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Abstract—In this paper spatially adaptive Mathematical Mor-
phology (MM) is studied for color images. More precisely,
the General Adaptive Neighborhood Image Processing (GANIP)
approach is generalized to color images. The basic principle is
to define a set of locally Color Adaptive Neighborhoods (CAN),
one for each point of the image, and to use them as adaptive
structuring elements (ASE) for morphological operations. These
operators have been applied to images in different color spaces
and compared them with other kinds of ASEs extended to
color images. Results show that the proposed method is more
respectful with the borders of the objects, as well as with the
color transitions within the image. Finally, the proposed adaptive
morphological operators are applied to the classification of color
texture images.

I. INTRODUCTION

Mathematical Morphology (MM) is a theory for image
analysis based on set theory. It has been developed from
the ideas of G. Matheron (Matheron, 1975) and J. Serra
(Serra, 1982) in the École des Mines de Paris. Initially, they
established its basis focusing on binary images, but it was later
extended to gray level images (Sternberg, 1986). Afterwards,
Haralick et al. reviewed morphological operators, as well as
their relations and properties (Haralick et al., 1987).

Mathematical morphology has been successfully used in
several applications: remote sensing (Örsan Aytekin and lkay
Ulusoy, 2011), biomedicine (Bouraoui et al., 2010), quality
control in industry (Priya et al., 2011), geoscience (Tuia et al.,
2009) or texture description (González-Castro et al., 2012) are
just some examples.

For some applications, a drawback in Mathematical mor-
phology is the fact that the structuring element (SE) used
in morphological operations classically have a fixed shape
and size, which has serious disadvantages such as creating
artificial patterns or removing significant details. In addition,
it is not straightforward to set the shape of the SE that best
suits certain image structures, as some authors have discussed
(de Ves et al., 2006). Huet and Mattioli presented a method to
generate a minimal set of SEs that left the texture invariant and
used them to carry out some morphological transformations for
texture defect detection (Huet and Mattioli, 1996). Asano and
his co-workers (Asano et al., 2003) claimed that the best SE
to compute the pattern spectrum of a texture would be the one

whose shape is the most similar to the granules within it, so
they selected the one which reduced the variance of the size
distribution.

This kind of selection of SEs makes necessary to have
a priori information about the images to be processed (e.g.
size and orientation of structures within the images). This is
a serious shortcoming, since such knowledge is not always
available in real computer vision tasks.

Some works deal with the computation of structuring el-
ements that adapt themselves to the local features of the
image at each pixel. Shih and Cheng presented an adaptive
edge-linking method based on MM which used an elliptical
SE whose orientation and size were adjusted to some local
features of the image (Shih and Cheng, 2004). Landström and
Thurley (Landström and Thurley, 2013) proposed a framework
for adaptive morphology where elliptical structuring elements
ranged from lines to disks, and varied their orientation within
the data by capturing the eigenvalues and eigenvectors of the
Local Tensor Structure. Bouaynaya and her co-workers pre-
sented an approach for image restoration and skeletonization
which used spatial-variant mathematical morphology (Bouay-
naya et al., 2006). The reader interested in more details is
referred to (Bouaynaya et al., 2008) and (Bouaynaya and
Schonfeld, 2008).

Lerallut et al. introduced the concept of morphological
amoebas, which are adaptive structuring elements whose shape
is locally adapted to the image contour variations, by means of
a weighted geodesic distance (Lerallut et al., 2007). Grazzini
and Soille also proposed a filtering approach which used
mathematical morphology aiming at edge-preserving smooth-
ing which also used structuring elements obtained by means
of a geodesic distance criterion (Grazzini and Soille, 2009).
Likewise, González-Castro et al. used combined geodesic
and Euclidean distance criteria to compute the SE at each
point of the image, in this case for classification purposes,
characterizing the textures by means of adaptive pattern spectra
(González-Castro et al., 2012). Recently, Ćurić et al. presented
salience adaptive structuring elements, that vary both their
shape and size according to the salience of edges in the image.
They are less flexible than morphological amoebas but their
shape is less affected by noise (Ćurić et al., 2012).

Debayle and Pinoli presented the so-called General Adaptive
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Neighborhood Image Processing (GANIP) approach from a
theoretical and practical point of view in (Debayle and Pinoli,
2006a) and (Debayle and Pinoli, 2006b), respectively. Within
this paradigm a General Adaptive Neighborhood (GAN) is
constituted by connected components whose point intensity
values - measured in relation to a selected criterion such as
luminance, contrast, thickness, etc. - fit within a specified range
of homogeneity tolerance. These GANs are used as adaptive
structuring elements in morphological operations.

As it has been pointed out, morphological operators were
initially defined - and, therefore, used - for binary and gray-
scale images. These operators need a total order relationship.
The extension of mathematical morphology theory to color
images is not straightforward as, due to the vectorial nature
of color data, there is not such notion. Jesus Angulo studied
such morphological color operators and proposed some total
orderings for color images (Angulo, 2007). A comprehensive
survey on different approches to multivariate MM can be found
in (Aptoula and Lefvre, 2007).

Adaptive MM for color images has been few investigated.
Morphological Amoebas (Lerallut et al., 2007) and the ap-
proach introduced by Grazzini and Soille (Grazzini and Soille,
2009) were extended to multichannel images with filtering
purposes. However, they were not used as structuring elements
in color adaptive mathematical morphology.

Debayle and Pinoli extended their GANIP framework to
color images by defining Color Adaptive Neighborhoods
(CAN) and morphological operations using the lexicographical
ordering as total order relationship (Debayle and Pinoli, 2014).

In this paper CAN-based morphological operators are de-
fined and studied with a different total order relationship. Fi-
nally, these color adaptive morphological operators are used for
defining descriptors at pixel-level for classification purposes.

II. GENERAL ADAPTIVE NEIGHBORHOOD IMAGE

PROCESSING (GANIP)

In this section a review of the so-called General Adaptive
Neighborhood Image Processing (GANIP) framework, intro-
duced by Debayle and Pinoli (Debayle and Pinoli, 2006a),
will be made.

A. An overview on the framework

In the GANIP approach a General Adaptive Neighborhood
(GAN) is defined for each point of the image to be analyzed.
A GAN is a subset of the spatial support D constituted
by connected points whose values in relation to a selected
criterion (luminance, contrast, ...) fit within a homogeneity
tolerance.

Let I be the set of gray-level images defined on the spatial

support D ⊆ R
2 and valued in an interval Ẽ ⊆ R. Thus,

I = {f | f : D → Ẽ}. Let f ∈ I be an image, and
f0 ∈ I be the so-called pilot or reference image. For each
point x ∈ D belonging to f , the GANs (denoted V f0

m (x)) are
subsets in D built upon f0 (a criterion mapping based on local
measurements such as luminance, contrast, etc.) in relation to
a homogeneity tolerance m ∈ R

+. More precisely, V f0
m (x) has

to fulfill two conditions:

• The criterion measurement of its points is close to the
one of x

∀y ∈ V f0
m (x) : |f0(y)− f0(x)| ≤ m

• The GAN is a path-connected set (according to the usual
Euclidean topology on D ⊆ R

2)

Thus, the GANs are formally defined as:

∀(m, f0, x) ∈ R
+×I×D V f0

m (x) = C{y∈D; |f0(y)−f0(x)|≤m}(x)
(1)

where CX(x) denotes the path connected component of
X ⊆ D containing x ∈ D. Therefore, it is ensured that
∀x ∈ D x ∈ V f0

m (x).
However, these GANs do not satisfy the symmetry property,

defined as:

∀(x, y) ∈ D2 y ∈ A(x) ⇐⇒ x ∈ A(y) (2)

where {A(x)}x∈D is a collection of subsets A(x) ⊆ D. For
this reason, GANs defined in equation (1) are called Weak
General Adaptive Neighborhoods (W-GANs). From a visual
point of view, the symmetry property is closely linked to the
human visual perception. Moreover, the notion of symmetry is
topologically relevant (Debayle and Pinoli, 2006a).

In order to get this property satisfied, a new set of GANs,
called Strong General Adaptive Neighborhoods (S-GANs) is
defined as:

∀(m, f0, x) ∈ R
+×I×D Nf0

m (x) =
⋃

z∈D

{V f0
m (z) | x ∈ V f0

m (z)}

(3)
The reader interested in further theoretical aspects on GANs

is referred to (Debayle and Pinoli, 2006a).

B. Application to Mathematical Morphology

The two fundamental operators in Mathematical Morphol-
ogy are erosion and dilation which are defined respectively
as:

EB(f(x)) = inf{f(w) : w ∈ B(x)} (4)

DB(f(x)) = sup{f(w) : w ∈ B̌(x)} (5)

where B(x) denotes the structuring element B whose origin
is located at point x, and B̌ stands for its reflected subset,
defined as

B̌(x) = {z | x ∈ B(z)}.

The idea behind the Adaptive Neighborhood Mathematical
Morphology is to substitute the usual structuring elements by
the adaptive ones at each pixel of the image.

In the particular case of the GANIP approach, the symmetric
S-GANs are used. Therefore GAN-based adaptive erosion and
dilation can be expressed as:

Ef0
m (f)(x) = inf

w∈N
f0
m (x)

(f(w)) (6)
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Df0
m (f)(x) = sup

w∈N
f0
m (x)

(f(w)) (7)

Thereafter, more advanced GAN morphological operators
can be defined (Pinoli and Debayle, 2009).

III. COLOR MORPHOLOGY

In this section color spaces, color orderings and finally color
mathematical morphology will be addressed.

As it has been pointed out in section II-B, morphological
operators need the definition of a total order relationship
between the points to be processed. As points in gray-level
images are valued in R, there is a natural notion of total order.
However, there is not such straightforward notion in vector
spaces. Therefore, it is difficult to order data in color images,
as each point is a vector of n components (with, generally,
n = 3).

In addition, the colors in digital images can be represented
in different color spaces (Joblove and Greenberg, 1978) and
the choice of one or other may have influence in the final
results (Busin et al., 2008; Yang et al., 2010).

A. Color spaces and distances

The most straightforward way to represent and manipulate
digital color images is using the RGB color space. However, it
has some drawbacks, such as the correlation of its components
or lack of clear human interpretation (Palus, 1998). There are
some color representations that have been created to be more
perceptually intuitive, such as the L*a*b* or polar color spaces
(i.e., HSV, HSL, HSI, etc.) (van den Broek et al., 2008). In
this paper, the the color adaptive morphological operators have
been applied on the RGB, L*a*b* and HSL color spaces. The
equations for making the transformations among them are well
known (Palus, 1998; Joblove and Greenberg, 1978), hence,
they are not included.

Let us define the notation for color images, as it was made

in section II-A. Let ẼA, ẼB and ẼC three sets of scalar values
(specifically, subsets of R), and let IC = {f | f : D → ẼABC}
be the set of color images defined in the spatial support D
and valued in the three-dimensional vector space ẼABC =
ẼA × ẼB × ẼC . In this notation, A, B and C stand for the
color components of the color space that is used (e.g. ci ∈
ẼL∗a∗b∗ ⇐⇒ ci = {(L∗i, a∗i, b∗i); L∗i ∈ ẼL∗, a∗i ∈
Ẽa∗, b∗i ∈ Ẽb∗}). The elements of IC are denoted as f , so
that the value of f at x ∈ D in the color space ABC is denoted
by f(x) = {fA(x), fB(x), fC(x)}.

Note that the sets ẼR, ẼG and ẼB , corresponding to the
color components of the channels Red, Green and Blue in the

RGB representation, as well as the sets ẼL∗, Ẽa∗ and Ẽb∗

- L*a*b* - and ẼS and ẼL corresponding to the saturation
and luminance in the HSL color space are totally ordered
sets. However, as the hue component is an angular function

defined on the unit circle C (ẼH = C ), it is not fitted with
a total ordering. Let (hi, hj) ∈ C × C , the angular difference
(Hanbury and Serra, 2001) is defined as:

hi ÷ hj =

{

|hi − hj | if |hi − hj | ≤ 180◦

360◦ − |hi − hj | if |hi − hj | > 180◦
(8)

Therefore, fixing an origin of the hues, h0, a h0-centered hue
function can be defined as fH(x) ÷ h0 (or, making an abuse
of notation, (fH ÷ h0)(x)).

Now, it is possible to define a distance measure between
colors in the different spaces. Let ci and cj be two colors. In
the case of the RGB color space, the Euclidean distance can
be used:

dRGB(ci, cj) =
√

(cRi − cRj )
2 + (cGi − cGj )

2 + (cBi − cBj )
2

(9)
The Euclidean distance in the CIE L*a*b* color space,

denoted by ∆E,

∆E =
√

(cL∗
i − cL∗

j )2 + (ca∗i − ca∗j )2 + (cb∗i − cb∗j )2 , (10)

is particularly used in the literature, although other other
distances for this color space, such as the ∆E94 (CIE, 1995)
or the ∆E2000 (CIE, 2001), have been proposed. Therefore, in
this article dL∗a∗b∗(ci, cj) ≡ ∆E.

There are some proposals in (Angulo, 2007) for color
distances in the HSL space. The most appropriate among them
seems to be:

dHSL(ci, cj) =
√

(cLi − cLj )
2 + (cSi )

2 + (cSj )
2 − 2cSi c

S
j cos(cHi ÷ cHj )

(11)
as colors are expressed in cylindrical coordinates in this space.

B. Color ordering relations and morphological operations

Morphological operators need the sets of the intensities to
be processed to hold a total order relationship. However, in
the case of color images this is not straightforward due to the
metric nature of their points.

In the literature several order relationships have been pro-
posed (i.e., marginal, lexicographical, partial or reduced or-
dering) (Barnett, 1976; Angulo, 2007). Let c1 = (cA1 , c

B
1 , c

C
1 )

and c2 = (cA2 , c
B
2 , c

C
2 ) be two colors which belong to ẼABC .

The lexicographical order on the color space ABC with the
component ordering A → B → C, denoted ≺Lex, is defined
as:

c1 ≺Lex c2 =







cA1 < cA2 or

cA1 = cA2 and cB1 < cB2 or

cA1 = cA2 and cB1 = cB2 and cC1 < cC2
(12)

The reduced ordering with respect to a reference color c0,
denoted by ≺c0 , between two points claims that

c1 ≺c0 c2 ⇐⇒ dABC(c1, c0) > dABC(c2, c0) (13)

where dABC(·, ·) represents the suitable distance between two
points in the color space ABC (see section III-A). It is easy to
demonstrate that this is a partial ordering. Intuitively, it can be
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seen that two different colors may be equidistant to a reference
color - e.g. in RGB, if c0 = (0, 0, 0), c1 = (255, 255, 0) and
c2 = (255, 0, 255) then dRGB(c1, c0) = dRGB(c2, c0) -.

A combination of both has already been proposed in (An-
gulo, 2007), called Ω-ordering, denoted as ≺Ω and shown in
equation (14).

c1 ≺Ω c2 =



















dABC(c1, c0) > dABC(c2, c0) or
dABC(c1, c0) = dABC(c2, c0) and






cA1 < cA2 or

cA1 = cA2 and cB1 < cB2 or

cA1 = cA2 and cB1 = cB2 and cC1 < cC2
(14)

The resulting color erosion and dilation of an image f ∈ IC
at point x ∈ D by means of the structuring element B ⊆ D
is given respectively by:

E∗,B(f)(x) = inf
∗
{f(w) : w ∈ B(x)} (15)

D∗,B(f)(x) = sup
∗
{f(w) : w ∈ B̌(x)} (16)

where sup∗ and inf∗ stands for the supremum and infimum ac-
cording to the total order relationship ∗ - e.g., lexicographical,
Ω-ordering -.

In relation to the total order relationships that were presented
before, the lexicographical one holds some disadvantages.
Actually, it is not clear how to decide which is the color
component with more priority (i.e., which one is more im-
portant), specially in color spaces in which two or more com-
ponents contain chromatic information (i.e., RGB or L*a*b).
In addition, results of operations which need a total ordering
relationship would be clearly influenced by this dominant color
component. Anyway, some approaches have been introduced
in the literature to limit this excessive influence given by the
priority color component (Aptoula and Lefvre, 2008).

On the other hand, Ω-ordering seems more fair, as it does
not make operations to be influenced by any color component
(except in the few cases where dABC(c1, c0) = dABC(c2, c0)).

It is true that the Ω-ordering is influenced by the choice of
reference color c0, but it is more straightforward to set c0 than
deciding which color component is more important. Actually,
regarding the definition in (14) it can be concluded that the
upper bound is c0 itself thus, for example, it seems more
intuitive to set c0 = (255, 255, 255) as the “biggest color”
in the RGB color space than setting R, G or B as the most
important color component. Therefore, the Ω-ordering is used
in all the operations in the rest of the paper.

IV. CAN-BASED MATHEMATICAL MORPHOLOGY

A. Color Adaptive Neighborhoods (CAN)

1) CAN Definition: Let x be a point of the spatial support
D, and f0 ∈ IC a color image called the pilot image. The
Color Adaptive Neighborhoods (CANs), denoted V f0

m (x), are
built upon f0 in relation with a homogeneity tolerance value
m ∈ R

+. The CANs must fulfill the same two conditions as
the GANs (see section II-A), thus, for any CAN:

• its points must have a color value close to the one of x,
and

• the set has to be path-connected, considering the usual
Euclidean topology on D ⊆ R

2.

Therefore, CANs are formally defined as:

V f0
m (x) = C{y∈D; dγ(f0(y),f0(x))≤m}(x) (17)

where CX(x) denotes the path-connected component of X
which contains x ∈ D, and dγ(f0(y), f0(x)) stands for the
distance between the color points f0(y) and f0(x) in the color
space γ. The figure 1 illustrates the CANs of three selected
points in an image.

(a) (b)

Fig. 1. The CANs (right) of three points (left) of a color image f computed
in the RGB color space with a tolerance parameter m = 40.

2) CANs properties: Color Adaptive Neighborhoods satisfy
several properties:

1) Reflexivity:

∀x ∈ D : x ∈ V f0
m (x) (18)

Proof: ∀x ∈ D and ∀m ∈ R
+ :

dγ(f0(x), f0(x)) = 0 ≤ m
2) Increasing with respect to m:

Let (m1,m2) ∈ R× R. Then:

m1 ≤ m2 =⇒ V f0
m1

(x) ⊆ V f0
m2

(x) (19)

Proof: Let P y
x be a path between x and y. So,

y ∈ V f0
m1

(x) =⇒ ∃P y
x : dγ(f0(x), f0(y)) ≤ m1

=⇒ ∃P y
x : dγ(f0(x), f0(y)) ≤ m2

=⇒ y ∈ V f0
m2

(x)

3) Equality between iso-valued points:
Let (x, y) ∈ D × D with x ∈ V f0

m (y) and f0(x) =
f0(y). Then:

V f0
m (x) = V f0

m (y) (20)

Proof: Let z be a point in V f0
m (x). There exists a

path P z
x such that ∀t ∈ P z

x : dγ(f0(x), f0(t)) ≤ m.

In addition, x ∈ V f0
m (y), so there exists a path P x

y such

that ∀u ∈ P x
y : dγ(f0(y), f0(u)) ≤ m.

Let be P z
y = P x

y ∪ P z
x , and let u ∈ P z

y . There are two
possibilities:
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v ∈ P z
x =⇒ dγ(f0(x), f0(v)) =

dγ(f0(y), f0(v)) ≤ m
v ∈ P x

y =⇒ dγ(f0(y), f0(v)) ≤ m
Anyway, ∀v ∈ P z

y : dγ(f0(y), f0(v)) ≤ m =⇒ z ∈
V f0
m (y). Therefore, V f0

m (x) ⊆ V f0
m (y).

Making a similar reasoning, and considering that ∀w ∈
P b
a : w ∈ P a

b , it can be proved that V f0
m (y) ⊆ V f0

m (x)
and, therefore, that V f0

m (x) = V f0
m (y)

B. CAN Morphology

The idea behind the Color Adaptive Neighborhood Math-
ematical Morphology, as well as in the case of the GAN
morphology (section II-B), is to replace the classic Structuring
Elements by CANs. However, if they were used directly as
Adaptive Structuring Elements (ASEs), the symmetry property
(x ∈ V f0

m (y) ⇐⇒ y ∈ V f0
m (x)) would not be satisfied.

Therefore, the color equivalent to the S-GANs are used as
ASEs:

Nf0
m (x) =

⋃

z∈D

{V f0
m (z)| x ∈ V f0

m (z)} (21)

The symmetry property is relevant for visual, topological,
morphological and practical reasons (Debayle and Pinoli,
2006a).

Thus, the elementary adaptive morphological operators are
defined as:

Ef0
m (f)(x) = inf

δ
{f(w) : w ∈ Nf0

m (x)} (22)

Df0
m (f)(x) = sup

δ

{f(w) : w ∈ Nf0
m (x))} (23)

where infδ and supδ denote the infimum and supremum in
terms of the total order relationship ≺δ .

It is important to remark the need to compute the ASEs
from the pilot image f0 (Lerallut et al., 2007), so that they
will have the same shape in successive runs. It makes possible
to properly define adaptive openings and closings:

Of0
m (f) = Df0

m (Ef0
m (f)) (24)

Cf0
m (f) = Ef0

m (Df0
m (f)) (25)

Moreover, it is possible to further combine dilations and
erosions and define other advanced operations (e.g. alternate
filters, toggle contrast, top hat, etc.).

1) Properties: Both erosion and dilation operators, using
CANs computed on the pilot image f0, define input-adaptive
adjunct morphological operators, i.e. satisfying the following
equivalence:

Let m ∈ R and (f0, f, g) ∈ IC
3. Then:

Df0
m (f) ≺δ g ⇐⇒ g ≺δ Ef0

m (g) (26)

Proof:

Df0
m (f) ≺δ g ⇐⇒ Df0

m (f)(x) ≺δ g(x), ∀x ∈ D

⇐⇒ sup
δ

{f(w) : w ∈ Nf0
m (x))} ≺δ g(x), ∀x ∈ D

⇐⇒ f(w) ≺δ g(x), ∀x ∈ D, ∀w ∈ Nf0
m (x)

⇐⇒ f(w) ≺δ g(x), ∀w ∈ D, ∀x ∈ Nf0
m (w)

⇐⇒ f(w) ≺δ inf
δ
{g(x) : x ∈ Nf0

m (w)}, ∀w ∈ D

⇐⇒ f(w) ≺δ Ef0
m (g)(w), ∀w ∈ D

⇐⇒ f ≺δ Ef0
m (g)

In addition, CAN-based morphological operators satisfy
these other properties:

1) Increasing:

f ≺δ g =⇒















Df0
m (f) ≺δ Df0

m (g)
Ef0

m (f) ≺δ Ef0
m (g)

Of0
m (f) ≺δ Of0

m (g)
Cf0

m (f) ≺δ Cf0
m (g)

(27)

2) Extensiveness

Of0
m (f) ≺δ f ≺δ Cf0

m (f) (28)

3) Distributivity with supδ , infδ

∀fi ∈ IC
n :

{

infδ{E
f0
m (fi)} = Ef0

m (infδ{fi})
supδ{D

f0
m (fi)} = Df0

m (supδ{fi})
(29)

4) Idempotence

{

Cf0
m ◦ Cf0

m (f) = Cf0
m (f)

Of0
m ◦Of0

m (f) = Of0
m (f)

(30)

5) Increasing, decreasing with respect to m
∀(m1,m2) ∈ R

+ × R
+:

m1 ≤ m2 =⇒

{

Df0
m1

(f) ≺δ Df0
m2

(f)
Ef0

m2
(f) ≺δ Ef0

m1
(f)

(31)

The proofs for these properties are not given, as they are
inferred from the adjunction property given by (26), the lattice
theory and the properties of the CANs (section IV-A2). The
interested reader is addressed to (Debayle and Pinoli, 2006a),
where similar proofs are given for GAN-based gray-level
morphology.

C. Other adaptive Structuring Elements

The behavior of Color Adaptive Neighborhoods will be
compared with other adaptive SEs defined in the literature
and their application to morphological operations (as it was
explained in section IV-B). These operators are the Morpho-
logical Amoebas, defined by Lerallut et al. (Lerallut et al.,
2007), and the “Adaptive Geodesic Neighborhoods” defined
by Grazzini and Soille (Grazzini and Soille, 2009).
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First of all, the way how they are defined for gray-level
images, and how they have been used in color images will be
summarize. Thereafter some illustrations will be given to see
how morphological operators work with each of them.

A gray-level image f can also be represented by a surface
S with two spatial coordinates in D and other coordinate cor-
responding to the gray level value of the image at these spatial
coordinates. A geodesic distance between two points (x, f(x))
and (y, f(y)) on S is the minimum cost to travel from one
to the other along the surface. Since digital images are being
considered, discrete paths have been used (continuous ones are
not suitable).

Let Pxy be a geodesic path connecting x and y. It can be
considered as a set {x1, x2, ..., xn+1}, where x1 = x and xn =
y. The cost of the geodesic path connecting two adjacent points
xi and xi+1 (with i ∈ [1, n]) must take into account both (a)
the spatial distance between them and (b) the distance between
their corresponding gray-level values f(xi) and f(xi+1). The
above mentioned spatial distance can be estimated by means
of any distance measure - Euclidean, Manhattan, Chessboard,
a weighted distance like the 〈3, 4〉 distance, etc. -. The cost,
C, of the path Pxy is

C(Pxy) =
n
∑

i=1

c(xi, xi+1)

and the geodesic distance between x and y is

d(x, y) = min
Pxy

C(Pxy)

1) Morphological Amoebas: As it is defined in (Lerallut
et al., 2007), a morphological amoeba centered in x ∈ D is:

Ar(x) = {y ∈ D : d(x, y) < r} (32)

where r is the so-called radius of the amoeba.
For morphological amoebas the cost between two adjacent

points xi, xi+1 in Pxy is defined by:

c(xi, xi+1) = ‖xi − xi+1‖R2 + λ|f(xi)− f(xi+1)| (33)

where λ > 0
In this work the considered spatial distance ‖xi − xi+1‖ is

the 〈3, 4〉 distance, and the λ parameter has been fixed to 0.25.
2) Adaptive Geodesic Neighborhoods: Grazzini and Soille

use the same principle for their locally Adaptive Geodesic
Neighborhoods (Grazzini and Soille, 2009), which will be
called AGN in this paper. The cost c(xi, xi+1) between two
adjacent pixels xi and xi+1, called ∆-time, is defined as:

c(xi, xi+1) =
1

2
|f(xi)− f(xi+1)| · ‖xi − xi+1‖R2 (34)

As the work presented in this paper deals with with color
images, the distance dABC(f(xi), f(xi+1)) for color space
ABC should be used instead of the term |f(xi)− f(xi+1)| in
both equations (33) and (34).

Following the idea stated in section IV-B, the classic Struc-
turing Elements will be replaced by Amoebas or AGNs. In

this paper, the term “classic” for morphological operations
refers to the use of non-adaptive structuring elements in such
operations.

D. Illustration

In this section some examples of color morphological op-
erations using the proposed CANs as structuring elements
are shown. With comparison purposes, these operations have
also been carried out on the same images with classic SEs,
Amoebas and AGNs. Color spaces RGB, L*a*b* and HSL
have been used. In this paper, the reference color c0 in RGB
has been valued (255, 255, 255), and the component ordering
R → G → B. In the case of the L*a*b* color space, c0 =
(100, 0, 0) and the component ordering is L∗ → a∗ → b∗.
Finally these values in HSL have been c0 = (0, 0, 1) (being
all components valued in the interval [0, 1]) and L → S → H .
In all cases the original image has been used as pilot image
(i.e., f0 = f ).

In figure 2 these four methods are compared in the dilation
operation processed in the L*a*b* color space. First of all, it
is remarkable that the classic structuring elements drastically
remove the small structures within the image, which also
happens using the morphological amoebas, although in lesser
extent. When CANs are used, these small structures and their
borders are well preserved. Indeed, they preserve the borders
of small details - such as the iris or the flowers under the eyes
- better than the AGNs.

(a) Original Image (b) Classic dilation (c) Amoeba dila-
tion

(d) AGN dilation (e) CAN dilation

Fig. 2. Dilations of the image in (a) by means of square-shaped Structuring
element with size 7 (b), morphological amoebas with radius 15 (c), AGNs
with radius 60 (d) and CANs as ASEs with m = 15 (e). The images are were
processed in the L*a*b* color space.

Figure 3 show the erosions by means of these four methods
in the HSL color space. Once again, any of the adaptive
methods preserves the inner structures and details within the
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image more than the classic one. By the way, CAN-based
erosion preserves better the borders and details of the image
than the Amoebas or AGN-based ones; for instance, CANs
are more respectful with the small details of the image (i.e.
the shape and borders of the small details of the original
image are better preserved with the CAN-based morphological
operations).

(a) Original Image (b) Classic erosion (c) Amoebas-based ero-
sion

(d) AGN-based erosion (e) CAN-based erosion

Fig. 3. Erosions of the image in (a) by means of square-shaped Structuring
element with size 7 (b), morphological amoebas with radius 20 (c), AGNs
with radius 80 (d) and CANs as ASEs with m = 30 (e). The images are were
processed in the HSL color space.

Figures 4 and 5 show the openings and closings processed
within the color spaces RGB and L*a*b*. In both figures,
the opening and closing by reconstruction (figures 4(c) and
5(c) respectively) have also been computed for the sake of
comparison. These operations do not preserve small details
(details at the side of the mountain in the first case, or the
horse and the man in the second). According to the comparison
between the adaptive operations, the same remarks than in
the case of the erosions and dilations can be made (which is
specially noticeable in the example of the closing (figure 5).

V. APPLICATION TO IMAGE CLASSIFICATION

The proposed CAN-based color mathematical morphology
has been applied to pixel-level classification in images of
different textures. Concretely, each pixel has been described
and each one has been assigned to a class by means of a
neural network classifier. The next sections describe the im-
ages, descriptors, classification stage and, finally, the obtained
results.

A. Texture image database

Five different classes have been classified, all of them
extracted from the MIT Vision Texture (VisTex) database.
Textures in this database are taken from different materials and
divided into several categories. Some of them contain different

(a) Original Image (b) Classic opening

(c) Opening by reconstruc-
tion

(d) Amoebas-based opening

(e) AGN-based opening (f) CAN-based opening

Fig. 4. Openings of the image in (a) by means of square-shaped Structuring
element with size 7 (b), opening by reconstruction with a square-shaped SE
of size 5 (c), morphological amoebas with radius 30 (d), AGNs with radius
90 (e) and CANs as ASEs with m = 30 (f). The images are were processed
in the RGB color space.

types of textures, so they have been divided them into sub-
categories, as it was done in (González-Castro et al., 2012).
An example of the sub-categories that have been used in this
experiment is shown in figure 6.

Each original image (whose spatial resolution is 512× 512
pixels) was divided into 25 sub-images of 102 × 102 pixels
each one which are not overlapped among themselves, as was
made in (González-Castro et al., 2012). Thereafter, five images
from each class were extracted randomly to be used in the
experiment.

B. Pixel-level description

The descriptor of each pixel is formed by a concatenation of
(1) its color components in the original image and (2) the color
components of that point in successive dilations and erosions
(i.e., the dilations and erosions using structuring elements of
different sizes).

Four different descriptors have been assessed, changing
the method (i.e., the kind of structuring element) to get the
erosions and dilations. They were carried out using (i) a
classic (i.e., non adaptive) square-shaped structuring element,
(ii) CANs (section IV-B), (iii) morphological amoebas and (iv)
AGNs (section IV-C). In all cases 20 dilations and 20 erosions
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(a) Original Image (b) Classic closing

(c) Closing by reconstruction (d) Amoebas-based closing

(e) AGN closing (f) CAN-based closing

Fig. 5. Closings of the image in (a) by means of square-shaped Structuring
element with size 7 (b), closing by reconstruction with a square-shaped SE of
size 5 (c), morphological amoebas with radius 15 (d), AGNs with radius 60
(e) CANs as ASEs with m = 15 (f). The images are were processed in the
L*a*b* color space.

have been carried out. Therefore, each pixel is described by
means of 123 features.

Therefore, the descriptor of each pixel x in D is:

Xn(x) =
[

f(x), Ef0
p1
(f)(x), Df0

p1
(f)(x), ..., Ef0

pn
(f)(x), Df0

pn
(f)(x)

]

(35)
where f(x) = {fA(x), fB(x), fC(x)} (i.e., the values of the
color components A, B and C at x of the image f ), and
Ef0

pi
(f)(x) (resp. Df0

pi
(f)(x)) represents the values of the color

components at x of the erosion (resp. dilations) of f with a
structuring element (which may be classic, Amoeba, AGN or
CAN) with size, radius or tolerance, respectively, pi.

In this paper, the descriptor X20 has been used to describe
the pixels. However, the values of pi that have been taken are
different for each method. Concretely, they have been set to:

• Classic: The sizes of the SE are [p1 = 1, p2 =
2, ..., p20 = 20].

• CANs: The values for m change from 5 to 100 in steps
of 5: [p1 = 5, p2 = 10, ..., p20 = 100].

• Amoebas: The radii r, also change from 5 to 100 in
steps of 5: [p1 = 5, p2 = 10, ..., p20 = 100].

• AGNs: The radii r changes from 10 to 200 in steps of
10: [p1 = 10, p2 = 20, ..., p20 = 200] .

(a) Wicker (FaWi) (b) Wool (FaWo) (c) Beans (FoBe)

(d) Sweet chips
(FoSw)

(e) Stone (Stone)

Fig. 6. Examples of used the VisTex sub-categories. The name that have
been given to the class is written between brackets

These changes are due to the differences in size of the ANs
in relation to their parameters parameters, as it is shown in
figure 7. It is necessary to point out, however, that several
values for the above mentioned parameters (in order to make
the sizes to change) have been tried, and the results were
comparable or worse to the ones shown in this paper.

Fig. 7. Examples of CANs with m = 100 (top), Morphological Amoebas
with r = 100 (middle) and AGNs with r = 200 (bottom) of the classes FaBa
(left), FoBe (center) and FoSw (right)

Since the color components of spatially contiguous pixels
may be similar, as well as the colors of some dilations and
erosions (e.g. the ones carried out with SEs of similar sizes),
there might be a significant volume of highly correlated data.
By the way, processing high dimensional data is computa-
tionally expensive and, due to this possible correlation, also
inefficient. Hence, it is very important to extract uncorrelated
components from the data, to be used as the final descriptors.
In this application a Principal Component Analysis (PCA) has
been employed to achieve this data dimensionality reduction
in relation to the original descriptors (which had a dimension
of 123). Therefore, the experiment was carried out fixing the
number of principal components (PC) to be extracted from the
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original descriptors from 1 to 20, in order to assess the impact
that the number of components might have on the classification
results.

C. Classification

All these descriptors have been classified by means of a
feed-forward Artificial Neural Network (ANN). In this exper-
iment a network with one hidden layer and a logistic sigmoid
activation function for the hidden and the output layers have
been employed. Learning of the network was carried out with a
momentum and adaptive learning rate algorithm. The number
of neurons in the hidden layer have been set to 10 and the
training was carried out during 400 cycles.

The training of the network has been carried out using the
descriptors of pixels of 3 images randomly chosen per class
(thus, a 60% of the data), and the pixels from the other 2 were
used as test set. This process has been repeated 10 times, in
order to avoid possible random effects. The presented results
are an average of these 10 runs. Data were normalized so that
they have mean zero and standard deviation one.

D. Results

The description has been carried out as it was explained
in section V-B in the color spaces RGB, L*a*b* and HSL,
extracting a number of principal components from the original
descriptors varying between 1 and 20 and making the classifi-
cations for each one of them (therefore, 20 classifications per
method at each color space have been carried out). In all cases
the confusion matrices of the 5 classes have been computed,
as well as the overall hit rate. For the sake of extension only
the confusion matrices of the best method in each color space
are shown.

In addition, figure 8 depicts a graphic example of the
classification results with the different methods. Each pixel of
the images in the first column has been assigned to a class
(represented by a different color) by the Neural Network,
using each of the assessed methods (columns 2 to 5). The
description in this example was done in the RGB color space.
In accordance with the overall results for this color space (Fig.
9(a)), CANs obtain the best classifications (being the FoSw
class the one where there are more misclassified pixels), while
AGNs obtain the worst (which is specially remarkable in the
FaWo class).

Figure 9 plots the overall classification accuracy vs. the
number of principal components extracted from the descriptors
in the color spaces RGB, L*a*b* and HSL.

First of all, focusing on the results in the RGB color space,
all descriptors have increasing hit rates up to a number of
principal components between 6 and 9 (depending of the
descriptor). Descriptors based on the proposed CANs obtain
the best results in all scenarios between 3 and 5 principal
components and from 8 on, where the accuracy is always
higher than 94%. The maximum hit rate (96.16%) is reached
when 15 principal components were extracted. It is specially
remarkable the poor performance of the AGN, whose accura-
cies are always between about 83% and 89% (when extracting

Fig. 8. Pixels from the image on the left, characterized by each descriptor,
assigned by the classifier to a different class. The green, red, blue, gray and
yellow colors stand for the FaBa, FaWo, FoBe, FoSw and Stone classes,
respectively

more than 10 PCs). Focusing on the scenarios of 10 or more
principal components, the amoeba-based descriptors and the
descriptors based on the classic SEs are the second or third
best ones depending on the number of principal components.
However, regarding their maxima, amoebas perform better
(94.1% with 15 PCs, against 92.9% with 10 PCs).

In the case of the HSL color space, CANs also obtain the
best performances in almost all scenarios from 4 PCs on,
although the hit rates are lower. In this case, its best accuracy
is obtained extracting 8 principal components (93.28%). Once
again, the worst results are obtained by AGNs. It is remarkable
that in this color space and with more than 15 principal
components, the classic SEs, CANs and Amoebas show very
similar performances.

It is specially remarkable the poor performance of CANs in
the L*a*b* color space, as well as the good one of AGNs and
Amoebas (they are actually the best ones extracting 10 and 11
principal components with 96.57% and 96.71% respectively).

The confusion matrices of the classifier generated by the
descriptor for the method which achieves the best accuracy on
RGB, L*a*b* and HSL color spaces are shown in tables I,
II and III, respectively. An initial conclusion upon observing
them is that, in accordance with the results commented previ-
ously, the rates of misclassification upon the different classes
are low, being the worst in the HSL color space. In accordance
with what was seen in Fig. 8, the class FaWo is the one with
less pixels well classified, in all color spaces (always less than
18.8%)

Finally, in order to assess the impact that the PCA has on
the data the classification was also made with no previous
extraction of principal components (i.e. on the vectors of 123
features). The results of these classifications are shown in table
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(a) RGB

(b) L*a*b*

(c) HSL

Fig. 9. Curves of the hit rate vs. the number of principal components of the
the assessed methods in the color spaces RGB (a), L*a*b* (b) and HSL (c).

TABLE I. CONFUSION MATRIX OF THE CLASSIFICATION OF 15
PRINCIPAL COMPONENTS EXTRACTED FROM THE CAN-BASED

DESCRIPTORS IN THE RGB COLOR SPACE.

True Target Class

FaBa FaWo FoBe FoSw Stone

P
re

d
ic

te
d

FaBa 19.36% 0.03% 0.08% 0.17% 0.00%

FaWo 0.03% 19.27% 0.18% 0.49% 0.00%

FoBe 0.04% 0.46% 19.59% 0.75% 0.00%

FoSw 0.57% 0.23% 0.15% 18.05% 0.10%

Stone 0.00% 0.01% 0.00% 0.54% 19.90%

IV
In the RGB color space the best results are achieved by the

CAN-based descriptors, although the accuracy is lower than
when the PCA was done (which was around 96% with 15
PCs). In the case of L*a*b*, the maximum accuracy is still
reached by AGN-based descriptors, although this difference is

TABLE II. CONFUSION MATRIX OF THE CLASSIFICATION OF 11
PRINCIPAL COMPONENTS EXTRACTED FROM THE AGN-BASED

DESCRIPTORS IN THE L*A*B* COLOR SPACE.

True Target Class

FaBa FaWo FoBe FoSw Stone

P
re

d
ic

te
d

FaBa 19.75% 0.23% 0.15% 0.06% 0.00%

FaWo 0.14% 18.73% 0.24% 0.64% 0.00%

FoBe 0.07% 0.30% 19.47% 0.26% 0.00%

FoSw 0.04% 0.69% 0.10% 18.79% 0.03%

Stone 0.00% 0.05% 0.04% 0.25% 19.97%

TABLE III. CONFUSION MATRIX OF THE CLASSIFICATION OF 8
PRINCIPAL COMPONENTS EXTRACTED FROM THE CAN-BASED

DESCRIPTORS IN THE HSL COLOR SPACE.

True Target Class

FaBa FaWo FoBe FoSw Stone

P
re

d
ic

te
d

FaBa 19.08% 0.20% 0.30% 0.49% 0.00%

FaWo 0.02% 18.57% 0.87% 0.89% 0.00%

FoBe 0.81% 0.81% 18.58% 1.23% 0.05%

FoSw 0.09% 0.42% 0.25% 17.15% 0.05%

Stone 0.00% 0.00% 0.00% 0.24% 19.90%

TABLE IV. ACCURACY (IN %) OF THE CLASSIFICATIONS MADE ON

THE DESCRIPTORS WITH NO PREVIOUS EXTRACTION OF PRINCIPAL

COMPONENTS IN RGB, L*A*B* AND HSL.

Classic Amoebas AGN CAN

RGB 90.96 87.19 79.18 92.90

L*a*b* 90.82 93.43 95.27 79.23

HSL 92.59 91.72 84.78 96.12

not so high (95.27% against 96.7% when PCA was carried
out). It is remarkable the performance in the HSL color space,
where the accuracies are higher than when PCA was made on
the data. This is very useful, as it allows to avoid the decision
of how many principal components to take. This is maybe due
to the higher correlation that the R, G and B components have
(Palus, 1998) compared with H, S and L ones.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work the GANIP approach (Debayle and Pinoli,
2006a), developed for gray-scale images, has been extended
to color images. Therefore, the Color Adaptive Neighborhood
(CAN) framework has been presented and its basis settled
(i.e., comparing some measures to compute distances in color
images). In addition, the way to apply the CANs to Mathemat-
ical Morphology has been shown. As a possible application
of CAN-based mathematical morphology, a pixel description
application based on it has also been shown.

In this context the performance of these morphological
operators with classic SEs and other two kind of adaptive
SEs found in the literature: morphological amoebas (Lerallut
et al., 2007) and adaptive geodesic neighborhoods (Grazzini
and Soille, 2009) have been compared in different color spaces
both in morphological filtering operations and with pixel
classification purposes. In the first case, it has been shown how
CANs preserve the contrast and details of the images without
damaging their color transitions. With respect to classification,
even if the AGN-based description method performs quite well
in L*a*b* (accuracy of 96.71%), the CAN-based descriptors in
HSL are very convenient, since they achieve a similar accuracy
(96.12%) without need to carry out a previous PCA, so it
avoids the tuning of the number of principal components.
These results show that CAN-based descriptors in the HSL
color space might be useful, for example, for segmentation or
remote sensing applications (Shi et al., 2013).

For future work, it is necessary to tackle the reasons for the
differences in performance in the classification using the de-
scriptors extracted from the RGB or HSL color spaces and the
L*a*b*. In addition, the development of CAN-based adaptive
morphological operators in the CoLIP framework (Gouinaud
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et al., 2011) will be addressed, both as morphological filters
and with description purposes.
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