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We establish the Berry-phase formulas for the angular momentum (AM) and the Hall viscosity (HV) to
investigate chiral superconductors (SCs) in two and three dimensions. The AM is defined by the temporal
integral of the antisymmetric momentum current induced by an adiabatic deformation, while the HV is defined
by the symmetric momentum current induced by the symmetric torsional electric field. Without suffering from
the system size or geometry, we obtain the macroscopic AM Lz = �mN0/2 at zero temperature in full-gap chiral
SCs, where m is the magnetic quantum number and N0 is the total number of electrons. We also find that the HV
is equal to half the AM at zero temperature not only in full-gap chiral SCs as is well known but also in nodal
ones, but its behavior at finite temperature is different in the two cases.
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I. INTRODUCTION

Chiral superfluids and superconductors (SCs) are exotic
states whose time-reversal symmetry is spontaneously broken
and Cooper pairs carry nonzero angular momentum (AM).
One well-known example is 3He-A whose pairing symmetry
is px + ipy [1]. Among electron systems, there are a few
candidates for chiral SCs such as Sr2RuO4 with px + ipy [2,3]
and URu2Si2 with dzx + idyz [4–7]. Recently the dx2−y2 + idxy

pairing symmetry was theoretically proposed in SrPtAs [8–
10].

There is a long-standing problem on the AM in chiral
�-wave SCs, the so-called intrinsic AM paradox. This paradox
is summarized as Lz = �mN0/2 × (�0/EF)γ , where |m| � �,
N0, �0, and EF are the magnetic quantum number, the
total number of electrons, the gap strength, and the Fermi
energy, respectively. γ = 0 [11–19] is the most natural if
all electrons form Cooper pairs with the AM �z = �m. On
the other hand, γ = 1 [1,20] is intuitively plausible if a few
electrons near the Fermi surface form Cooper pairs. γ = 2 was
also proposed by using the Ginzburg-Landau theory [21,22].
Recent microscopic studies have settled this paradox, at least
theoretically, to γ = 0 [15,17–19] but have been employed
only in finite systems such as a cylinder [15] and a disk [17–19].

Generally, the physical quantities involving the position
operator are ill defined in periodic systems. The most famous
examples are the charge polarization and the orbital magnetiza-
tion. The former is classically coupled to an electric field but is
quantum-mechanically defined by the temporal integral of the
charge current under an adiabatic deformation [23–26]. On the
other hand, the latter is coupled to a magnetic field and can be
defined by the magnetic field derivative of the free energy [27–
29]. Consequently, the charge polarization is associated with
the Berry connection in the Bloch basis, while the orbital
magnetization with the Berry curvature and the magnetic
moment. These formalisms were extended to heat analogs such
as the heat polarization [26] and magnetization [30]. However,
the AM has not been formulated yet.

Another interesting clue to the AM is the Hall viscosity
(HV), which has been intensively discussed in the context
of the quantum Hall effect [31,32]. Similar to the Hall

conductivity, the HV is nonzero only when the time-reversal
symmetry is broken. The important relation ηH = �N0s̄/2
holds in general gapped systems at zero temperature [33–35],
in which the orbital spin s̄ is equal to �/2 in chiral �-wave SCs.
In addition, it was also related to the momentum-dependent
Hall conductivity [36,37]. The torsional Chern-Simons term
was proposed to describe the quantum HV in the two-
dimensional massive Dirac system [38–40].

In this paper, we derive the Berry-phase formulas for the
AM and the HV to apply to chiral SCs in two and three
dimensions. The antisymmetric and symmetric components
of a torsional electric field describe an angular velocity and
a strain-rate tensor, respectively. Since the AM is conjugate
to the former, it can be formulated in the same way as in
the charge polarization, namely, by the temporal integral of
the antisymmetric momentum current induced by an adiabatic
deformation. Viscosity is defined by the symmetric momentum
current, i.e., the stress tensor, induced by the latter. In contrast
to the previous works regarding the intrinsic AM paradox, we
obtain Lz = �mN0/2 without suffering from the finite-size
effects. We also investigate the temperature dependence of
the HV for two-dimensional gapped chiral SCs and three-
dimensional nodal ones.

Hereafter we assign the Latin (a,b, . . . = 0̂,1̂, . . . ,d̂) and
Greek (μ,ν, . . . = 0,1, . . . ,d) alphabets to locally flat and
global coordinates, respectively. We follow the Einstein
convention, which implies summation over the spacetime
dimension D = d + 1 when an index appears twice in
a single term. The Minkowski metric is taken as ηab =
diag(−1,+1, . . . ,+1). The Planck constant and the charge are
denoted by � and q, while the speed of light and the Boltzmann
constant are put to c = kB = 1. The upper or lower signs in
equations correspond to boson or fermion.

II. CARTAN FORMALISM

To begin with, we examine an angular velocity from the
gauge-theoretical viewpoint. Now that the system is rotated,
we have to deal with a theory in a curved spacetime. Here
we use the Cartan formalism, which consists of two gauge
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potentials such as a vielbein and a spin connection [41].
A vielbein ha

μ is a gauge potential corresponding to local
spacetime translations, while a spin connection ωab

μ is that
corresponding to local Lorentz transformations. In these gauge
potentials as well as a vector potential Aμ, the partial derivative
is replaced by the covariant derivative ∂a → Da ≡ h

μ
a (∂μ −

iqAμ/� − iωabSab/2�). Here Sab is the generator of local
Lorentz transformations. The spatial component of a vielbein
is related to a displacement vector [38–40] as hk̂

i
= δk̂

i
+ ∂iu

k̂ .

Moreover, hk̂

0
describes rotation as illustrated below.

For simplicity, let us consider a Dirac fermion in a curved
spacetime. The Dirac Lagrangian density is given by

hL = hψ̄(�γ aDa − m)ψ, (1)

in which h ≡ det ha
μ is the determinant of a vielbein, ψ̄ ≡

i−1ψ†γ 0̂ is the Dirac conjugate, and the γ matrices satisfy
the Clifford algebra {γ a,γ b} = 2ηab. When we introduce the
nonzero off-diagonal component hk̂

0
= φk̂

r in addition to the
identity, the square line element is given by

ds2 = −dt2 + (d �x + �φrdt)2, (2)

and the Dirac Lagrangian is reduced to

hL = ψ†[i�D0 + i��α · �D − mβ − i� �φr · �D]ψ. (3)

Here �α and β are the Dirac matrices. If we put �φr = �� × �x, �� is
assigned to an angular velocity, and the fourth term represents
the coupling between an angular velocity and the AM. Such
a discussion relies on the translational symmetry and gauge
principle of gravity and hence is not restricted to relativistic
systems.

Since a vielbein is a gauge potential, it induces a field
strength called torsion. Here a spin connection is neglected,
and hence torsion is written by

T l̂

j0
= ∂jh

l̂

0
− ∂0h

l̂

j
, (4a)

T l̂

ij
= ∂ih

l̂

j
− ∂jh

l̂

i
. (4b)

The former is “electric.” The first term describes an angular
velocity if l̂ and j are antisymmetric, while the second term
describes a strain-rate tensor if symmetric. On the other hand,
the latter is “magnetic” and characterizes edge and screw
dislocations in crystals. Especially its flux is identified as the
Burgers vector.

It is a natural question why rotation is described by
a vielbein, i.e., a gauge potential corresponding to space
translations. In fact, global space translations do not include
rotations. However, a gauge potential is associated with a local
symmetry, and local space translations do include rotations.
Note that an angular velocity is coupled not only to the AM
but to the spin, which is implemented by a spin connection.
Such spin responses are out of scope here.

III. ANGULAR MOMENTUM

Since an angular velocity is “electric,” the AM is similar to
the charge polarization rather than to the orbital magnetization.
Below we define the momentum polarization by the temporal
integral of the nonsymmetric momentum current induced by
an adiabatic deformation. The momentum current is conjugate
to a “vector potential” hk̂

i
and is given by the product of the

momentum and the velocity. In the Wigner representation of
the Keldysh formalism, it is written by

T ı̂

k̂
= ± i�

2

∫
dDπ

(2π�)D
tr

[(−∂πı̂
Ĝ

−1)
� Ĝ � πk̂

]< + c.c. (5)

Here Ĝ is the Keldysh Green’s function, (−∂πı̂
Ĝ

−1
) is the

renormalized velocity to satisfy the local conservation law,
and πk̂ is the Wigner representation of the covariant derivative
corresponding to the momentum. Note that this momentum
current is Hermitian but not symmetric over k̂ and ı̂.

An adiabatic deformation is implemented by the gradient
expansion up to the first order [26]. Since both the Keldysh

Green’s function Ĝ and the renormalized velocity (−∂πı̂
Ĝ

−1
)

are perturbed, the gradient expansion of the momentum current
Eq. (5) is given by

T ı̂

k̂
= ± i�2

4

∫
dDπ

(2π�)D
πk̂ tr

[
∂πı̂

�̂1Ĝ0 − ∂πı̂
Ĝ−1

0 Ĝ1
]<

+ c.c., (6)

in which the gradient expansion of the Keldysh Green’s
function Ĝ1 is given by

Ĝ1 = Ĝ0�̂1Ĝ0 + i
[
Ĝ0∂X0Ĝ−1

0 Ĝ0∂π0̂
Ĝ−1

0 Ĝ0 − (X0 ↔ π0̂)
]
,

(7)

and the corresponding self-energy �̂1 is determined self-
consistently. Now the momentum current is transformed into

T ı̂

k̂
=± i�2

4

∫
dDπ

(2π�)D
πk̂ tr

[
∂πı̂

�̂1Ĝ0 − ∂πı̂
Ĝ−1

0 Ĝ0�̂1Ĝ0
]< + c.c.

± �
2

4

∫
dDπ

(2π�)D
πk̂ tr

[
∂πı̂

Ĝ−1
0 Ĝ0∂X0Ĝ−1

0 Ĝ0∂π0̂
Ĝ−1

0 Ĝ0 − (X0 ↔ π0̂)
]< + c.c. (8)

By extracting the lesser component and employing the temporal integral, we obtain the change in the momentum polarization,
but not the momentum polarization itself,

�P ı̂

k̂
≡

∫
dX0T ı̂

k̂

= �
2

6
εABC

∫
dDπ

(2π�)D

∫
dX0f (−π0̂)πk̂ tr

[
GR

0 ∂AGR−1
0 GR

0 ∂BGR−1
0 GR

0 ∂CGR−1
0

] + c.c. (9a)
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+ �
2

4

∫
dDπ

(2π�)D

∫
dX0f ′(−π0̂)πk̂ tr

[(
GR

0 − GA
0

)
∂πı̂

(
GR−1

0 + GA−1
0

)
GR

0 ∂X0GR−1
0

] + c.c. (9b)

∓ i�2

4
δ ı̂

k̂

∫
dDπ

(2π�)D

∫
dX0 tr[�̂1Ĝ0]< + c.c. (9c)

± i�2

4

∫
dDπ

(2π�)D

∫
dX0f ′(−π0̂)πk̂ tr

[
�

<(1)
1

(
GR

0 − GA
0

)
∂πı̂

GR−1
0 GR

0

] + c.c., (9d)

where εABC in Eq. (9a) is the antisymmetric tensor with
επ0̂πı̂X0 = 1. f (ω) = (eβω ∓ 1)−1 is the distribution function
for boson or fermion.

Below we focus on the clean and noninteracting limit
�̂ = 0 to derive the Berry-phase formula in the Bloch basis.
The retarded Green’s function is given by GR

0 = [(−π0̂) −
H(X0) + μ + iη]−1 with η → +0, leading to ∂π0̂

GR−1
0 =

−1, ∂πı̂
GR−1

0 = −vı̂ , and ∂X0GR−1
0 = −Ḣ. In an adiabatic

deformation, the trace can be expanded with respect to
the eigenstates satisfying H(X0)|un�πX0〉 = εn�πX0 |un�πX0〉. We
evaluate the integral over (−π0̂) by the residue theorem to
obtain

�P ı̂

k̂
= −

∑
n

∫
ddπ

(2π�)d

∫
dX0πk̂�

ı̂
n�πX0fn�πX0 , (10)

with fn�πX0 ≡ f (εn�πX0 − μ) and the Berry curvature in the
(πı̂/�,X0) space being defined by

�ı̂
n�πX0 ≡ i�

〈
∂πı̂

un�πX0

∣∣∂X0un�πX0

〉 − (X0 ↔ πı̂). (11)

Similar to the charge polarization, Eq. (10) depends on the
choice of an adiabatic deformation at finite temperature and
hence is not well defined. At zero temperature in a gapped
fermion system, its integrand becomes the total derivative with
respect to X0 when k̂ 	= ı̂, and the momentum polarization
itself is given by

P ı̂

k̂
=

occ∑
n

∫
ddπ

(2π�)d
πk̂A

ı̂
n�π , (12)

where we introduce the Berry connection,

Aı̂
n�π ≡ i�

〈
un�π

∣∣∂πı̂
un�π

〉
. (13)

Indeed this expression is quite similar to that for the charge
polarization, which is given by the integral of the Berry
connection itself. Note that at the initial time, the reference
system has time-reversal symmetry, and the momentum
polarization should be zero. After all, the AM is obtained
by the antisymmetric part of the momentum polarization,

Lk̂ ≡ εı̂ĵ k̂P
ĵ ı̂ =

occ∑
n

∫
ddπ

(2π�)d
εı̂ĵ k̂A

ı̂
n�ππ ĵ . (14)

Since the Berry connection is regarded as the expectation value
of the position operator in the Wannier basis, this Berry-phase
formula really indicates �� = �x × �p in the momentum space.

In the above derivation, it is not obvious why the system
should be gapped. Wave functions have the phase degree
of freedom; namely, physical quantities should be invariant

under a unitary transformation |u′
n�π 〉 = e−iθn�π |un�π 〉. Corre-

spondingly, the Berry connection Eq. (13) is transformed
as �A′

n�π = �An�π + ��∂πθn�π , and the integrand in Eq. (14) is
transformed as �A′

n�π × �π = �An�π × �π + ��∂π × (θn�π �π ). In a
gapless system where the momentum space is restricted, the
AM is not invariant. On the other hand, in a gapped system,
the AM is found to be invariant by using the Stokes theorem
and the single-valued property of wave functions.

IV. HALL VISCOSITY

Here we begin with a brief introduction of elasticity and
viscosity. These are the mechanical properties of a system and
are characterized by

T (ki) = λ(ki)(lj )u(lj ) + η(ki)(lj )u̇(lj ). (15)

Here T (ki), u(lj ), and u̇(lj ) are stress, strain, and strain-
rate tensors, respectively, and round brackets indicate the
symmetry over their indexes. The linear coefficients λ(ki)(lj )

and η(ki)(lj ) are dubbed the elastic modulus and the viscosity,
although their sign convention is not fixed. We can decom-
pose the viscosity into the symmetric and antisymmetric
parts: η(ki)(lj ) = η

(ki)(lj )
S + η

(ki)(lj )
A , where η

(ki)(lj )
S = η

(lj )(ki)
S and

η
(ki)(lj )
A = −η

(lj )(ki)
A . The latter is dubbed the HV and is

formulated below.
As discussed above, a strain-rate tensor is the symmetric

torsional electric field, and the stress tensor is the symmetric
part of the momentum current. Therefore the viscosity can
be formulated by the perturbation theory of the momentum
current Eq. (5) with respect to torsion [30]. Here we define the
nonsymmetric viscosity by

η
ı̂ ĵ

k̂ l̂
≡ ∂T ı̂

k̂

∂
(−T l̂

ĵ 0̂

)

= ∓ i�2

2

∫
dDπ

(2π�)D
πk̂ tr

[
∂πı̂

�̂
T l̂

ĵ 0̂
Ĝ0 − ∂πı̂

Ĝ−1
0 Ĝ

T l̂

ĵ 0̂

]<

+ c.c. (16)

Note that the negative sign in the definition is necessary
because ∂0h

l̂

j
in Eq. (4a) gives rise to a strain-rate tensor.

The Keldysh Green’s function in the presence of torsion is
given by

ĜT a
cd

= Ĝ0�̂T a
cd
Ĝ0

−πa

[
Ĝ0∂πc

Ĝ−1
0 Ĝ0∂πd

Ĝ−1
0 Ĝ0 − (c ↔ d)

]/
2i,

(17)
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and the corresponding self-energy �T a
cd

is determined self-consistently. Equation (16) is rewritten by

η
ı̂ ĵ

k̂ l̂
= ∓ i�2

2

∫
dDπ

(2π�)D
πk̂ tr

[
∂πı̂

�̂
T l̂

ĵ 0̂
Ĝ0 − ∂πı̂

Ĝ−1
0 Ĝ0�̂T l̂

ĵ 0̂
Ĝ0

]< + c.c.

∓ �
2

4

∫
dDπ

(2π�)D
πk̂πl̂ tr

[
∂πı̂

Ĝ−1
0 Ĝ0∂πĵ

Ĝ−1
0 Ĝ0∂π0̂

Ĝ−1
0 Ĝ0 − (j ↔ 0)

]< + c.c., (18)

and then

η
ı̂ ĵ

k̂ l̂
= −�

2

6
εı̂ĵ k̂εabck̂

∫
dDπ

(2π�)D
f (−π0̂)πk̂πl̂ tr

[
GR

0 ∂πa
GR−1

0 GR
0 ∂πb

GR−1
0 GR

0 ∂πc
GR−1

0

] + c.c. (19a)

− �
2

4

∫
dDπ

(2π�)D
f ′(−π0̂)πk̂πl̂ tr

[(
GR

0 − GA
0

)
∂πı̂

(
GR−1

0 + GA−1
0

)
GR

0 ∂πĵ
GR−1

0

] + c.c. (19b)

± i�2

2
δ ı̂

k̂

∫
dDπ

(2π�)D
tr

[
�̂

T l̂

ĵ 0̂
Ĝ0

]< + c.c. (19c)

∓ i�2

2

∫
dDπ

(2π�)D
f ′(−π0̂)πk̂ tr

[
�

<(1)

T l̂

ĵ 0̂

(
GR

0 − GA
0

)
∂πı̂

GR−1
0 GR

0

] + c.c. (19d)

Again we focus on the clean and noninteracting limit �̂ = 0.
The retarded Green’s function is given by GR

0 = [(−π0̂) −
H + μ + iη]−1. We expand the trace with respect to the Bloch
basis and evaluate the integral over (−π0̂) by the residue
theorem. As a result, we obtain the Berry-phase formula for
the nonsymmetric HV,

η
ı̂ ĵ

k̂ l̂
= 1

�
εı̂ĵ m̂

∑
n

∫
ddπ

(2π�)d
πk̂πl̂�n�πm̂fn�π , (20)

with fn�π ≡ f (εn�π − μ) and the Berry curvature being defined
by

�n�πk̂ = i�2εı̂ĵ k̂

〈
∂πı̂

un�π
∣∣∂πĵ

un�π
〉
. (21)

The proper HV should be symmetric as shown in Eq. (15). In
the conventional approach involving a metric, the stress tensor
is defined by T μν ≡ 2δS/δgμν . This is manifestly symmetric
because a metric is symmetric. By using gμν = ηabh

a
μhb

ν , it
can be related to the momentum current T

μ
a ≡ δS/δha

μ by
T μν = (haμT ν

a + haνT
μ

a )/2. Therefore the symmetric HV is
given by

η(k̂ı̂)(l̂ĵ ) ≡ (ηk̂ı̂l̂ĵ + ηı̂k̂l̂ĵ + ηk̂ı̂ĵ l̂ + ηı̂k̂ĵ l̂)/4. (22)

Although a strain-rate tensor is described by torsion, Eq. (22)
is different from the torsional HV discussed in Refs. [38–40].
In two dimensions, only three components may be nonzero,

η(xx)(xy) = 1

2�

∑
n

∫
d2π

(2π�)2
πx2�n�πzfn�π , (23a)

η(xx)(yy) = 1

�

∑
n

∫
d2π

(2π�)2
πxπy�n�πzfn�π , (23b)

η(xy)(yy) = 1

2�

∑
n

∫
d2π

(2π�)2
πy2�n�πzfn�π . (23c)

Furthermore, if a system is rotationally invariant, there is only
one nonzero component ηH = η(xx)(xy) = η(xy)(yy),

ηH = 1

4�

∑
n

∫
d2π

(2π�)2
�π2�n�πzfn�π . (24)

In three dimensions, all the components of the HV should
vanish if a system is rotationally invariant. On the other hand,
if a system is axially invariant along the z axis, two components
are independent,

η(xx)(xy) = 1

2�

∑
n

∫
d3π

(2π�)3
πx2�n�πzfn�π , (25a)

η(zx)(yz) = 1

4�

∑
n

∫
d3π

(2π�)3

× (πz2�n�πz − πzπx�n�πx − πzπy�n�πy)fn�π .

(25b)

As in the case of the momentum polarization Eq. (12),
these expressions are quite analogous to that for the Hall
conductivity, corresponding to the charge transport. The
integrand just differs in the factor of �π .

Finally, let us comment on the interacting cases. In the
conventional metric approach, the effects of interactions are
fully taken into account by using the many-body ground-state
wave function. On the other hand, in our approach, such effects
are compiled into the self-energy and can be taken into account
by using the Feynman diagrams or the dynamical mean-field
theory. Therefore these two approaches are complementary
and coincide in the noninteracting limit, which reminds us
that the charge polarization can be calculated by averaging
over boundary conditions [24] or by using the Green’s function
formula [25,26].

V. APPLICATIONS TO CHIRAL SUPERCONDUCTORS

Now we apply our results to chiral SCs. For simplicity, we
restrict ourselves to the single-band model with a singlet or
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(a) (b)

1×10-6
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1×10-12

1×10-14
1×10-16

1×10-18

FIG. 1. (Color online) The gap strength (red cross) and the HV (green filled square) for two-dimensional chiral SCs as functions of
(a) temperature T/|�0| and (b) inverse temperature |�0|/T . The green broken line indicates e−|�0|/T .

unitary triplet pairing described by

H − μN =
∑

�k
[c

†
�k↑ c−�k↓]

[
ξ�k ��k
�∗

�k −ξ�k

][
c�k↑
c−�k↓

]
, (26)

in which ξ�k ≡ ε�k − μ is even, and the gap ��k is even
or odd for singlet or triplet with �d�k ‖ �z, respectively. This
Hamiltonian has the positive and negative dispersions ±E�k =
±

√
ξ 2
�k + |��k|2 , whose wave functions are given by

[|u�k+〉 |u�k−〉] =
[
u�k −v�k
v∗

�k u�k

]
. (27)

Here u�k = √
(1 + ξ�k/E�k)/2 and v�k =√

(1 − ξ�k/E�k)/2��k/|��k| satisfy the normalization condition
u2

�k + |v�k|2 = 1. The temperature dependence of the gap
strength is obtained by solving the gap equation. Now that
we are not interested in the competition between several
phases but in the AM and the HV for chiral SCs, we assume
the attractive interaction favoring a chiral pairing symmetry
��k = �w�k with w�k being normalized by

∫
d��k|w�k|2/4π = 1

in three dimensions. By using the standard approximations,
the gap equation is given by

ln |�0/�| =
∫ ∞

0
dξ�k

∫
d��k
4π

2|w�k|2f (E�k)/E�k. (28)

Next, we calculate the Berry connection and curvature. The
Berry connections for the positive- and negative-energy states
have opposite signs; namely, Aı̂

+�k = −Aı̂

−�k ≡ Aı̂
�k ,

Aı̂
�k = i

(
v�k∂kı̂

v∗
�k − ∂kı̂

v�kv
∗
�k
)/

2. (29)

Correspondingly, the Berry curvatures change their signs; i.e.,
�+�km̂ = −�−�km̂ ≡ ��km̂,

��km̂ = iεı̂ĵ m̂∂kı̂
v�k∂kĵ

v∗
�k . (30)

For chiral SCs with w�k ∝ eimφ in the polar coordinate �k =
(k sin θ cos φ,k sin θ sin φ,k cos θ ), the Berry connection and
curvature are given by

Ax
�k = −m|v�k|2 sin φ/k sin θ, (31a)

A
y

�k = m|v�k|2 cos φ/k sin θ, (31b)

Az
�k = 0, (31c)

and

��kz = m(k∂k + cot θ∂θ )|v�k|2/k2, (32a)

��kx = m cos φ(−k cot θ∂k + ∂θ )|v�k|2/k2, (32b)

��ky = m sin φ(−k cot θ∂k + ∂θ )|v�k|2/k2, (32c)

(a) (b)

1×10-12
1×10-10
1×10-8

1×10-6

FIG. 2. (Color online) Temperature dependences of |�/�0| (red cross), 2η(xx)(xy)/(�mN0/2) (green filled square), and 2η(zx)(yz)/(�mN0/2)
(blue open circle) for a three-dimensional px + ipy SC with (�,m) = (1,1). The green broken and blue dotted lines indicate (T/|�0|)4 and
(T/|�0|)2, respectively.
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(a) (b)

1×10-5

1×10-6

1×10-7

1×10-8
1×10-9

FIG. 3. (Color online) Temperature dependences of |�/�0| (red cross), 2η(xx)(xy)/(�mN0/2) (green filled square), and 2η(zx)(yz)/(�mN0/2)
(blue open circle) for a three-dimensional dzx + idyz SC with (�,m) = (2,1). The red solid, green broken, and blue dotted lines indicate
(T/|�0|)3, T/|�0|, and (T/|�0|)2, respectively.

respectively. Consequently, the AM for gapped chiral SCs at
zero temperature is given by

Lz = −�

∑
�k

( �A�k × �k)z = �m
∑

�k
|v�k|2 = �mN0/2, (33)

where we introduce the number of electrons at zero tempera-
ture N0 = ∑

�k 2|v�k|2. This result is consistent with the recent
microscopic studies suggesting γ = 0 [11–19]. However, the
bulk AM is well defined only in a gapped system at zero
temperature. Therefore, we cannot apply this result to three-
dimensional chiral SCs with point or line nodes. Below we
calculate the HV, which is well defined in a gapless system or
at finite temperature.

A. Hall viscosity in two dimensions

First, we consider w�k = ei�φ in two dimensions. For odd �,
the system is triplet and is classified into a class-D topological
SC in terms of the topological periodic table [42,43]. On the
other hand, for even �, it is singlet and is classified into a
class-C topological SC. Anyway it is gapped and the AM
Eq. (33) is well defined at zero temperature. Since there is the

rotational symmetry, only Eq. (24) is nonzero,

2ηH = − �

2

∑
�k

k2��kz[1 − 2f (E�k)]

= − ��

2

∑
�k

k∂k|v�k|2[1 − 2f (E�k)]. (34)

At zero temperature, we employ the partial integral to obtain
2ηH = ��N0/2, which is consistent with the previous result
for gapped chiral SCs [33,34,37].

Let us turn to finite temperature. By solving the gap
equation Eq. (28) and using the temperature dependence of
the gap strength, we evaluate the HV normalized by that at
zero temperature, i.e., half the AM,

2ηH

��N0/2
=

∫ ∞

0
dξ∂ξ (ξ/E)[1 − 2f (E)]. (35)

As shown in Fig. 1, both the gap strength and the HV
exponentially converge since the system is gapped.

B. Hall viscosity in three dimensions

Next, we consider w�k = √
4πY�m(θ,φ) in three dimensions,

where Y�m is a spherical harmonic function. As emphasized

(a) (b)

1×10-9
1×10-8
1×10-7
1×10-6
1×10-5

FIG. 4. (Color online) Temperature dependences of |�/�0| (red cross), 2η(xx)(xy)/(�mN0/2) (green filled square), and 2η(zx)(yz)/(�mN0/2)
(blue open circle) for a three-dimensional dx2−y2 + idxy SC with (�,m) = (2,2). The red solid, green broken, and blue dotted lines indicate
(T/|�0|)3, (T/|�0|)2, and T/|�0|, respectively.
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above, three-dimensional chiral SCs have nodes generally, and
the bulk AM is not well defined. For example, px ± ipy with
(�,m) = (1,±1) and dx2−y2 ± idxy with (�,m) = (2,±2) have
point nodes at poles, while dzx ± idyz with (�,m) = (2,±1)
has both point and line nodes. Since there is the axial
symmetry along the z axis, two components Eq. (25) are
nonzero,

2η(xx)(xy) = −�

∑
�k

kx2��kz[1 − 2f (E�k)]

= −�m
∑

�k
sin2 θ cos2 φ(k∂k + cot θ∂θ )|v�k|2

× [1 − 2f (E�k)], (36a)

2η(zx)(yz) = −�

2

∑
�k

(kz2��kz − kzkx��kx − kzky��ky)

× [1 − 2f (E�k)]

= −�m

2

∑
�k

(2 cos2 θk∂k + cos 2θ cot θ∂θ )|v�k|2

× [1 − 2f (E�k)], (36b)

both of which are reduced to �mN0/2 at zero
temperature.

We numerically calculate the normalized HV at finite
temperature,

2η(xx)(xy)

�mN0/2
= 3

4

∫ ∞

0
dξ

∫ π

0
sin θdθ sin2 θ∂ξ (ξ/E)[1 − 2f (E)],

(37a)

2η(zx)(yz)

�mN0/2
= 3

2

∫ ∞

0
dξ

∫ π

0
sin θdθ cos2 θ∂ξ (ξ/E)[1 − 2f (E)],

(37b)

instead of Eq. (36). In Figs. 2, 3, and 4, we show the
temperature dependences of the gap strength and the HV for
px + ipy , dzx + idyz, and dx2−y2 + idxy , respectively. All of
them converge by the power laws since the systems have nodes.
These powers can be analytically obtained by expanding the in-
tegrands in Eqs. (28) and (37) around nodes as in the Appendix.
Especially for dx2−y2 + idxy , we find that the temperature
dependence of |�/�0| and 2η(xx)(xy)/(�mN0/2) is almost
determined by the line node, while that of 2η(zx)(yz)/(�mN0/2)
is by the point nodes. We also summarize their powers
in Table I.

TABLE I. Power-law behaviors of the gap strength and the HV at
low temperature for several pairing symmetries in three dimensions.
See also Figs. 2, 3, and 4.

Symmetry (�,m) Nodes |�| 2η(xx)(xy) 2η(zx)(yz)

px + ipy (1,1) point T 4 T 4 T 2

dzx + idyz (2,1) point and line T 3 T T 2

dx2−y2 + idxy (2,2) point T 3 T 2 T

VI. DISCUSSION AND SUMMARY

The temperature dependence of the AM for px + ipy was
calculated in finite systems such as a mesoscopic cylinder [15]
and a macroscopic disk [18,19] compared to the coherence
length. In three dimensions, the AM decreases from �N0/2
by T 2 owing to the presence of the point nodes [15]. In
two dimensions, the AM also decreases from �N0/2 by T 2,
which is attributed to the presence of the Majorana edge
modes [18,19]. Although the HV is equal to half the AM
at zero temperature not only in two dimensions but also in
three dimensions, the temperature dependence of the AM
and the HV is generally different. This discrepancy does not
conflict with the relation between the AM and the HV [33,34],
because it is available only for gapped systems at zero
temperature. Indeed such a difference was recently found in
two-dimensional gapless systems by using the holographic
approach [44], too. As pointed out in this paper, the AM is
given by the polarization of the momentum. In this sense, it
is seen as a thermodynamic quantity, while the HV is just a
transport coefficient but not a bulk quantity. Therefore it is
natural to think that physical origins of those quantities and
also their temperature dependences are different in general,
even if they have a special relation at zero temperature. It
may be interesting to study other models, e.g., quantum Hall
systems and chiral SCs with higher �, at finite temperature. Let
us note that such a relation between a thermodynamic quantity
and a transport coefficient was also proposed for the entropy
density and the shear viscosity [45]. Nevertheless it is expected
that they would have a universal relation only in the extremely
strong coupling situation.

To summarize, we derive the Berry-phase formulas for
the AM and the HV by using the Keldysh formalism in a
curved spacetime. First, we examine the physical quantity
conjugate to the AM, namely, an angular velocity of rotation,
from the gauge-theoretical viewpoint of gravity. Since an
angular velocity is the antisymmetric torsional electric field,
we define the AM by the temporal integral of the antisymmetric
momentum current induced by an adiabatic deformation,
which is implemented by the gradient expansion. Viscosity
is the response of the stress tensor, i.e., the symmetric
momentum current, to a strain-rate tensor. It can be derived
by the perturbation theory with respect to torsion because
a strain-rate tensor is described by the symmetric torsional
electric field. We also apply these results to chiral SCs in two
and three dimensions. In two dimensions at zero temperature,
we reproduce Lz = 2ηH = ��N0/2 without any finite-size
effects. In three dimensions at zero temperature, where the
AM is not well defined owing to the presence of nodes, we
find that the HV is equal to half the AM calculated in finite
systems previously. Although it is not related to the AM at
finite temperature, it is useful to determine the gap structure
for chiral SCs.
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APPENDIX: TEMPERATURE DEPENDENCE OF HALL VISCOSITY

In this appendix, we approximately but analytically calculate the gap strength and the HV to explain their power-law behaviors
at low temperature.

For px + ipy , where |w�k|2 = 3 sin2 θ/2, we expand Eqs. (28) and (37) around the point node θ = 0 to obtain

ln |�0/�| � 2
∫ ∞

0
dξ

∫ π/2

0
θdθ

3θ2/2√
ξ 2 + 3|�|2θ2/2

(eβ
√

ξ 2+3|�|2θ2/2 + 1)−1

= 4

3
(T/|�|)4

∫ ∞

0
dx

∫ √
3/2β|�|π/2

0
dy

y3

r
(er + 1)−1 → 7π4

135
(T/|�0|)4, (A1a)

1 − 2η(xx)(xy)

�mN0/2
� 3

∫ ∞

0
dξ

∫ π/2

0
θdθθ2 3|�|2θ2/2

(ξ 2 + 3|�|2θ2/2)3/2
(eβ

√
ξ 2+3|�|2θ2/2 + 1)−1

= 4

3
(T/|�|)4

∫ ∞

0
dx

∫ √
3/2β|�|π/2

0
dy

y5

r3
(er + 1)−1 → 28π4

675
(T/|�0|)4, (A1b)

1 − 2η(zx)(yz)

�mN0/2
� 6

∫ ∞

0
dξ

∫ π/2

0
θdθ

3|�|2θ2/2

(ξ 2 + 3|�|2θ2/2)3/2
(eβ

√
ξ 2+3|�|2θ2/2 + 1)−1

= 4(T/|�|)2
∫ ∞

0
dx

∫ √
3/2β|�|π/2

0
dy

y3

r3
(er + 1)−1 → 2π2

9
(T/|�0|)2. (A1c)

In the second lines, we change the variables by x = βξ and y = √
3/2β|�|θ , and in the third lines, we take the low-temperature

limit
√

3/2β|�|π/2 → ∞. These integrals can be analytically estimated in the polar coordinate.
For dzx + idyz, where |w�k|2 = 15 sin2 θ cos2 θ/2, there are both point and line nodes. First, we expand Eqs. (28) and (37)

around the point node θ = 0 and change the variables by x = βξ and y = √
15/2β|�|θ , which results in

ln |�0/�| � 2
∫ ∞

0
dξ

∫ π/2

0
θdθ

15θ2/2√
ξ 2 + 15|�|2θ2/2

(eβ
√

ξ 2+15|�|2θ2/2 + 1)−1

= 4

15
(T/|�|)4

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y3

r
(er + 1)−1 → 7π4

675
(T/|�0|)4, (A2a)

1 − 2η(xx)(xy)

�mN0/2
� 3

∫ ∞

0
dξ

∫ π/2

0
θdθθ2 15|�|2θ2/2

(ξ 2 + 15|�|2θ2/2)3/2
(eβ

√
ξ 2+15|�|2θ2/2 + 1)−1

= 4

75
(T/|�|)4

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y5

r3
(er + 1)−1 → 28π4

16875
(T/|�0|)4, (A2b)

1 − 2η(zx)(yz)

�mN0/2
� 6

∫ ∞

0
dξ

∫ π/2

0
θdθ

15|�|2θ2/2

(ξ 2 + 15|�|2θ2/2)3/2
(eβ

√
ξ 2+15|�|2θ2/2 + 1)−1

= 4

5
(T/|�|)2

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y3

r3
(er + 1)−1 → 2π2

45
(T/|�0|)2. (A2c)

On the other hand, for the line node, we redefine θ → π/2 − θ and expand Eqs. (28) and (37) around θ = 0, leading to

ln |�0/�| � 2
∫ ∞

0
dξ

∫ π/2

0
dθ

15θ2/2√
ξ 2 + 15|�|2θ2/2

(eβ
√

ξ 2+15|�|2θ2/2 + 1)−1

= 2

√
2

15
(T/|�|)3

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y2

r
(er + 1)−1 →

√
3πζ (3)

2
√

10
(T/|�0|)3, (A3a)

1 − 2η(xx)(xy)

�mN0/2
� 3

∫ ∞

0
dξ

∫ π/2

0
dθ

15|�|2θ2/2

(ξ 2 + 15|�|2θ2/2)3/2
(eβ

√
ξ 2+15|�|2θ2/2 + 1)−1

= 3

√
2

15
(T/|�|)

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y2

r3
(er + 1)−1 →

√
3π ln 2

2
√

10
(T/|�0|), (A3b)
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1 − 2η(zx)(yz)

�mN0/2
� 6

∫ ∞

0
dξ

∫ π/2

0
dθθ2 15|�|2θ2/2

(ξ 2 + 15|�|2θ2/2)3/2
(eβ

√
ξ 2+15|�|2θ2/2 + 1)−1

= 4
√

2

5
√

15
(T/|�|)3

∫ ∞

0
dx

∫ √
15/2β|�|π/2

0
dy

y4

r3
(er + 1)−1 → 3

√
3πζ (3)

20
√

10
(T/|�0|)3. (A3c)

By comparing each power, the gap strength |�/�0| and one component of the HV 2η(xx)(xy)/(�mN0/2) are mainly contributed
from the line node, while the other component 2η(zx)(yz)/(�mN0/2) is from the point nodes.

For dx2−y2 + idxy , where |w�k|2 = 15 sin4 θ/8, we expand Eqs. (28) and (37) around the point node θ = 0 and introduce
y = √

15/8β|�|θ2. Then we obtain

ln |�0/�| � 2
∫ ∞

0
dξ

∫ π/2

0
θdθ

15θ4/8√
ξ 2 + 15|�|2θ4/8

(eβ
√

ξ 2+15|�|2θ4/8 + 1)−1

=
√

8

15
(T/|�|)3

∫ ∞

0
dx

∫ √
15/8β|�|(π/2)2

0
dy

y2

r
(er + 1)−1 →

√
3πζ (3)

2
√

10
(T/|�0|)3, (A4a)

1 − 2η(xx)(xy)

�mN0/2
� 3

∫ ∞

0
dξ

∫ π/2

0
θdθθ2 15|�|2θ4/8

(ξ 2 + 15|�|2θ4/8)3/2
(eβ

√
ξ 2+15|�|2θ4/8 + 1)−1

= 4

5
(T/|�|)2

∫ ∞

0
dx

∫ √
15/8β|�|(π/2)2

0
dy

y3

r3
(er + 1)−1 → 2π2

45
(T/|�0|)2, (A4b)

1 − 2η(zx)(yz)

�mN0/2
� 6

∫ ∞

0
dξ

∫ π/2

0
θdθ

15|�|2θ4/8

(ξ 2 + 15|�|2θ4/8)3/2
(eβ

√
ξ 2+15|�|2θ4/8 + 1)−1

= 3

√
8

15
(T/|�|)

∫ ∞

0
dx

∫ √
15/8β|�|(π/2)2

0
dy

y2

r3
(er + 1)−1 →

√
3π ln 2√

10
(T/|�0|). (A4c)

Thus, all the power-law behaviors can be explained by nodal excitations.
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