger dictionaries with softer
assignments. In our experiments, max pooling presents better
performances with the largest dictionaries.

2) BoW Propagation vs BoW Padding: A strategy used
to extract texture from segmented regions is based on their
bounding boxes. It consists in filling the outside area between
the region and its box with a pre-defined value to reduce the
interference of external pixels in the extracted texture pattern.
This process is known as padding [40] and the most common
approach is to assign zero to the external pixels (ZR-Padding).

The difference between BoW-propagation and BoW
padding is that the former applies dense sampling in the whole
image and considers the segmentation (in the finest scale) only
at the moment of pooling features for the region. The BoW
padding applies the whole BoW extraction procedure (dense
sampling, coding, pooling) for each region cropped according
to the segmentation. Zero padding is used to fill the rectangle
when the segmented regions is not rectangular.

This evaluation is important because, as we point in Sec-
tion IV-B, each local patch determined by dense sampling
can have parts outside the segmented region. Thus, we could
address the impact of the external regions when they include
its neighboring information (not using ZR-padding) and when
using padding. Therefore, these experiments investigate the
impact of the segmentation in the feature extraction.

Table III presents the results comparing BoW with ZR-
Padding and BoW with Propagation for the COFFEE dataset.
Table IV presents the results comparing BoW with ZR-
Padding and BoW with Propagation for the URBAN dataset.
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TABLE III
CLASSIFICATION RESULTS COMPARING BOW-ZR-PADDING AND

BOW-PROPAGATION FOR THE COFFEE DATASET AT SEGMENTATION
SCALE λ5 .

Method O.A. (%) Kappa (κ) Tau (τ )
ZR-Padding 64.39± 1.78 0.00± 0.02 0.27± 0.02
Propagation 72.66± 3.74 0.33± 0.06 0.49± 0.04

TABLE IV
CLASSIFICATION RESULTS COMPARING BOW-ZR-PADDING AND

BOW-PROPAGATION FOR THE URBAN DATASET AT SEGMENTATION
SCALE λ5 .

Method O.A. (%) Kappa (κ) Tau (τ )
ZR-Padding 48.00± 4.18 −0.01± 0.04 0.28± 0.03
Propagation 63.55± 2.56 0.24± 0.02 0.44± 0.01

As we can observe, the BoW-Propagation strategy yields
better results than the ZR-Padding. We can say that in these
experiments, the padding strategy caused a loss of 8.37% in
the accuracy of the BoW descriptor for the COFFEE dataset.
Concering the URBAN dataset, this loss was of 15.55%.
Regarding Kappa index, ZR-Padding produces results with no
agreement when compared with the ground truth. That is an
expected effect. As showed in [26], when the region shape is
completed with padding, those external pixels include some
visual properties that do not belong to the region. The impact
of external pixels is reduced when using local descriptors since
we have only considered points within the region.

3) SIFT BoW-Propagation vs Global Descriptors: Ta-
bles V and VI present the classification results for the BoW-
Propagation with SIFT and three successful global texture
descriptors for the COFFEE and URBAN datasets, respec-
tively. The texture descriptors, selected based on a previous
work [14], are: Invariant Steerable Pyramid Decomposition
(SID), Unser, and Quantized Compound Change Histogram
(QCCH).

TABLE V
CLASSIFICATION RESULTS COMPARING SIFT BOW-PROPAGATION WITH

THE BEST TESTED GLOBAL DESCRIPTORS FOR THE COFFEE DATASET AT
SEGMENTATION SCALE λ5 .

Method O.A. (%) Kappa (κ) Tau (τ )
BoW 72.66± 3.74 0.33± 0.06 0.49± 0.04

QCCH 70.36± 2.71 0.14± 0.03 0.31± 0.02
SID 69.35± 2.52 0.01± 0.02 0.13± 0.03

Unser 69.77± 3.11 0.16± 0.04 0.34± 0.03

Considering the COFFEE dataset, the BoW propagation
yields slightly better overall accuracy than global descriptors.
The difference is more perceptible regarding the Kappa and
Tau indexes. The BoW descriptor achieves 0.3289 of agree-
ment while the best global descriptor (Unser) achieves Kappa
index equals to 0.1636. For the Tau index, BoW yields results
almost 50% better than a random classification, while Unser
produces classification 34% better than the random.

For the URBAN dataset, the Unser descriptor presents the
best results, with Tau index equal to 0.55. BoW propagation
yields the second best results, which is more perceptible by
observing Tau index (it achieves 0.44). Unser was good be-

TABLE VI
CLASSIFICATION RESULTS COMPARING SIFT BOW-PROPAGATION WITH
THE BEST TESTED GLOBAL DESCRIPTORS FOR THE URBAN DATASET AT

SEGMENTATION SCALE λ5 .

Method O.A. (%) Kappa (κ) Tau (τ )
BoW 63.55± 2.56 0.24± 0.02 0.44± 0.01

QCCH 50.21± 5.15 0.02± 0.01 0.06± 0.03
SID 63.45± 1.46 0.17± 0.01 0.39± 0.02

Unser 74.88± 2.92 0.44± 0.03 0.55± 0.02

TABLE VII
CLASSIFICATION RESULTS FOR BIC DESCRIPTOR USING

BOW-PROPAGATION, HISTOGRAM PROPAGATION AND, LOW-LEVEL
FEATURE EXTRACTION FOR THE COFFEE DATASET AT SEGMENTATION

SCALE λ3 .

Method O.A. (%) Kappa (κ) Tau (τ )
BoW-Propagation 73.41± 2.76 0.25± 0.03 0.36± 0.02

H-Propagation 79.97± 1.76 0.46± 0.02 0.54± 0.02
Low-Level 80.07± 1.81 0.47± 0.02 0.54± 0.02

cause its vector was general enough for mixing urban elements
among them (i.e., asphalt, houses, etc were encoded in similar
areas of its feature space) but not with the rural elements
(rural elements were more separated from urban elements
in the feature space). BoW+SIFT was possibly too precise
and urban elements that are potentially more similar to rural
elements than to urban ones were effectively differentiated
(e.g., trees can be more similar to rural areas). We can then
envision a good use of descriptors based on context. If context
information is available, the BoW problem could be solved.
Trees in the middle of houses would then be classified as
urban areas instead of rural, when analyzed isolated. The
combination of several scales in the hierarchy as performed
in [5, 15], could also potentially solve this issue.

C. Color/Spectral Description Analysis

In this section, we evaluate the proposed approaches con-
cerning color feature propagation. We have selected BIC de-
scriptor since it produced the best results in previous work [5,
10]. We compare the propagation approaches against BIC low-
level feature extraction.

BIC BoW-Propagation was computed by using: max pooling
function, dictionary size of 103 words, and soft assignment
(σ = 0.1). We have extracted low-level features from a dense
sampling by overlapping squares with 4× 4 pixels, as shown
in Figure 3 (a). BIC H-Propagation, in turn, was computed by
using the avg pooling function.

Table VII presents the classification results by using BIC
descriptor with BoW-Propagation, Histogram Propagation,
the direct low-Level extraction for the COFFEE dataset. H-
Propagation and the low-level extraction present the same
overall accuracy (around 80%). The same can be observed
for kappa and tau indexes. BoW-Propagation yields results
slightly worse than the other two approaches for the three
computed measures.

Table VIII shows classification results for the URBAN
dataset by using BIC descritptor with BoW-Propagation,
Histogram Propagation, and direct low-level extraction. H-
Propagation and low-Level extraction obtained again the same
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TABLE VIII
CLASSIFICATION RESULTS FOR BIC DESCRIPTOR USING

BOW-PROPAGATION, HISTOGRAM PROPAGATION AND, LOW-LEVEL
FEATURE EXTRACTION FOR THE URBAN DATASET AT SEGMENTATION

SCALE λ3 .

Method O.A. (%) Kappa (κ) Tau (τ )
BoW-Propagation 67.03± 2.65 0.26± 0.03 0.47± 0.02

H-Propagation 69.86± 4.76 0.31± 0.05 0.47± 0.04
Low-Level 69.63± 3.33 0.31± 0.04 0.47± 0.03

overall accuracy, Kappa, and Tau (≈70%, 0.31, and 0.47,
respectively). The BoW-Propagation approach yields slightly
worse results than the other methods concerning overall accu-
ray and Kappa index. The Tau index was the same (0.47).

The main reason for BoW-propagation be worse than the
other approaches in this case is not the propagation itself, as
it is, in fact, very similar to the propagation in H-propagation.
The problem is probably related to the creation of a visual dic-
tionary for BIC descriptor. BoW models are usually employed
for very precise local descriptors, which is not the case of BIC.
As BIC is already a very general descriptor, quantizing its
space (i.e., creating the visual dictionary) makes it too general,
reducing its discriminating power.

Therefore, the main conclusion of these experiments is that
propagating features (H-propagation) can produce the same
results of extracting low-level features at each scale, which is
our main objective.

Classification results using each of the three approaches
for the COFFEE image illustrated in Figure 10 are shown
in Figure 12. Table IX presents the accuracy values. Note
that the approaches produce very similar results with very few
false positives, but many true negatives pixels. However, these
results were expected since COFFEE dataset is a very difficult
dataset for classification as discussed in [41, 42]. The errors
generally occur on regions covering recently planted coffee
areas which are very similar to pasture and other cultures.

BoW-Propagation H-Propagation Low-Level

Fig. 12. A classification result obtained with each feature extraction approach
for the COFFEE dataset using BIC descriptor at scale λ3. Pixels correctly
classified are shown in white (true positive) and black (true negative), while
the errors are displayed in red (false positive) and green (false negative).

D. Processing Time

In this section, we compare the time spent to compute low-
level features at each scale against the propagation approaches.
Altough we have already shown in Section IV-C that theoret-
ically the propagation is faster than low-level extraction at
every scale, experiments are necessary to confirm the theo-
retical analysis. Table X presents the time spent to compute

TABLE IX
ACCURACY ANALYSIS OF CLASSIFICATION RESULTS FOR THE EXAMPLE

PRESENTED IN FIGURE 12. TP, TN, FP, AND FN STAND FOR TRUE
POSITIVE, TRUE NEGATIVE, FALSE POSITIVE, AND FALSE NEGATIVE,

RESPECTIVELY.

Method TP TN FP FN
BoW-Propagation 121,711 601,906 11,454 264,929

H-Propagation 155,668 600,431 12,929 230,972
Low-Level 154,844 600,474 12,886 231,796

TABLE X
TIME SPENT (IN SECONDS) TO OBTAIN FEATURE REPRESENTATIONS AT
EACH SEGMENTATION SCALE FOR BIC DESCRIPTOR ON THE COFFEE

DATASET BY USING LOW-LEVEL EXTRACTION AND PROPAGATION
STRATEGIES.

Scale Low-level BoW-Propagation H-Propagation
λ1 3582.76 3582.76 3582.76
λ2 1767.52 0.70 0.25
λ3 760.30 0.30 0.11
λ4 275.49 0.11 0.04
λ5 94.36 0.03 0.01

the features at each segmentation scale for the COFFEE
dataset. It was computed by using the BIC descriptor with the
same parameters as used in Section V-C. The values for the
propagation strategies represent the time spent to compute the
features at scale λi based on the scale λi−1. The time reported
for the propagation strategies at λ1 (the basis of the hierarchy)
is the same of low-level feature extraction. The reason is that it
needs to be computed as part of the process of representation
by using the propagation strategies.

According to the Table X, the time spent for extracting low-
level features from the segmented scales λ2...5 was 2897.66
seconds. Very similar features can be computed for the scales
λ2...5 in less than 1 second by using the H-Propagation strat-
egy. The BoW-Propagation is also faster than computing low-
level features at all scales. The total time spent to propagate
the bags along the scales λ2...5 was 1.14 seconds.

We can clearly observe in Table X that propagating is
faster than extracting new features. However, it is important
to note that the cost to combine features is proportional to the
size of the feature vector. The BIC vector is quantized into
128 bins and the bags are computed with a 1000 dictionary
size. The complexity of the combination function is another
constraint that should be considered. Thus, the propagation
strategies may not be suitable for very sparse dictionary
or high dimensional feature vectors since it can be more
expensive to combine them than to compute the low-level ones.
However, it is usually easier to keep feature vectors in memory
instead of whole images, what would make the propagation
strategies much more efficient.

VI. CONCLUSIONS

In this paper, we address the problem of extracting features
from a hierarchy of segmented regions. We have proposed a
strategy to propagate histogram-based low-level features along
the hierarchy of segmented regions. This new approach is
called H-Propagation. We have also extended this method
to propagate features based on the bag-of-visual-word model
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from the finest scales to the coarsest ones in the hierarchy.
This novel approach is named BoW-Propagation.

These approaches are suitable for saving time on feature
extraction from a hierarchy of segmented regions, as feature
extraction is necessary only at the finest scale. Experiments us-
ing H-Propagation show that it is possible to quickly compute
low-level features and have a high-quality representation at
the same time. Moreover, experiments using BoW-propagation
with SIFT was very promising for encoding texture features.
Although our experiments were based on remote sensing
images, we believe that the propagation approaches proposed
can be used with other types of images as well.

Future work includes the application of the proposed strate-
gies in multiscale classification applications. We also intend
to evaluate the propagation strategies in a interactive segmen-
tation and classification approaches and the use of contextual
descriptors such as the proposed in [43–45].
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