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The iterative reweighted Mixed-Norm Estimate

for spatio-temporal MEG/EEG source reconstruction
Daniel Strohmeier, Jens Haueisen, and Alexandre Gramfort

Abstract—Source imaging based on magnetoencephalography
(MEG) and electroencephalography (EEG) allows for the non-
invasive analysis of brain activity with high temporal and good
spatial resolution. As the bioelectromagnetic inverse problem is
ill-posed, constraints are required. For the analysis of evoked
brain activity, spatial sparsity of the neuronal activation is a
common assumption. It is often taken into account using convex
constraints based on the l1-norm. The resulting source estimates
are however biased in amplitude and often suboptimal in terms
of source selection due to high correlations in the forward model.
In this work, we demonstrate that an inverse solver based on a
block-separable prior with a Frobenius norm per block and a
l0.5-quasinorm over blocks addresses both of these issues. For
solving the resulting non-convex optimization problem, we pro-
pose the iterative reweighted Mixed Norm Estimate (irMxNE),
i.e., an optimization scheme based on iterative reweighted convex
surrogate optimization problems, which are solved efficiently
using a block coordinate descent scheme and an active set
strategy. We provide empirical evidence based on simulations
and analysis of MEG data that the proposed method improves
on MxNE in terms of amplitude bias and support recovery.

Index Terms—Electrophysical imaging, brain, inverse meth-
ods, magnetoencephalography (MEG), electroencephalography
(EEG), sparse structured priors.

I. INTRODUCTION

Source imaging with magnetoencephalography (MEG) and

electroencephalography (EEG) delivers insights into the active

brain with high temporal and good spatial resolution in a non-

invasive way. It is based on solving the bioelectromagnetic

inverse problem, which is a high dimensional ill-posed

regression problem. In order to render its solution unique,

constraints have to be imposed reflecting a priori assumptions

on the neuronal sources. In the past, several non-linear

source reconstruction methods were proposed, which have in

common to favor sparse focal source configurations to explain

the MEG/EEG signals [1]–[5]. Among these is regression

with l1-norm regularization, known as LASSO in statistics [6]

and Minimum Current Estimate (MCE) in the MEG/EEG

literature [1], [7]. It is a convex surrogate for the optimal,
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but NP hard regularized regression problem with a l0-norm

penalty. Due to its convexity, this approach allows for fast

algorithms with guaranteed global convergence. However,

the resulting source estimates are biased in amplitude and

often suboptimal in terms of support recovery [8]. In the

case of MEG/EEG, it is impeded particularly by the spatial

correlation of the forward model. In contrast, regularized

regression based on non-convex penalties, such as logarithmic

or lp-quasinorm penalties with 0 < p < 1, yields sparser

and less biased estimates than a standard LASSO [8] at the

expense of convexity. The resulting optimization problem can

be solved e.g. by iterative reweighted LASSO [8], [9].

Applying the aforementioned approaches to MEG/EEG

inverse problems results in computing the source estimate

for each time point independently discarding the temporal

characteristics of neuronal activation. To estimate sources

at multiple time points jointly, the Mixed-Norm Estimate

(MxNE) was proposed in [10]. It is a variant of Group

LASSO [11], i.e., regularized regression with a block-

separable l2,1-mixed-norm penalty, adapted for MEG/EEG

inverse problems. In MxNE, each block represents the source

activation at a specific source location. A Frobenius norm per

block imposes stationarity on the source estimates, while a

l1-norm penalty over blocks promotes spatial sparsity [10],

[12]. Due to this l1-norm, MxNE estimates suffer however

from the same problems as the standard LASSO in terms of

amplitude bias and support recovery.

To address these limitations, we propose a MEG/EEG

inverse solver based on a non-convex block-separable

regularization functional, in which the l1-norm used in MxNE

is replaced by a l0.5-quasinorm [13]. A preliminary version

of this work was presented in [14]. In this paper, we start

by introducing sparse MEG/EEG source imaging based on

the proposed block-separable penalty and then propose an

iterative optimization strategy based on reweighted MxNE to

solve the non-convex optimization problem. We show that

each weighted MxNE iteration can be solved efficiently by

combining a block coordinate descent scheme [13], [15],

[16] and an active set strategy with convergence controlled

by means of the primal-dual gap [10], which is applicable

to MEG/EEG inverse problems with and without orientation

constraints. Finally, we provide empirical evidence using

simulations and analysis of two experimental MEG data sets

that the proposed method outperforms MxNE in terms of

active source identification and amplitude bias, while running

in a few seconds.
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Notation: We mark vectors with bold letters, a ∈ R
N , and

matrices with capital bold letters, A ∈ R
N×M . The transpose

of a vector or matrix is denoted by a
T and A

T . The scalar a[i]
is the ith element of a. A[i, :] corresponds to the ith row and

A[:, j] to the jth column of A. ‖A‖Fro indicates the Frobenius

norm, and ‖A‖ the spectral norm of a matrix.

II. MATERIALS AND METHODS

A. The inverse problem

The MEG/EEG forward problem describes the linear rela-

tionship between the MEG/EEG measurements M ∈ R
N×T

(N number of sensors, T number of time instants) and the

source activation X ∈ R
(SO)×T (S number of source loca-

tions, O degrees of freedom of the current dipole per source

location. O is typically 3 when source orientation is unknown

or 1 when orientation is postulated, e.g. using the cortical

constraint [17]). The model then reads:

M = GX+E , (1)

where G ∈ R
N×(SO) is a known instantaneous mixing

matrix referred to as the gain matrix, which links source and

sensor signals, and E is the measurement noise, which is

assumed to be additive, white, and Gaussian, E[:, j] ∼ N (0, I)
for all j. This assumption is acceptable on the basis of a

proper spatial whitening of the data using an estimate of the

noise covariance [18]. As SO ≫ N , the MEG/EEG inverse

problem is ill-posed and constraints have to be imposed on

the source activation matrix X to render the solution unique.

By partitioning X into S blocks Xs ∈ R
O×T , where each Xs

represents the source activation at a specific source location s,

we can apply a block-separable penalty term P(X) combining

a Frobenius norm per block and a l0.5-quasinorm penalty over

blocks. The optimization problem reads:

X̂ = argmin
X

1

2
‖M−GX‖2Fro + P(X)

X̂ = argmin
X

1

2
‖M−GX‖2Fro + λ

S∑

s=1

√
‖Xs‖Fro ,

(2)

where λ > 0 is the regularization parameter balancing the

data fit and penalty term. Similar to the constraint applied

in MxNE [10], P(X) promotes source estimates with only a

few focal sources that have non-zero activations during the

entire time interval of interest. Here, the Frobenius norm per

Xs, combining l2-norm penalties over time and orientation

as proposed in [2], [7], [12], imposes stationarity, while the

l0.5-quasinorm penalty promotes spatial sparsity.

B. Iterative reweighted Mixed Norm Estimate

The proposed block-separable regularization functional is an

extension of the l2,0.5-quasinorm penalty used for regularized

regression in [8], [9], [13]. These works showed, based on the

framework of Difference of Convex functions programming or

Majorization-Minimization algorithms, that the resulting opti-

mization problems can be solved by iteratively solving convex

surrogate optimization problems. Each iteration is equivalent

to a weighted Group LASSO with weights being defined

by the previous estimate. For minimizing Eq. (2), we hence

propose the iterative reweighted MxNE (irMxNE) optimization

scheme. Given X̂
(k−1), the source estimate obtained in the

(k-1)th iteration, the X̂
(k) is computed using Eq. (3).

X̂
(k) = argmin

X

1

2
‖M−GX‖2Fro + λ

∑

s

‖Xs‖Fro

2

√∥∥∥X̂(k−1)
s

∥∥∥
Fro

= argmin
X

1

2
‖M−GX‖2Fro + λ

∑

s

1

w(k)[s]
‖Xs‖Fro

(3)

Due to the non-convexity of the optimization problem in

Eq. (2), the results depend on the initialization of w
(k)[s].

In this paper, we use w
(1)[s] = 1 for all s as proposed in

[9]. Consequently, the first iteration of irMxNE is equivalent

to solving a standard MxNE problem. As each iteration of

the iterative scheme in Eq. (3) solves a convex problem with

guaranteed global convergence, the initialization of X has no

influence on the final solution. Intuitively, sources with high

amplitudes in the (k-1)th iteration will be less penalized in

the kth iteration and therefore further promoted.

For sources with ‖X̂
(k)
s ‖Fro = 0, this optimization problem

has an infinite regularization term. Typically, a smoothing

parameter ǫ is added to avoid weights to become zero [8],

[9]. Here, we reformulate the weighted MxNE subproblems

to apply the weights by scaling the gain matrix as given in

Eq. (4).

X̃
(k) = argmin

X

1

2
‖M−GW

(k)
X‖2Fro + λ

∑

s

‖Xs‖Fro

= argmin
X

1

2
‖M−G

(k)
X‖2Fro + λ

∑

s

‖Xs‖Fro

(4)

with W
(k) ∈ R

SO×SO being a diagonal matrix, which is

computed according to Eq. (5):

W
(k) = diag(w(k) ⊗ 1(O))

with w
(k)[s] = 2

√∥∥∥X̂(k−1)
s

∥∥∥
Fro

,
(5)

where 1(O) ∈ R
O is a vector of ones and ⊗ is the Kronecker

product. In each MxNE iteration, we restrict the source space

to sources locations with w
(k)[s] > 0, which reduces the

computation time.

The irMxNE optimization scheme solves the non-convex

optimization problem in Eq. (2) by solving convex surrogate

optimization problems. The global convergence of the kth

weighted MxNE subproblem can hence be controlled by

computing the primal-dual gap η(k) [10]

η(k) = Fp

(
X̃

(k),G(k)
)
−Fd

(
Ỹ

(k),G(k)
)
≥ 0, (6)

where Ỹ
(k) = M −G

(k)
X̃

(k) is the dual variable associated

to X̃
(k), Fp (X,G) = 1

2‖M −GX‖2Fro + λ
∑

s ‖Xs‖Fro the

primal problem (cf. Eq. (4)), and Fd (Y,G) the associated

dual problem. Using the Fenchel-Rockafellar duality theorem

[19] and noting that the Fenchel conjugate of a norm is the
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indicator function of its dual norm, the dual problem can be

computed as follows [10]:

Fd (Y,G) = −
1

2
‖Y‖+Tr

((
Y
)T

M

)

with Y = Y/max
(
max

s

(∥∥GT
s Y

∥∥
Fro

)
/λ, 1

)
,

where Gs ∈ R
N×O is the block of G corresponding to

source location s. In practice, we terminate the optimization

of the kth MxNE subproblem, when the current solution X̃
(k)

is ǫ-optimal with ǫ = 10−6, i.e., η(k) < 10−6. According to

Gramfort et al. [10], this is a conservative choice provided

that the data is scaled or normalized by pre-whitening. In

order to compute the final estimate X̂
(k), we finally need to

rescale X̃(k) with W
(k) after convergence, X̂(k) = W

(k)
X̃

(k).

For solving the weighted MxNE subproblems, we apply

a block coordinate descent (BCD) scheme [15], which, for

the problem at hand, converges faster than the Fast Iterative

Shrinkage-Thresholding algorithm (FISTA) proposed earlier

in [10] (cf. section III-B). A BCD scheme for solving the

Group LASSO was proposed in [13], [16]. The subproblem per

block has a closed form solution, which involves applying the

group soft-thresholding operator, the proximity operator as-

sociated to the l2,1-mixed-norm [10]. Accordingly, the closed

form solution for the BCD subproblems solving the MxNE

problem can be derived, which is given in Eq. (7).

X
(k)

s = X
(k−1)
s + µ[s]GT

s

(
M −GX

(k−1)
)

X̃
(k)
s = X̃

(k)
s max


1−

µ[s]λ

max
(∥∥∥X(k)

s

∥∥∥
Fro

, µ[s]λ
) , 0




(7)

The step length µ[s] for each BCD subproblem is deter-

mined by µ[s] = L−1
s with Ls = ‖GT

s Gs‖ being the Lipschitz

constant of the data-fit gradient restricted to the sth source

location. This step length is typically larger than the step length

applicable in iterative proximal gradient methods, which is

upper-bounded by the inverse of L = ‖GT
G‖. Pseudo code

for the BCD scheme is shown in Algorithm 1.

Algorithm 1 MxNE with BCD

Require: M, G, X, µ, λ > 0, ǫ > 0, and S.

1: Initialization: R = M−GX, η = Fp (X)−Fd (R)
2: while η ≥ ǫ do

3: for s = 1 to S do

4: X̂s ←− Solve Eq. (7) with X, µ, and M

5: R = R −Gs

(
X̂s −Xs

)

6: Xs = X̂s

7: end for

8: η = Fp(X̂,G)−Fd(R,G)
9: end while

The BCD scheme is typically applied with a cyclic sweep

pattern, i.e., all blocks are updated in each BCD iteration.

However, due to the constraint promoting spatial sparsity,

most of the blocks should stay at zero. The computation

time can thus be improved by using data-dependent sweep

patterns (such as in Greedy Block Coordinate Descent [20]) or

active set strategies [21], [22], which are designed to primarily

update sources, which are likely to be active, while keeping

the remaining sources at zero. The active set strategy, which

we apply here, starts by estimating an initial active set A
by finding the V (we use V = 10) sources violating the

Karush-Kuhn-Tucker (KKT) optimality conditions [10], [22]

the most. Subsequently, we estimate X̂
A by solving Eq. (4)

using G
A, i.e., G restricted to A, with convergence controlled

by means of the primal-dual gap. After convergence, we check

if X̂ with X̂s = X̂
A
s if s ∈ A, else 0 is ǫ-optimal for the full

optimization problem (without restricting the source space to

A) by computing the corresponding primal-dual gap. If this is

not the case, we update A by computing the support of X̂ and

adding at most V sources by re-evaluating the KKT optimality

conditions and repeat the estimation of X̂
A with warm start.

Pseudo code for the proposed MxNE solver is provided in

Algorithm 2.

Algorithm 2 MxNE-BCD with active set strategy

Require: M, G, λ > 0, ǫ > 0, and S.

1: Initialization: X = 0, R = M, η = Fp (X)−Fd (R)
2: for s = 1 to S do

3: µ[s] = ‖GT
s Gs‖

−1

4: end for

5: A ⊆ {s | ‖GT
s R‖Fro > λ}

6: while η ≥ ǫ do

7: Define G
A and X

A by restricting G and X to A
8: X̂

A ←− Solve Algorithm 1 with µ, GA and X0 = X
A

9: X̂ = X̂
A for s ∈ A, else 0

10: R = M−GX̂

11: η = Fp(X̂,G)−Fd(R,G)
12: A∗ ⊆ {s | ‖GT

s R‖Fro > λ}
13: A = supp(X̂) ∪ A∗

14: end while

We terminate irMxNE when max(|X̂(k) − X̂
(k−1)|) < τ

with a user specified threshold τ , which we set to 10−6 in

practice. The proposed optimization algorithm for irMxNE is

fast enough to allow its usage on real MEG/EEG problems in

the context of interactive data analysis. Full pseudo code for

irMxNE is provided in Algorithm 3.

Algorithm 3 Iterative reweighted MxNE

Require: M, G, λ > 0, ǫ > 0, τ > 0, and K .

1: Initialization: W(1) = I, X̂(1)

2: for k = 1 to K do

3: G
(k) = GW

(k)

4: X̃
(k) ←− Solve Algorithm 2 with G

(k) and X
(k)

5: X̂
(k) = W

(k)
X̃

(k)

6: if max(|X̂(k) − X̂
(k−1)|) < τ then

7: break

8: end if

9: W
(k+1) ←− Solve Eq. 5 with X̂

(k)

10: end for
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C. Source constraints and bias

1) Source orientation: The proposed BCD scheme

is applicable for MEG/EEG inverse problems with and

without orientation constraint. For imposing a loose

orientation constraint [23], we apply a weighting matrix

S = diag([1, ρ, ρ]) to each block of the gain matrix Gs with

Gs[:, 1] corresponding to the dipole orientated normally to the

cortical surface, and Gs[:, 2] and Gs[:, 3] to the two tangential

dipoles. The weighting parameter 0 < ρ ≤ 1 controls up to

which angle the rotating dipole may deviate from the normal

direction. The orientation-weighted gain matrix G̃ is hence

defined as G̃ = G
(
I(S) ⊗ S

)
, where I(S) ∈ R

S×S is the

identity matrix. When the source orientation is postulated a

priori (e.g. normal to the cortical surface), each block Xs

corresponds to the activation of a fixed dipole. Consequently,

the Frobenius norm per block can be replaced by the l2-norm

of the source activation of the corresponding fixed dipole.

2) Depth bias compensation: Due to the attenuation

of the bioelectromagnetic field with increasing distance

between source and sensor, deep sources require higher

source amplitudes to generate sensor signals of equal strength

compared to superficial sources. Consequently, inverse

methods, which are based on constraints penalizing the

source amplitudes, have a bias towards superficial sources. In

order to compensate this bias, each block of the gain matrix

is commonly normalized a priori, e.g. by its Frobenius or

spectral norm. Here, we apply the depth bias compensation

proposed in [24], which is based on computing a source

covariance estimate C = G
T (GG

T )−1
G and weighting the

gain matrix per source location with the inverse matrix square

root of the corresponding O ×O diagonal block of C.

3) Amplitude bias compensation: Source activation

estimated with source reconstruction approaches based on

lp-quasinorms with 0 < p ≤ 1, such as MxNE and irMxNE,

show a varying degree of amplitude bias due to the inherent

shrinkage. The amplitude bias is typically compensated by

computing the least squares fit after restricting the source

space to the support of X̂, which is typically an over-

determined optimization problem. However, this procedure

modifies the time courses of the estimated neuronal activation.

In contrast, we apply the debiasing approach proposed in [12],

which preserves the source characteristics and orientations

estimated with irMxNE by estimating a scaling factor for

each active source.

D. Simulation setup

To provide a reproducible and reasonably fast comparison

of MxNE and irMxNE, we generated a simulation data set

with 20 sensors and 200 sources with fixed orientation. Active

sources were randomly selected to be active, each with a

random activation (20 time samples) drawn from a standard

normal distribution. The simulations were performed with 2

and 4 active sources. For the first simulation (uncorrelated

design), the columns of the linear forward operator were

drawn from a multivariate standard normal distribution and

normalized to 1, to make the comparison independent of the

forward model and the sources’ spatial configuration. For the

second simulation (correlated design), we built a correlated

gain matrix from a multivariate normal distribution N (0, Σ)
with Σ being a Toeplitz matrix generated from a vector v

with vk = 0.95k−1, k = 1 : 200. White Gaussian noise

was added to the sensor signals to set the signal-to-noise

ratio (SNR), which we define here as ‖Msignal‖2Fro/‖Mnoise‖2Fro.

For comparing the support recovery, we compute the F1-score

according to Eq. (8), where A(X) is the active set of X with

A(X) = {j : ‖Xj,.‖2 > 0}, |A(X)| the number of elements

in A(X), X
∗ the simulated source activation, and X̂ the

estimated source activation.

F1 = 2
|A(X̂) ∩A(X∗)|

|A(X̂)|+ |A(X∗)|
(8)

E. Experimental MEG data

We evaluate the performance of MxNE and irMxNE on two

MEG data sets, auditory evoked fields (AEF) and somatosen-

sory evoked fields (SEF), recorded using a 306-channel Elekta

Neuromag Vectorview system (Elekta Neuromag Oy, Helsinki,

Finland). A detailed description of the data and paradigms

can be found in [25]–[27]. For the auditory data, we report

results for AEFs evoked by left auditory stimulation with pure

tones of 500 Hz. The analysis window for source estimation

was chosen from 50 ms to 200 ms containing the N100m

component. For the somatosensory data, we analyzed SEFs

evoked by bipolar electrical stimulation (0.2 ms in duration)

of the left median nerve. We used an analysis window from

18 ms to 200 ms. Following the standard pipeline from the

MNE software [28], signal preprocessing for both data sets

consisted of signal-space projection for suppressing envi-

ronmental noise, and baseline correction using pre-stimulus

data (from -200 ms to -20 ms). Epochs with peak-to-peak

amplitudes exceeding predefined rejection parameters (3 pT

for magnetometers, 400 pT/cm for gradiometers, and 150 V for

EOG) were assumed to be affected by artifacts and discarded.

Finally, the evoked fields were computed by averaging (AEF:

96 epochs, SEF: 294 epochs). The noise covariance matrix

for spatial whitening was estimated from pre-stimulus data

(from -200 ms to -20 ms). The gain matrix was computed using

a set of 7498 cortical locations, and a three-layer boundary

element model. The source reconstruction was performed

without orientation constraint.

III. RESULTS

A. Simulation study

MxNE and irMxNE were applied on both simulated data

sets with 20 different regularization parameters normalized to

λmax (logarithmically spaced from 1 to 100 %). λmax, which

can be computed analytically [10], is the infimum of λ, such

that if λ ≥ λmax, the active set is empty. 100 repetitions of

the simulation were performed. The maximum F1-scores for

all repetitions are presented in Fig. 1.
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Fig. 1: F1-scores for MxNE and irMxNE using simulated data

with uncorrelated (a) and correlated design (b).

For the uncorrelated design, both methods reach high

F1-scores for both SNRs and active set sizes. While irMxNE

allows for F1-score = 1 in all repetitions, i.e., an exact recon-

struction of the active set, MxNE shows individual outliers.

For the correlated design, the F1-scores decline with both

decreasing SNR and increasing simulated active set size for

both methods. However, the support recovery of irMxNE

is less affected. Moreover, MxNE generally requires higher

regularization parameters to reach its maximum F1-score,

which increases the amplitude bias.

B. Experimental MEG data

1) Auditory evoked fields: We first compare the

performance of the proposed BCD scheme for solving

the weighted MxNE with the Fast Iterative Shrinkage

Thresholding Algorithm (FISTA) [29], an iterative proximal

gradient method used in [10]. Both methods were applied

with and without active set strategy. All computations were

performed on a computer with a 2.4 GHz Intel Core 2

Duo processor and 8 GB RAM. The computation time as a

function of the regularization parameter λ is illustrated in

Fig. 2.

Fig. 2: Computation time as a function of λ for MxNE on

real MEG data (free orientation) using BCD and FISTA with

(solid) and without (dashed) active set strategy.

The BCD scheme outperforms FISTA both with and

without active set strategy. Combining the BCD scheme and

the active set strategy, which reduced the computation time

by a factor of 100, allows to compute the MxNE on real

MEG/EEG data in a few seconds. Since subsequent MxNE

iterations are significantly faster due to the restriction of the

source space, irMxNE also runs in a few seconds on real

MEG/EEG source localization problems.

We then applied MxNE and irMxNE (with and without

debiasing) with different regularization parameters λ to the

AEF data and computed the mean Goodness of Fit (GOF)

around the N100m component (from 90 ms to 150 ms) as

well as the corresponding size of the estimated active set.

Results are presented in Fig. 3.

Fig. 3: Mean GOF before (dashed) and after debiasing (solid),

and active set size obtained with MxNE and irMxNE as a

function of the regularization parameter for the AEF data set.

The active set size estimated with irMxNE is smaller

for all regularization parameters and less dependent on λ,

particularly for small values of λ. For MxNE, the mean GOF

is highly dependent on λ, when no debiasing is applied, and

is improved significantly by debiasing. In contrast, the mean

GOF for irMxNE is only slightly improved by debiasing,

which indicates, that the irMxNE results are significantly less

biased in amplitude. Compared to MxNE with debiasing,

irMxNE yields a comparable mean GOF with similar stability

plateaus with the advantage of providing a sparser model.

Source reconstruction results for MxNE and irMxNE

are presented in Fig. 4. To compare results with a well

established technique, we computed the dSPM [30] solution

without orientation constraint using the MNE software [28]

and added the mean dSPM estimates to Fig. 4. MxNE with

λ/λmax = 40% shows activation in both primary auditory

cortices with its main peak around 110 ms corresponding to

the N100m component. The activation on the right hemisphere
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(a) MxNE: λ/λmax = 40% (b) MxNE: λ/λmax = 50%

(c) MxNE: λ/λmax = 70% (d) irMxNE: λ/λmax = 40%, convergence after 6 iterations

Fig. 4: Source reconstruction results using AEF data evoked by left auditory stimulation for MxNE (a, b, c) and irMxNE (d)

with debiasing. The source locations, marked with dots, and the corresponding time courses are color-coded.

is however split into several highly correlated dipoles, which

are partly located outside of the primary auditory cortex.

Increasing λ, which is known to reduce the number of active

dipoles, does not fix the latter issue, since dipoles in the

left primary auditory cortex are eliminated before actually

erasing the spurious activity from the right hemisphere. The

loss of the active source in the left auditory cortex explains

also the drop of the GOF in Fig. 3. In contrast, irMxNE with

λ/λmax = 40% reconstructs single dipoles in both primary

auditory cortices. Intuitively, the green and blue sources,

which are the strongest sources according to MxNE, are

favored at the next iteration of the reweighted scheme. The

estimated source locations are well inline with the maxima of

the dSPM estimates, which are spatially smeared. Note also

that source amplitudes obtained with irMxNE are moments

of electrical dipoles expressed in nAm, which is similar to

dipole fit procedures [31].

2) Somatosensory evoked fields: Fig. 5 presents the mean

GOF and the corresponding size of the active set for MxNE

and irMxNE (with and without debiasing) applied to the SEF

data as a function of the regularization parameter λ.

Fig. 5: Mean goodness of fit before (dashed) and after de-

biasing (solid), and active set size obtained with MxNE and

irMxNE for the SEF data set.
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The results confirm the findings obtained for the AEF

data set in section III-B1. The source estimate obtained with

irMxNE is sparser and less biased compared to the MxNE re-

sult. The mean GOF for irMxNE (with and without debiasing)

is higher than for MxNE with debiasing, which indicates that

the estimation of the source signal characteristics is improved

due to the reduced bias of the iterative reweighted approach.

Fig. 6 presents source reconstruction results obtained with

MxNE and irMxNE for selected regularization parameters as

well as the mean of the corresponding dSPM estimate. For

λ/λmax = 40%, both MxNE and irMxNE reconstruct dipoles

in the contralateral primary somatosensory cortex (cS1),

the contralateral and ipsilateral secondary somatosensory

cortices (cS2 and iS2), and the contralateral medial wall.

The source locations coincide with the maxima of the mean

dSPM estimate. As for the AEF data set, the source activation

computed with irMxNE is represented by a single dipole in

each region, whereas the activation is split again into several

correlated dipoles using MxNE. Increasing the regularization

parameter in turn reduces the number of active sources as

expected, but eliminates physiologically meaningful sources

(iS2) before other activation (e.g. in cS1) is represented by

a single dipole, which can also be seen by means of the

drop of the GOF in Fig. 5. These results demonstrate that

the proposed sparse solver can present a simple and easy-to-

interpret full spatio-temporal picture of the active sources. In

contrast, dSPM or similar linear inverse method (sLORETA,

MNE, etc.) generally requires careful post-processing of

the source estimates, e.g. by defining regions of interest, to

present similar figures.

IV. DISCUSSION AND CONCLUSION

In this work, we presented irMxNE, a MEG/EEG in-

verse solver based on regularized regression with a non-

convex block-separable penalty. The non-convex optimization

(a) MxNE: λ/λmax = 40% (b) MxNE: λ/λmax = 50%

(c) MxNE: λ/λmax = 55% (d) irMxNE: λ/λmax = 40%, convergence after 10 iterations

Fig. 6: Source reconstruction results using SEF data evoked by electric stimulation of the left median nerve for MxNE (a,

b, c) and irMxNE (d) with debiasing. The source locations, marked with dots, and the corresponding source activations are

color-coded.
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problem is solved by iteratively solving (convex) weighted

MxNE problems, which allows for fast algorithms and global

convergence control at each iteration. The combination of a

block coordinate descent scheme and an active set strategy

significantly decreases the computation time making the pro-

posed method applicable for the analysis of MEG/EEG data.

By choosing the initialization such that the first iteration is

equivalent to computing a standard MxNE, the irMxNE source

estimate is at least as sparse as the MxNE solution while

reducing the amplitude bias. This was confirmed by empirical

results based on simulations and analysis of two MEG data

sets. Both experiments demonstrated that irMxNE outperforms

MxNE in terms of active source identification and amplitude

bias. As MxNE, irMxNE assumes that the locations of active

sources is constant over time. Hence, it should be applied

to data, for which this model assumption is approximately

true, e.g., by selecting intervals of interest or applying a

moving window approach. To go beyond stationary sources,

the reconstruction of non-stationary focal source activation

can be improved by applying sparsity constraints in the time-

frequency domain such as in the TF-MxNE [12]. The use

of non-convex regularization for such models will be part of

future work. This solver will be made available in the MNE-

Python package [32].
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“Paving the way for cross-site pooling of magnetoencephalography
(MEG) data,” International Congress Series, vol. 1300, pp. 615–618,
Aug. 2007.

[27] W. Ou, P. Golland, and M. Hämäläinen, “Sources of variability in MEG,”
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