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We show a duality of branes in the topological B-model by inserting two kinds of non-compact
branes simultaneously. We explicitly derive the integral formula for the matrix model partition
function describing this situation, which correspondingly includes both the characteristic polyno-
mial and the external source. We show that these two descriptions are dual to each other through
the Fourier transformation, and the brane partition function satisfies integrable equations in one
and two dimensions.
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1. Introduction

The D-brane is the most fundamental, but also non-perturbative object in superstring theory. It gives
a nontrivial boundary condition for open strings, and consequently a lot of gauge theories can be con-
structed as effective theories for stringy modes on them. When we implement various gauge groups
and matter contents for the effective field theory, branes often have to be arranged in a complicated
way. In such a case, we have to deal with the dynamics of brane intersection appropriately, and dis-
cuss what kind of stringy excitation can be allowed there. In this sense it is important to study the
properties of a brane complex in detail.

In this article we investigate some aspects of brane-on-brane structure in topological string theory,
especially through its matrix model description, by introducing two kinds of branes simultaneously.
It is well known that the Riemann surface plays a crucial role in the topological B-model on Calabi–
Yau threefolds, and this Riemann surface can be identified with the spectral curve appearing in the
large N limit of the matrix model [1]. A brane is also introduced into the B-model, and its realization
in terms of the matrix model has been extensively investigated [2]: There are seemingly two kinds
of non-compact branes, which correspond to the characteristic polynomial and the external source
in the matrix model. While these two descriptions are apparently different, we will see that they
are essentially the same, as a consequence of the symplectic invariance of the topological B-model.
From the viewpoint of the matrix model, this situation just corresponds to insertion of both the
characteristic polynomial and the external source. We will explicitly show that two descriptions are
dual to each other by seeing a newly derived matrix integral formula.

It is known that the correlation function of the characteristic polynomial and the matrix integral
with the external source are deeply related to the integrable hierarchy [3]. Thus it is naively expected
that the hybrid of them also possesses a similar connection to the integrability. Since in this case
we have two kinds of variables corresponding to the characteristic polynomials and the external
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sources, we obtain the 2D integrable equation as a consequence, and identify the partition function
as the τ -function of the corresponding integrable hierarchy with the Miwa coordinates.

This article is organized as follows. In Sect. 2 we start with a review on how to consider branes
in the topological B-model in terms of the matrix model. We introduce two descriptions of branes
using the characteristic polynomial and the external source of the matrix integral with emphasis on
the similarities and differences between them. In Sect. 3 we show a duality between two kinds of
non-compact branes in the B-model by introducing both of them at the same time. We derive a new
matrix integral formula corresponding to this situation, and show that the characteristic polynomial
and the external source are dual to each other in the sense of Fourier transformation. We also show
that the brane partition function satisfies the integrable equation in one and two dimensions, which
is well known as the Toda lattice equation. In Sect. 4 we consider the Gaussian matrix model as an
example. In this case we can show the duality using the fermionic variables, which is useful to discuss
the effective degrees of freedom on the branes. We close this article in Sect. 5 with some discussions
and concluding remarks.

2. Branes in the topological B-model

We first review the large N matrix model description of the topological B-model, mainly following
Ref. [2], and how to introduce the brane, which is also called the B-brane. The non-compact Calabi–
Yau threefold that we discuss in this article is obtained as a hypersurface in (u, v, p, x) ∈ C

4:

u v − H(p, x) = 0. (1)

Here H(p, x) determines the Riemann surface

� : H(p, x) = 0 (2)

with

H(p, x) = p2 − W ′(x)2 − f (x), (3)

where W (x) and f (x) are polynomials of degree n + 1 and n, respectively. This smooth Calabi–Yau
threefold is given by deformation of the singular one:

H(p, x) = p2 − W ′(x)2. (4)

The branes, which are compact, are wrapping n S3 at critical points W ′(x) = 0, and the sizes of the
S3 s are parametrized by f (x), which describes the quantum correction around them.

The holomorphic (3, 0)-form � in the Calabi–Yau threefold (1) is chosen to be

� = du ∧ dp ∧ dx

u
. (5)

Then the periods of this (3, 0)-form � over three-cycles reduce to the integral of the symplectic
2-form ∫

D
dp ∧ dx, (6)

where D stands for domains in the complex 2D (p, x)-plane. The boundary of this domain denoted
by γ is related to the Riemann surface (2) as γ = ∂D ⊂ �. Thus this integral further reduces to a
one-cycle on the Riemann surface �: ∫

γ

p dx . (7)

In this way we can focus only on the complex 1D subspace � by keeping the dependence on u and
v fixed.
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2.1. Characteristic polynomial

The algebraic curve (2) can be identified with the spectral curve of the matrix model: It is just given
by the loop equation in the large N limit of the matrix integral:

ZN =
∫

dX e− 1
gs

Tr W (X)
. (8)

The polynomial W (x) is the matrix potential. This is the reason why we can discuss the topological
B-model using the matrix model. In this description the genus expansion with 1/N corresponds to
the quantum correction, and the ’t Hooft parameter t = gs N gives the size of S3.

The other canonical variable in (3) is related to the resolvent of the matrix model:

p(x) = W ′(x)− 2gs Tr
1

x − X
. (9)

The saddle point equation of the matrix model is equivalent to the condition p(x) = 0. Since the
one-form on the spectral curve is given by these two canonical variables,

λ = p(x) dx = dφ, (10)

we can naturally introduce the chiral boson φ(x) on the Riemann surface �, which is interpreted as
the Kodaira–Spencer field describing deformation of the complex structure at infinity:

φ(x) = W (x)− 2gs Tr log(x − X). (11)

Here this φ(x) also has the meaning of the effective potential for the matrix model, and thus the
eigenvalues are degenerate at the critical point, ∂φ = p(x) = 0.

The vertex operator, which creates a non-compact brane at a position x , is constructed by the
standard bosonization scheme:

V (x) = e− 1
2gs
φ(x) = e− 1

2gs
W (x) det(x − X). (12)

The prefactor e− 1
2gs

W (x) corresponds to the classical part of the operator, while the determinant part,
namely the characteristic polynomial, gives the quantum fluctuation as a gravitational back reaction.
This brane creation operator gives a pole at x on the Riemann surface, and its residue is given by∮

λ = gs . (13)

This is just interpreted as one brane contribution, and also shows that gs plays the role of the Planck
constant � for the canonical pair (p, x).

The partition function of the branes is represented as a correlation function of the characteristic
polynomials, e.g., the k-point function given by〈

k∏
α=1

det(xα − X)

〉
. (14)

This expectation value is taken with respect to the matrix measure

〈O(X)〉 = 1

ZN

∫
dXO(X) e− 1

gs
Tr W (X) (15)

with the standard normalization 〈1〉 = 1. Including the classical part, the brane partition function is
then given by


k(x1, . . . , xk) =
k∏
α=1

e− 1
2gs

W (xα)

〈
k∏
α=1

det(xα − X)

〉
. (16)

This correlation function can be exactly evaluated using the orthogonal polynomial method. We will
come back to this formula in Sect. 3.2 (see (30)).
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2.2. External source

Let us then consider another kind of non-compact brane in the B-model, which is described by the
external source in the matrix model. We consider the matrix action written in the form of

S(P) = 1

gs
Tr[W (P)− AP], (17)

where the potential is regarded as an integral of the one-form along an open path to a certain point
p on the Riemann surface:

W (p) =
∫ p

x(p′) dp′. (18)

We can assume that the matrix A is diagonal A = diag(a1, . . . , aN ) without loss of generality. The
action (17) corresponds to the matrix model with the external source

ZN (A) =
∫

dP e− 1
gs

Tr[W (P)−AP]
, (19)

which is analogous to the Kontsevich model [4]. The external source implies the positions of N
branes, at least at the classical level, because the extremum of the action W ′(P)− A = 0 gives the
classical solution, X = diag(a1, . . . , aN ), since we have W ′(P) = X according to (18).

The one-form used in (18) is apparently different from (10), but they are equivalent up to the
symplectic invariance for a pair of the canonical variables (p, x). This symmetry is manifest by
construction of the topological B-model as seen in (5) and (6). Therefore, the two descriptions of
the non-compact branes based on the characteristic polynomial and the external source in the matrix
model are dual to each other in this sense. We will show in Sect. 3 that they are converted through
the Fourier transformation by deriving the explicit matrix integral representation.

3. A duality of branes

As seen in the previous section, there are two kinds of non-compact branes in the topological
B-model, which are related through the symplectic transformation. We now study the situation such
that both kinds of branes are applied at once. This is realized by inserting the characteristic poly-
nomial to the matrix model in addition to the external source. Let us consider the corresponding
partition function denoted by


N ,M

(
{a j }N

j=1; {λα}M
α=1

)
=
∫

dX e− 1
gs

Tr W (X)+Tr AX
M∏
α=1

det(λα − X). (20)

We now have to be careful of the meaning of the matrix potential and the external source. As discussed
in Sect. 2.2, if the matrix potential is given by the integral of the one-form in the form of (18), the
external source gives the classical positions of branes in the x-coordinate. In this case, however, the
roles of x and p are exchanged. Instead of (18), the potential should be written as

W (x) =
∫ x

p(x) dx . (21)

With this choice, the corresponding external source determines the positions of branes in the
p-coordinate. We note that, in this case, the extremum of the action does not simply imply the classi-
cal positions of branes as W ′(X) = A, because of the potential shift due to the characteristic polyno-
mial. Although there exists this kind of back reaction, the interpretation of the external source as the
p-coordinate still holds, as shown in the following.
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Fig. 1. (Left) In the case with A = 0, the one-cut matrix model has a single cut in the complex x-plane, which
is seen as a pole at p = 0 with degree N in the p-plane. There are also simple poles created by the characteristic
polynomials. (Right) When one applies the external source A = diag(p1, . . . , p1, . . . , pm, . . . , pm), it is split
into m distinct poles with the corresponding multiplicity.

The characteristic polynomial and the external source put punctures on the Riemann surface �
for x and p coordinates because they correspond to the vertex operators creating the non-compact
branes. Since (p, x) is a pair of the canonical variables, if once its x-coordinate is fixed, one cannot
determine the other p-coordinate, and vice versa. This means that the positions of the branes created
by the characteristic polynomial and the external source are fixed by the x and p coordinates. For
example, in the case with A = 0 for simplicity, all the N eigenvalues are distributed on the extended
line, namely the cut in the complex x-plane described by p(x) = 0, which corresponds to the one-
form p(x)dx . On the other hand, if we apply the other representation based on the p-plane, the
one-form x(p)dp has a pole at p = 0 with degree N . Then, when one turns on the external source
A = diag(a1, . . . , aN ), the pole at p = 0 is split and located at p = ai for i = 1, . . . , N . In this way
the external source and also the characteristic polynomial characterize a pole with the p and x coor-
dinates, respectively. In Fig. 1 we illustrate the situation such that both kinds of branes are inserted
to the Riemann surface �. We will see in the following that these coordinates can be exchanged
through the Fourier transformation.

3.1. Matrix integral formula

We now provide an explicit formula for the partition function (20). In order to derive the formula, we
apply a method to compute the matrix model partition function with the external source [5,6], which
is also applicable to this situation.

First of all, we move to “eigenvalue representation” from the N × N Hermitian matrix integral (20)
by integrating out the angular part of X . This can be done by using the Harish-Chandra–Itzykson–
Zuber formula [7,8] ∫

dU eTr U XU†Y = det exi y j

�(x)�(y)
, (22)

where the integral is taken over the U(N ) group with the Haar measure normalized by the vol-
ume factor Vol(U(N )), and �(x) is the Vandermonde determinant. Thus we have the eigenvalue
representation of (20):

∫
d N x

�(x)

�(a)

N∏
j=1

e− 1
gs

W (x j )+a j x j

N∏
j=1

M∏
α=1

(λα − x j ). (23)

We here apply the formula

�(x)�(λ)
M∏
α=1

N∏
j=1

(λα − x j ) = �(x, λ). (24)
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The RHS of this equation �(x, λ) is the Vandermonde determinant for N + M variables
(x1, . . . , xN , λ1, . . . , λM), which is represented as an (N + M)× (N + M) determinant:

�(x, λ) = det

(
x j−1

k x N+α−1
k

λ
j−1
β λN+α−1

β

)
= (−1)M N det

(
λα−1
β λ

M+ j−1
β

xα−1
k x M+ j−1

k

)
. (25)

We recall that j, k = 1, . . . , N and α, β = 1, . . . ,M . Since each matrix element can be replaced
with any monic polynomials, Pk(x) = xk + · · · , this determinant (25) is written in a more general
form:

�(x, λ) = det

(
Pj−1(xk) PN+α−1(xk)

Pj−1(λβ) PN+α−1(λβ)

)
= (−1)M N det

(
Pα−1(λβ) PM+ j−1(λβ)

Pα−1(xk) PM+ j−1(xk)

)
. (26)

Thus the integral is given by

1

�(a)�(λ)

∫
d N x �(x, λ)

N∏
j=1

e− 1
gs

W (x j )+a j x j . (27)

To perform this integral, we then introduce an auxiliary function:

Qk(a) =
∫

dx Pk(x) e− 1
gs

W (x)+ax
. (28)

Using this function, we arrive at the final expression of the partition function (20):


N ,M

(
{a j }N

j=1; {λα}M
α=1

)
= 1

�(a)�(λ)
det

(
Q j−1(ak) QN+α−1(ak)

Pj−1(λβ) PN+α−1(λβ)

)

= (−1)M N

�(a)�(λ)
det

(
Pα−1(λβ) PM+ j−1(λβ)

Qα−1(ak) QM+ j−1(ak)

)
. (29)

This expression is manifestly symmetric under the exchange of (a1, . . . , aN ) and (λ1, . . . , λM) with
the transformation Pk(λ) ↔ Qk(a). As seen in (28), this is nothing but a Fourier (Laplace) transform

of xke− 1
gs

W (x). Thus we can say that the characteristic polynomial and the external source in the
matrix model are dual to each other in the sense of Fourier transformation.

In terms of the topological strings, this duality reflects the symplectic invariance of the canonical
pair (p, x) in the B-model, as seen in (6). Thus such a symmetry, which allows the exchange of the
canonical variables x and p, is directly related to the duality for the (r, s) minimal model described
by H(p, x) = pr + xs + · · · , and also the open/closed string duality [9–11]. It should also be men-
tioned that the symplectic invariance, or SL(2,Z) symmetry exchanging the canonical pair, realizes
the S-duality of the topological string or topological M-theory [12]. Since the two descriptions of
the non-compact branes are just converted into each other through the Fourier transformation, they
are essentially equivalent. Although this equivalence has already been pointed out for the Gaussian
matrix model, as in Ref. [2], we can see that this symmetry even holds with a generic matrix potential
W (x). This matrix potential determines the geometry of the Calabi–Yau threefold in the form of (3).
In addition, the positions of the branes are in a relationship satisfying the uncertainty principle: one
cannot determine both the x and p coordinates at the same time, but only one or the other. We also
note that this kind of symplectic invariance appears quite generally in the topological expansion of
the spectral curve [13–15].
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3.2. Integrability

The formula (29) is a quite natural generalization of the well known formulae for the expectation
value of characteristic polynomial product〈

M∏
α=1

det(λα − X)

〉
= 1

�(λ)
det

1≤α,β≤M
PN+α−1(λβ), (30)

where Pk(x) is the kth monic orthogonal polynomial with respect to the weight function w(x) =
e− 1

gs
W (x), and also the matrix integral with the external source∫

dX e− 1
gs

Tr W (X)+Tr AX = 1

�(a)
det

1≤ j,k≤N
Q j−1(ak). (31)

It is convenient to apply the simplest choice of the polynomial Pk(x) = xk to this formula (31). In
this case the function Qk(a) is given by

Qk(a) =
∫

dx xk e− 1
gs

W (x)+ax =
(

d

da

)k

Q(a), (32)

with an Airy-like function

Q(a) =
∫

dx e− 1
gs

W (x)+ax ; (33)

see Ref. [3] and references therein for details.
It is known that this kind of determinantal formula generically plays a role as the τ -function [6],

and satisfies the Toda lattice equation by taking the equal parameter limit; see, e.g., Ref. [16]. We
show that the formula (29) indeed satisfies a similar integrable equation in the following.

Let us parametrize the positions of branes by “center of mass” and deviations from it as a j =
a + δa j and λα = λ+ δλα . We rewrite the numerator in terms of the deviations {δa j } and {δλα} by
considering the Taylor expansion around the centers of mass:

det

(
Q j−1(ak) QN+α−1(ak)

Pj−1(λβ) PN+α−1(λβ)

)
= det

⎛
⎜⎜⎝
(δak)

l−1

(l − 1)!
(δλβ)

γ−1

(γ − 1)!

⎞
⎟⎟⎠ det

⎛
⎝Q(l−1)

j−1 (a) Q(l−1)
N+α−1(a)

P(γ−1)
j−1 (λ) P(γ−1)

N+α−1(λ)

⎞
⎠ ,

(34)

where P(γ−1)
j−1 (λ) =

(
d

dλ

)γ−1

Pj−1(λ), Q(l−1)
j−1 (a) =

(
d

da

)l−1

Q j−1(a) = Q j+l−2(a) and so on.

The first determinant in the RHS is almost canceled by the Vandermonde determinants in the denom-
inator of (29), since they are invariant under the constant shift as �(a) = �(δa) = det(δak)

j−1 and
�(λ) = �(δλ) = det(δλβ)α−1, respectively. Therefore the partition function in the equal position
limit becomes


N ,M

(
{a j = a}N

j=1; {λα = λ}M
α=1

)
= cN ,M det

⎛
⎝Q(k−1)

j−1 (a) Q(k−1)
N+α−1(a)

P(β−1)
j−1 (λ) P(β−1)

N+α−1(λ)

⎞
⎠ (35)

= (−1)M N cN ,M det

⎛
⎝P(β−1)

α−1 (λ) P(β−1)
M+ j−1(λ)

Q(k−1)
α−1 (a) Q(k−1)

M+ j−1(a)

⎞
⎠ (36)

≡ cN ,M det RN ,M(a, λ),

7/15
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with

cN ,M =
N∏

j=1

1

( j − 1)!

M∏
α=1

1

(α − 1)!
, (37)

which corresponds to the volume factor for the U(N ) and U(M) groups. This expression is seen as
a hybridized version of the Wronskian. In the following we apply Pk(x) = xk and (32) as in the case
of (31) for simplicity.

In order to derive the integrable equation, we now use the Jacobi identity for determinants, which
is given by

D · D

(
i j
k l

)
= D

(
i
k

)
· D

(
j
l

)
− D

(
i
l

)
· D

(
j
k

)
, (38)

where D is a determinant, and the minor determinant D
( i

j

)
is obtained by removing the i th row

and the j th column from the matrix. Similarly. D
( i j

k l

)
is obtained by eliminating the i, j th row and

the k, lth column. Putting i = k = N + M and j = l = N + M − 1 for the determinant in (36), we
have

det RN ,M · det RN−2,M = det RN−1,M · Mλ∂2
a det RN−1,M

− ∂a det RN−1,M · Mλ∂a det RN−1,M . (39)

Here we have used a formula (A1) discussed in Appendix A. This provides the following relation for
the equal position partition function:


N+1,M ·
N−1,M(

N ,M

)2 = M

N
λ
∂2

∂a2 log
N ,M . (40)

This is just the Toda lattice equation along the a-direction, but with a trivial factor that can be removed
by rescaling the function.

We can assign another relation to the partition function by the identity (38) for the expression (35)
with i = k = N + M and j = l = N + M − 1, which reads

det RN ,M · det RN ,M−2 = det RN ,M−1 · (M − 1)∂a∂λλ det RN ,M−1

− ∂λ det RN ,M−1 · (M − 1)λ∂a det RN ,M−1. (41)

We have again used the relation (A1). Rewriting this relation in terms of the partition function (35),
we have


N ,M+1 ·
N ,M−1(

N ,M

)2 = ∂2

∂a∂λ
λ log
N ,M . (42)

We then obtain the 2D Toda lattice equation [17] with an extra factor. In order to remove this irrelevant
factor, we rescale the partition function:


̃N ,M(a, λ) = e−λ 
N ,M(a, λ). (43)

Thus the Toda lattice equations (40) and (42) are now written in the well known form1


̃N+1,M · 
̃N−1,M(

̃N ,M

)2 = M

N

∂2

∂a2 log 
̃N ,M ,

̃N ,M+1 · 
̃N ,M−1(


̃N ,M

)2 = ∂2

∂a∂λ
log 
̃N ,M . (44)

1 For example, see Ref. [18] for the bilinear form of the Toda lattice equation with the τ -functions.
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This means that the brane partition function (43) plays the role of the τ -function for the 1D and
2D Toda lattice equations simultaneously. We note that this is an exact result for finite N (and also
M). If one takes the large N limit, corresponding to the continuum limit for the Toda lattice equa-
tions, it reduces to the Korteweg-de Vries/Kadomtsev-Petviashvili (KdV/KP) equations. We also
comment that the τ -function of the 2D Toda lattice hierarchy can be realized as the two-matrix model
integral [19,20].

Although in this section we have focused only on the equal position limit of the partition function
(29), it can be regarded as the τ -function for the corresponding integrable hierarchy. In this case we
can introduce two kinds of Miwa coordinates:

tn = 1

n
Tr A−n, t̃n = 1

n
tr�−n. (45)

It is shown that all the time variables, tn and t̃n , are trivially related to each other in the equal parameter
limit. After taking the continuum limit, namely the large N limit of the matrix model, it shall behave
as the τ -function for the KdV/KP hierarchies.

4. Gaussian matrix model

We now study a specific example of the matrix model with the harmonic potential W (x) = 1
2 x2,

namely the Gaussian matrix model. In this case we can check the duality formula more explicitly
[21–23]:

1

ZN

∫
dX e− 1

2gs
Tr(X−A)2

M∏
α=1

det(λα − X) = (−1)M N 1

ZM

∫
dY e− 1

2gs
tr(Y−i�)2

N∏
j=1

det(a j + iY ),

(46)
where X and Y are Hermitian matrices with matrix sizes N × N and M × M , and “Tr” and “tr”
stand for the trace for them, respectively. This equality is just rephrased as

e− 1
2gs

Tr A2

〈
e

1
gs

Tr X A
M∏
α=1

det(λα − X)

〉
= (−1)M N e

1
2gs

tr�2

〈
e

1
gs

i tr Y�
N∏

j=1

det(a j + iY )

〉
. (47)

From the generic formula (29), we can understand this duality as a consequence of the self-duality
of Hermite polynomials with respect to Fourier transformation. Actually, the Hermite polynomial,
which is an orthogonal polynomial with the Gaussian weight functionw(x) = e− 1

2 x2
, has an integral

representation:

Hk(x) =
∫ ∞

−∞
dt√
2π

(i t)k e− 1
2 (t+i x)2 . (48)

This expression is essentially the same as (32) in the case of the harmonic potential. This is a specific
property for the Gaussian model.

4.1. Fermionic formula

For the Gaussian matrix model, there is another interesting derivation of the duality (46) using
fermionic variables, instead of the method used in Sect. 3.1. Following the approach applied in
Refs. [21,22], basically, we discuss it from the viewpoint of the topological strings. We will actually
show that the effective fermionic action for this partition function gives a quite natural perspective
on the topological brane.
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Introducing fermionic variables in bifundamental representations (N , M̄) and (N̄ ,M) of U(N )×
U(M), the characteristic polynomial is involved in an exponential form:

M∏
α=1

det(λα − X) =
∫

d[ψ̄, ψ] e
∑M
α=1 ψ̄

α
i (λα −X)i jψ

α
j . (49)

Using this formula, the LHS of (47) becomes

1

ZN

∫
d[X, ψ̄, ψ] e− 1

2gs
Tr(X−A)2+ψ̄αi (λα −M)i jψ

α
j . (50)

Then the effective action yields

Seff(X, ψ̄, ψ) = − 1

2gs
Tr(X − A)2 + ψ̄αi (λα1 − M)i jψ

α
j

= − 1

2gs
Tr(X − A − gsψ

αψ̄α)2 + Tr Aψαψ̄α + gs

2
ψαi ψ̄

α
j ψ

β
j ψ̄

β
i − tr�ψ j ψ̄ j ,

(51)

where (ψαψ̄α)i j ≡ ψαi ψ̄
α
j and (ψ j ψ̄ j )

αβ ≡ ψαj ψ̄
β
j are N × N and M × M matrices, respectively.

Integrating out the matrix X , we obtain the intermediate form of the formula, which can be
represented only in terms of the fermionic variables

e− 1
2gs

Tr A2

〈
e

1
gs

Tr X A
M∏
α=1

det(λα − X)

〉
=
∫

d[ψ̄, ψ] e
gs
2 ψ

α
i ψ̄

α
j ψ

β
j ψ̄

β
i +Tr Aψαψ̄α−tr�ψ j ψ̄ j . (52)

Since the four-point interaction is also represented in terms of the M × M matrix as Tr
(
ψαψ̄α

)2 =
− tr

(
ψi ψ̄i

)2
, this term can be removed by inserting an M × M auxiliary matrix Y :

1

ZM

∫
d[Y, ψ̄, ψ] e− 1

2gs
tr(Y−i�−igsψ j ψ̄ j )

2−tr�ψ j ψ̄ j− gs
2 tr(ψi ψ̄i)

2+Tr Aψαψ̄α

= (−1)M N

ZM

∫
dY

N∏
j=1

det(a j + iY ) e− 1
2gs

tr(Y−i�)2
. (53)

This is just the RHS of the duality formula (47).
Let us comment on the meaning of this formula in terms of the topological strings. When we apply

m distinct values to A as

A = diag(a(1), . . . , a(1)︸ ︷︷ ︸
N1

, a(2), . . . , a(2)︸ ︷︷ ︸
N2

, . . . . . . , a(m), . . . , a(m)︸ ︷︷ ︸
Nm

), (54)

stacked N branes are decoupled into N1 + · · · + Nm , as shown in Fig. 2. This means that the U(N )
symmetry of the original matrix model is broken into its subsector:

U(N ) −→ U(N1)× · · · × U(Nm). (55)

10/15

 by guest on N
ovem

ber 25, 2014
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2014, 103B04 T. Kimura

Fig. 2. When we turn on the external source A, the degenerate positions of N branes are lifted. Correspondingly,
the U(N ) symmetry is broken into U(N1)× · · · × U(Nm) by applying m distinct values to A.

We find a similar symmetry breaking in the dual representation. In particular, when we put � as

� = diag(λ(1), . . . , λ(1)︸ ︷︷ ︸
M1

, λ(2), . . . , λ(2)︸ ︷︷ ︸
M2

, . . . . . . , λ(l), . . . , λ(l)︸ ︷︷ ︸
Ml

), (56)

the U(M) symmetry is broken as

U(M) −→ U(M1)× · · · × U(Ml). (57)

We can also discuss the symmetry breaking of the fermions by seeing the fermionic effective action
in (52),

Seff(ψ, ψ̄) = gs

2
ψαi ψ̄

α
j ψ

β
j ψ̄

β
i + Tr Aψαψ̄α − tr�ψ j ψ̄ j . (58)

Although the four-point interaction term is invariant under the full symmetry of U(N )× U(M), this
symmetry is partially broken, because the source term plays the role of the non-singlet mass term. The
remaining symmetry is U(Ni )× U(M j ) for i = 1, . . . ,m and j = 1, . . . , l, as a subset of U(N )×
U(M). This fermionic excitation should be seen as a remnant of the chiral fermion associated with
the anomaly on the intersecting branes [24–28].

4.2. Bosonic formula

We can extend the duality formula (47) for the inverse characteristic polynomial [23]:

e− 1
2gs

Tr A2

〈
e

1
gs

Tr X A
M∏
α=1

det(λα − X)−1

〉
= e− 1

2gs
tr�2

〈
e

1
gs

tr Y�
N∏

j=1

det(a j − Y )−1

〉
. (59)

In this case a bifundamental bosonic field plays a similar role to the fermionic field, which is used to
represent the characteristic polynomial in the numerator. Actually, we can derive this duality formula
in almost the same manner as that discussed in Sect. 4.1.

The average shown in the LHS of (59) is explicitly written as

e− 1
2gs

Tr A2

〈
e

1
gs

Tr X A
M∏
α=1

det(λα − X)−1

〉
= 1

ZN

∫
dX

M∏
α=1

det(λα − X)−1 e− 1
2gs

Tr(X−A)2
. (60)

Since the inverse of a determinant is written as a Gaussian integral with a bosonic variable in the
bifundamental representations,

M∏
α=1

det(λα − X)−1 =
∫

d[φ, φ†] e−∑M
α=1 φ

∗α
i (λα −X)i jφ

α
j , (61)

the intermediate form, corresponding to (52), is given by∫
d[φ, φ†] e

gs
2 φ

α
i φ

∗α
j φ

β
j φ

∗β
i +Tr A φαφ∗α−tr�φ jφ

∗
j . (62)
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Then, inserting an auxiliary M × M Hermitian matrix Y in order to eliminate the four-point
interaction, it is written as

1

ZM

∫
d[Y, φ, φ†] e− 1

2gs
tr(Y−�+gsφ jφ

∗
j )

2−tr�φ jφ
∗
j + gs

2 tr(φiφ
∗
i )

2+Tr A φαφ∗α

= e− 1
2gs

tr�2

〈
e

1
gs

tr Y�
N∏

j=1

det(a j − Y )−1

〉
. (63)

This is the RHS of the duality formula (59).
The symmetry of the bifundamental bosons is partially broken, as seen in the bosonic effective

action (62), as well as the fermionic case. The difference from the previous case is the role of branes.
From the topological string point of view, the inverse of the characteristic polynomial is regarded as
the partition function of the non-compact anti-brane, which is created by the vertex operator with the

opposite charge V (x) = e
1

2gs
φ(x), instead of (12). In this case, the correlation function is written in

terms of the Cauchy transform of the corresponding orthogonal polynomial [29].

5. Discussion

In this article we have investigated the symplectic invariance of branes in the topological B-model
using its matrix model description. In particular, since two different descriptions of the non-compact
brane correspond to the characteristic polynomial and the external source in the matrix model, we
have considered the brane partition function given by inserting both of them simultaneously. We have
derived the determinantal formula for this partition function, and shown that the two descriptions of
the branes are dual to each other in the sense of the Fourier transformation. We have also shown that
the brane partition function plays the role of the τ -function, and satisfies the Toda lattice equations
in one and two dimensions. We have investigated the Gaussian matrix model as an example, and
discussed the effective action of the topological branes in terms of the bifundamental fermion/boson.

Although we have focused on the U(N ) symmetric matrix model throughout this article, we can
apply essentially the same argument to O(N ) and Sp(2N ) symmetric matrix models. In such a case
the Hermitian matrix is replaced with real symmetric and self-dual quaternion matrices, respectively.
Actually, when the Gaussian potential is assigned, one can obtain a similar duality formula [23,30,31],
which claims that the dual of the O(N ) model is the Sp(2N ) model and vice versa. This relation is
extended to an arbitrary β-ensemble, and a generic duality between β and 1/β is found. From the
string theoretical point of view, this property is naturally understood as insertion of an orientifold
plane. Correspondingly, the U(N )× U(M) bifundamental fermion/boson used in Sect. 4 is replaced
with the O(N )× Sp(2M) bifundamental variables.

Let us comment on some possible applications of the duality discussed in this article. The exact
low energy dynamics of N = 2 gauge theory, which is described by Seiberg–Witten theory, is solved
by the world volume theory of D4-branes suspended between NS5-branes, and also an M5-brane,
appearing in its M-theory lift [32]. In this case, since the geometry of this M5-brane indicates the
Seiberg–Witten curve of the corresponding N = 2 theory, the positions of branes are directly related
to the gauge theory dynamics. Thus it is expected that a nontrivial gauge theory duality is derived
from the duality between the two coordinates of branes. Actually, a similar duality is discussed along
this direction [33].

From the matrix model perspective, it is interesting to consider the ratio of the characteristic poly-
nomials in the presence of the external source [29], and its interpretation in terms of topological
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strings. The characteristic polynomial in the numerator and the denominator plays the role of the
creation operator for the brane and anti-brane. Thus the ratio should describe the pair creation and
annihilation of branes. In particular, it is expected that the scaling limit of the ratio extracts some
interesting features of the tachyon condensation in topological strings. This kind of problem is also
interesting in the context of the matrix model itself, because one can often find an universal property
of the matrix model in such a scaling limit.
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Appendix A. A formula for determinants

In order to obtain (39) and (41), it is convenient to use the following relation:

det BM(x)

det AM(x)
= M x, (A1)

where we have introduced two M × M matrices:

AM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
x N
)(0) · · · (

x N+M−2
)(0) (

x N+M−1
)(0)(

x N
)(1) · · · (

x N+M−2
)(1) (

x N+M−1
)(1)

...
...

...
...

...
...(

x N
)(M−1) · · · (

x N+M−2
)(M−1) (

x N+M−1
)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A2)

and

BM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
x N
)(0) · · · (

x N+M−2
)(0) (

x N+M
)(0)(

x N
)(1) · · · (

x N+M−2
)(1) (

x N+M
)(1)

...
...

...
...

...
...(

x N
)(M−1) · · · (

x N+M−2
)(M−1) (

x N+M
)(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A3)

Here we denote (x j )(l) = (d/dx)l x j and so on. Using the Jacobi identity (38) for det AM with
i = k = M and j = l = M − 1, we have

det AM · det AM−2 = det AM−1 · ∂x det BM−1 − ∂x det AM−1 · det BM−1. (A4)

It is convenient to rewrite this relation as

det AM · det AM−2

(det AM−1)
2 = ∂

∂x

(
det BM−1

det AM−1

)
. (A5)

This is interpreted as a remnant of the Toda lattice equation [6].
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What we have to do next is to evaluate det AM . To obtain this, we consider a ratio of determinants,
and then take the equal parameter limit, xα → x for all α = 1, . . . ,M ,

1

�(x)
det

1≤α,β≤M

(
xβ
)N+α−1 =

M∏
α=1

x N
α

xα→x−−−→ x M N . (A6)

On the other hand, it is written in another form:

1

�(x)
det

1≤α,β≤M

(
xβ
)N+α−1 xα→x−−−→

(
M∏
α=1

(α − 1)!

)−1

det
1≤α,β≤M

(
x N+α−1

)(β−1)
. (A7)

Comparing these two expressions, we obtain the following result:

det AM =
(

M∏
α=1

(α − 1)!

)
x M N . (A8)

Substituting this expression into the relation (A5), we arrive at the relation (A1).
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