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Abstract

In the context of structural optimization we propose a new numerical

method based on a combination of the classical shape derivative and of

the level-set method for front propagation. We implement this method in

two and three space dimensions for a model of linear or nonlinear elas-

ticity. We consider various objective functions with weight and perimeter

constraints. The shape derivative is computed by an adjoint method. The

cost of our numerical algorithm is moderate since the shape is captured

on a fixed Eulerian mesh. Although this method is not specifically de-

signed for topology optimization, it can easily handle topology changes.

However, the resulting optimal shape is strongly dependent on the initial

guess.
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1 Introduction

Shape optimization of elastic structures is a very important and popular field.
The classical method of shape sensitivity (or boundary variation) has been much
studied (see e.g. [22], [25], [29], [31]). It is a very general method which can
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†Centre de Mathématiques Appliquées (UMR 7641), Ecole Polytechnique, 91128 Palaiseau,
France — francois.jouve@polytechnique.fr

‡CMAF, Faculdade de Ciências da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699
Lisboa, Portugal — amtan@ptmat.fc.ul.pt

1



handle any type of objective functions and structural models, but it has two
main drawbacks: its computational cost (because of remeshing) and its ten-
dency to fall into local minima far away from global ones. The homogenization
method (and its variants, such as power-law materials or SIMP method, see
e.g. [1], [2], [5], [8], [9], [10], [17]) is an adequate remedy to these drawbacks
but it is mainly restricted to linear elasticity and particular objective functions
(compliance, eigenfrequency, or compliant mechanism). Recently yet another
method appeared in [23], [27] based on the level-set method which has been
devised by Osher and Sethian [24], [26] for numerically tracking fronts and free
boundaries. The level-set method is versatile and computationally very efficient:
it is by now a classical tool in many fields such as motion by mean curvature,
fluid mechanics, image processing, etc.

The work [23] studied a two-phase optimization of a membrane (modeled
by a linear scalar partial differential equation), i.e. the free boundary was the
interface between two constituents occupying a given domain. It combined
the level-set method with the shape sensitivity analysis framework. On the
other hand, the work [27] focused on structural optimization within the context
of two-dimensional linear elasticity. The shape of the structure was the free
boundary which was captured on a fixed mesh using the immersed interface
method. However, [27] did not rely on shape sensitivity analysis: rather the
structural rigidity was improved by using an ad hoc criteria based on the Von
Mises equivalent stress. Remark that the level-set method is close to another
approach proposed in [11] and based on a phase-field model.

In this paper we generalize these two previous works in many aspects. We
propose a systematic implementation of the level-set method where the front
velocity is derived from a shape sensitivity analysis. We investigate different
objective functions in two and three space dimensions: compliance (rigidity),
least square deviation from a target (compliant mechanism), design dependent
loads (pressure loads). Other objective functions like eigenfrequencies, multiple
loads and minimal stress will be addressed in another paper. We focus on shape
optimization rather than two-phase optimization, and we replace the immersed
interface method by the simpler “ersatz material” approach which amounts
to fill the holes by a weak phase. This is a well-known approach in topology
optimization which can be rigorously justified in some cases [1]. We also consider
the case of a nonlinear elasticity model. For all such problems we compute a
shape derivative by using an adjoint problem. Then, the shape derivative is
used as the normal velocity of the free boundary which is moved during the
optimization process. Front propagation is performed by solving a Hamilton-
Jacobi equation for a level-set function. We study the effect of first-order or
second-order discretization and of reinitialization in the numerical convergence
toward an optimal shape. We also investigate the strong dependence of the
computed optimal shape on the initial design. Our results were announced in
[4]. Related results have been independently obtained in [32].
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2 Setting of the problem

We start by describing a model problem in linearized elasticity. There is no
conceptual difficulty in choosing another model, and in particular Section 8
deals with a nonlinear elasticity problem. Let Ω ⊂ R

d (d = 2 or 3) be a
bounded open set occupied by a linear isotropic elastic material with Hooke’s
law A. Recall that, for any symmetric matrix ξ, A is defined by

Aξ = 2µξ + λ
(

Trξ
)

Id,

where µ and λ are the Lamé moduli of the material. The boundary of Ω is made
of two disjoint parts

∂Ω = ΓN ∪ ΓD, (1)

with Dirichlet boundary conditions on ΓD, and Neumann boundary conditions
on ΓN . The two boundary parts ΓD and ΓN are allowed to vary in the optimiza-
tion process, although it is possible to fix some portion of it (see the numerical
examples below).

We denote by f the vector-valued function of the volume forces and by g
that of the surface loads. The displacement field u in Ω is the solution of the
linearized elasticity system







−div (Ae(u)) = f in Ω
u = 0 on ΓD

(

Ae(u)
)

n = g on ΓN .
(2)

Since Ω is varying during the optimization process, f and g must be known for
all possible configurations of Ω. We therefore introduce a working domain D (a
bounded open set of Rd) which contains all admissible shapes Ω.

To give a precise mathematical meaning to (2), we choose f ∈ L2(D)d and
g ∈ H1(D)d and we assume that ΓD 6= ∅ (otherwise we should impose an
equilibrium condition on f and g). In such a case it is well known that (2)
admits a unique solution in H1(Ω)d.

The objective function is denoted by J(Ω). In this paper, we shall mostly
focus on two possible choices of J (these are merely examples, and much more
freedom is allowed). A first classical choice is the compliance (the work done by
the load)

J1(Ω) =

∫

Ω

f · u dx+

∫

ΓN

g · u ds =

∫

Ω

Ae(u) · e(u) dx, (3)

which is very common in rigidity maximization. A second choice is a least square
error compared to a target displacement

J2(Ω) =

(
∫

Ω

k(x)|u − u0|
αdx

)1/α

, (4)

which is a useful criterion for the design of compliant mechanisms [3], [28]. We
assume α ≥ 2, u0 ∈ Lα(D) and k ∈ L∞(D), a non-negative given weighting
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factor. In both formulas (3) and (4), u = u(Ω) is the solution of (2). We define
a set of admissible shapes that must be open sets contained in the working
domain D and of fixed volume V

Uad =
{

Ω ⊂ D such that |Ω| = V
}

. (5)

Our model problem of shape optimization is

inf
Ω∈Uad

J(Ω). (6)

It is well known that the minimization problem (6) is usually not well posed
on the set of admissible shapes defined by (5) (i.e. it has no solution). In
order to obtain existence of optimal shapes some smoothness or geometrical
or topological constraints are required. For example, a variant of (6) with
a perimeter constraint turns out to be a well-posed problem (see [6]). The
perimeter P (Ω) of an open set Ω is defined as the (d−1)-dimensional Hausdorff
measure of its boundary ∂Ω, i.e. P (Ω) = Hd−1(∂Ω), which reduces to P (Ω) =
∫

∂Ω
ds for smooth domains. Then, if ℓ > 0 is a positive Lagrange multiplier, the

minimization problem

inf
Ω∈Uad

(

J(Ω) + ℓP (Ω)
)

(7)

admits at least one optimal solution. There are other regularized variants of (6)
which are well-posed and we refer to [13], [16] for such existence theories. Note
that, even if existence is not an issue of the present paper, we shall work with a
smoother subset of (5) in order to define properly a notion of shape derivative.

Remark 2.1. We described our shape optimization problem with a single state
equation, i.e. the shape is optimized for a single set of loads. Our approach
can easily be generalized to the more meaningful case of shape optimization for
multiple loads.

3 Shape derivative

In order to apply a gradient method to the minimization of (6) we recall a clas-
sical notion of shape derivative. This notion goes back, at least, to Hadamard,
and many have contributed to its development (see e.g. the reference books
[25], [31]). Here, we follow the approach of Murat and Simon [22], [29]. Starting
from a smooth reference open set Ω, we consider domains of the type

Ωθ =
(

Id + θ
)

(Ω),

with θ ∈W 1,∞(Rd,Rd). It is well known that, for sufficiently small θ, ( Id + θ)
is a diffeomorphism in R

d.

Definition 3.1. The shape derivative of J(Ω) at Ω is defined as the Fréchet
derivative in W 1,∞(Rd,Rd) at 0 of the application θ → J

(

( Id + θ)(Ω)
)

, i.e.

J
(

( Id + θ)(Ω)
)

= J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|

‖θ‖
= 0 ,
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where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

A classical result states that the directional derivative J ′(Ω)(θ) depends only
on the normal trace θ · n on the boundary ∂Ω.

Lemma 3.2. Let Ω be a smooth bounded open set and J(Ω) a differentiable
function at Ω. Its derivative satisfies

J ′(Ω)(θ1) = J ′(Ω)(θ2)

if θ1, θ2 ∈W 1,∞(Rd;Rd) are such that θ2 − θ1 ∈ C1(Rd;Rd) and

θ1 · n = θ2 · n on ∂Ω.

We give two examples of shape derivative that will be useful in the sequel.

Lemma 3.3. Let Ω be a smooth bounded open set and φ(x) ∈W 1,1(Rd). Define

J(Ω) =

∫

Ω

φ(x) dx.

Then J is differentiable at Ω and

J ′(Ω)(θ) =

∫

Ω

div
(

θ(x)φ(x)
)

dx =

∫

∂Ω

θ(x) · n(x)φ(x) ds

for any θ ∈W 1,∞(Rd;Rd).

Lemma 3.4. Let Ω be a smooth bounded open set and φ(x) ∈W 2,1(Rd). Define

J(Ω) =

∫

∂Ω

φ(x) ds.

Then J is differentiable at Ω and

J ′(Ω)(θ) =

∫

∂Ω

θ · n

(

∂φ

∂n
+Hφ

)

ds,

for any θ ∈ W 1,∞(Rd;Rd), where H is the mean curvature of ∂Ω defined by
H = divn. Furthermore, this result still holds true if one replaces ∂Ω by Γ, a
smooth open subset of ∂Ω, and assumes that f = 0 on the surface boundary ∂Γ.

Remark 3.5. In particular Lemma 3.3 is useful in order to compute the shape
derivative of a volume constraint V (Ω) = C. Indeed, we have

V (Ω) =

∫

Ω

dx and V ′(Ω)(θ) =

∫

∂Ω

θ(x) · n(x) ds.

Similarly, Lemma 3.4 is useful in order to compute the shape derivative of a
perimeter constraint P (Ω) = C. Indeed, we have

P (Ω) =

∫

∂Ω

ds and P ′(Ω)(θ) =

∫

∂Ω

θ(x) · n(x)H ds.
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Theorem 3.6. Let Ω be a smooth bounded open set and θ ∈ W 1,∞(Rd;Rd).
Assume that the data f and g as well as the solution u of (2) are smooth, say
f ∈ H1(Ω)d, g ∈ H2(Ω)d, u ∈ H2(Ω)d. The shape derivative of (3) is

J ′
1(Ω)(θ) =

∫

ΓN

(

2

[

∂(g · u)

∂n
+Hg · u+ f · u

]

−Ae(u) · e(u)

)

θ · n ds

+

∫

ΓD

Ae(u) · e(u) θ · n ds.

(8)

The shape derivative of (4) is

J ′
2(Ω)(θ) =

∫

ΓN

(

C0

α
k|u− u0|

α +Ae(p) · e(u) − f · p

−
∂(g · p)

∂n
−Hg · p

)

θ · n ds

+

∫

ΓD

(

C0

α
k|u− u0|

α −Ae(u) · e(p)

)

θ · n ds.

(9)

where p is the adjoint state, assumed to be smooth, i.e. p ∈ H2(Ω)d, defined as
the solution of







−div (Ae(p)) = −C0k(x)|u − u0|α−2(u− u0) in Ω
p = 0 on ΓD

(

Ae(p)
)

n = 0 on ΓN ,
(10)

where C0 is a constant given by

C0 =

(
∫

Ω

k(x)|u(x) − u0(x)|αdx

)1/α−1

.

Remark 3.7. Remark that there is no adjoint state involved in (8). Indeed
the minimization of (3) is a self-adjoint problem which turns out to be easier to
solve than (4).

Proof. Although Theorem 3.6 is a classical result (see e.g. [22], [25], [29], [31])
we briefly sketch its proof for the sake of completeness. To simplify we give
a short, albeit formal, proof due to Céa [15]. We consider a general objective
function

J(Ω) =

∫

Ω

j
(

x, u(x)
)

dx+

∫

∂Ω

l
(

x, u(x)
)

ds,

for which we introduce the Lagrangian defined for (v, q) ∈
(

H1(Rd;Rd)
)2

by

L(Ω, v, q) =

∫

Ω

j(v) dx +

∫

∂Ω

l(v) ds+

∫

Ω

Ae(v) · e(q) dx −

∫

Ω

q · f dx

−

∫

ΓN

q · g ds−

∫

ΓD

(

q ·Ae(v)n+ v ·Ae(q)n
)

ds.

(11)
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In (11) q is a Lagrange multiplier for the state equation and its boundary con-
ditions. It is worth noticing that v and q belong to a functional space that
does not depend on Ω, so we can apply the usual differentiation rule to the La-
grangian L. The stationarity of the Lagrangian is going to give the optimality
conditions of the minimization problem. For a given Ω, we denote by (u, p) such
a stationary point. The partial derivative of L with respect to q, in the direction
φ ∈ H1(Rd;Rd), after integration by parts leads to

〈
∂L

∂q
(Ω, u, p), φ〉 = 0 = −

∫

Ω

φ ·
(

div(Ae(u)) + f
)

dx

+

∫

ΓN

φ ·
((

Ae(u)
)

n− g
)

ds

−

∫

ΓD

u ·Ae(φ)n ds.

(12)

Taking first φ with compact support in Ω gives the state equation. Then, varying
the trace function φ on ΓN gives the Neumann boundary condition for u, while
varying the corresponding normal stress

(

Ae(φ)
)

n on ΓD gives the Dirichlet
boundary condition for u. On the other hand, in order to find the adjoint
equation, we differentiate L with respect to v in the direction φ ∈ H1(Rd;Rd).
This yields

〈
∂L

∂v
(Ω, u, p), φ〉 = 0 =

∫

Ω

j′(u) · φdx +

∫

∂Ω

l′(u) · φds

+

∫

Ω

Ae(φ) · e(p) dx

−

∫

ΓD

(

p ·Ae(φ)n + φ · Ae(p)n
)

ds.

Integrating by parts we obtain

〈
∂L

∂v
(Ω, u, p), φ〉 =

∫

Ω

(

j′(u) − div(Ae(p))
)

· φdx+

∫

ΓN

φ ·
(

Ae(p)n+ l′(u)
)

ds

+

∫

ΓD

(

φ · l′(u) − p · Ae(φ)n
)

ds.

Taking first φ with compact support in Ω gives the adjoint state equation

−div(Ae(p)) = −j′(u) in Ω.

Then, varying the trace of φ on ΓN yields the Neumann boundary condition

(

Ae(p)
)

n = −l′(u) on ΓN .

Finally, varying the normal stress
(

Ae(φ)
)

n on ΓD gives

p = 0 on ΓD.
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We have therefore found a well-posed boundary value problem for the adjoint
state p.

The shape derivative of the objective function is obtained by differentiating

J(Ω) = L(Ω, u(Ω), p(Ω)),

which, by the chain rule theorem, reduces to the partial derivative of L with
respect to Ω in the direction θ

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u, p)(θ).

Applying Lemma 3.3 and 3.4 we obtain

∂L

∂Ω
(Ω, u, p)(θ) =

∫

∂Ω

θ · n
(

j(u) +Ae(u) · e(p) − p · f
)

ds

+

∫

∂Ω

θ · n

(

∂l(u)

∂n
+H l(u)

)

ds

−

∫

ΓN

θ · n

(

∂(g · p)

∂n
+H g · p

)

ds

−

∫

ΓD

θ · n

(

∂h

∂n
+Hh

)

ds,

(13)

with h = u · Ae(p)n+ p · Ae(u)n. Taking into account the boundary condition
u = p = 0 on ΓD which also implies

Ae(u) · e(p) = µ
∂u

∂n
·
∂p

∂n
+ (µ+ λ)

(

∂u

∂n
· n

)(

∂p

∂n
· n

)

on ΓD,

we deduce

∂L

∂Ω
(Ω, u, p)(θ) =

∫

ΓN

θ · n

(

j(u) +Ae(u) · e(p) − p · f −
∂(g · p)

∂n
−H g · p

)

ds

+

∫

ΓD

θ · n
(

j(u) −Ae(u) · e(p)
)

ds

+

∫

∂Ω

θ · n

(

∂l(u)

∂n
+ H l(u)

)

ds.

This proof is merely a formal computation (in particular it assumes that u and p
are differentiable with respect to the shape Ω) but it can be rigorously justified
(see the references quoted above). Of course, if the objective function is the
compliance, i.e. j(u) = f · u, l(u) = g · u on ΓN and l(u) = 0 on ΓD, we find
that p = −u and the problem is self-adjoint. �

We now give a variant of Theorem 3.6 when the surface loading is a pressure
load which is oriented in the direction of the normal vector. In other words, we
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replace equation (2) by







−div (Ae(u)) = f in Ω
u = 0 on ΓD

(

Ae(u)
)

n = p0n on ΓN ,
(14)

where n is the unit normal vector and p0(x) is a given scalar function in H2(D).

Corollary 3.8. Let Ω be a smooth bounded open set and θ ∈ W 1,∞(Rd;Rd).
Assume that the solution u of (14) is smooth, say u ∈ H2(Ω)d. The shape
derivative of the compliance,

J3(Ω) =

∫

Ω

f · u dx+

∫

ΓN

p0 n · u ds,

is

J ′
3(Ω)(θ) =

∫

ΓN

θ · n
(

2f · u+ 2div(p0u) −Ae(u) · e(u)
)

ds

+

∫

ΓD

Ae(u) · e(u) θ · n ds.

(15)

Proof. We rewrite the objective function as

J3(Ω) =

∫

Ω

f · u dx+

∫

Ω

div(p0u) dx.

The Lagrangian of the problem is defined for (v, q) ∈
(

H1(Rd;Rd)
)2

by

L(Ω, v, q) =

∫

Ω

f · v dx+

∫

Ω

div(p0v) dx+

∫

Ω

Ae(v) · e(q) dx−

∫

Ω

q · f dx

−

∫

Ω

div(p0q) dx−

∫

ΓD

(

q · Ae(v)n+ v ·Ae(q)n
)

ds.

(16)
One can check that the adjoint state of the problem is p = −u (self-adjoint
problem). A computation similar to that of Theorem 3.6 shows that

J ′
3(Ω)(θ) =

∂L

∂Ω
(Ω, u,−u)(θ),

which yields the desired result (15). �

Remark 3.9. We can generalize Theorem 3.6 to more general objective func-
tions, including functions of the strain or stress. It is also possible to consider
non homogeneous Dirichlet boundary conditions in the state equation. The case
of a nonlinear model is discussed in Section 8.

Remark 3.10. It is possible to further restrict the class of domains by asking
that some parts of the boundary Γfixed do not move. In such a case, the vector
field θ must satisfy the constraint (or boundary condition) θ · n = 0 on Γfixed.
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We now have all the necessary theoretical ingredients to describe a gradient
method for the minimization of an objective function J(Ω). As we have just
seen, the general form of its shape derivative is

J ′(Ω)(θ) =

∫

∂Ω

v θ · n ds,

where the function v is given by a result like Theorem 3.6. Ignoring smoothness
issues, a descent direction is found by defining a vector field

θ = −v n, (17)

and then we update the shape Ω as

Ωt = ( Id + tθ)Ω,

where t > 0 is a small descent step. Formally, we obtain

J(Ωt) = J(Ω) − t

∫

∂Ω

v2 ds+ O(t2)

which guarantees the decrease of the objective function.
There are other possible choices for the definition of the descent direction.

Let us first remark that, from a mathematical point of view, formula (17) makes
sense only if the resulting vector field θ belongs to W 1,∞(Rd,Rd). In view of
typical definitions of v, (8) or (9), this is the case only if the state u and adjoint
state p, as well as the boundary of Ω, are smooth enough. It is not clear
that the optimal shapes, if they exist, are smooth. (However, a recent result
of Chambolle and Larsen [14] proves that, in two space dimensions and for a
scalar problem, the optimal shape under a perimeter constraint has indeed C∞

regularity).
If either v or the normal n is not smooth, then it may be desirable to smooth

the velocity field vn (this is a classical issue in shape optimization ; see e.g.
Chapter 5 in [21]). The main idea is to change the scalar product with respect
to which we evaluate a descent direction. For example, working with the H1

0

scalar product instead of the L2 one, we need to solve

{

−∆θ = 0 in Ω
∂θ

∂n
= −v n on ∂Ω.

In other words, we apply the Neumann-to-Dirichlet map to −v n which has the
effect of increasing of one order the regularity of θ on Γ (with respect to that of
−v n). Integrating by parts, we find

∫

Ω

|∇θ|2dx = −

∫

∂Ω

v θ · n ds

which shows that θ is a descent direction which guarantees again the decrease
of J .

10



Remark 3.11. Another possibility is to use the Laplace-Beltrami operator ∆S

on ∂Ω. We first compute a regularization ṽ = (−∆S)−1v and then take the
descent direction θ · n = −ṽ. By integration by parts, we find

J ′(Ω)(θ) = −

∫

∂Ω

|∇S ṽ|
2ds,

which clearly shows that θ is a smoother descent direction.

4 Shape parametrization by the level-set method

As described above, the method of shape sensitivity can be (and has been)
implemented in a Lagrangian framework. It suffices to mesh Ω and to advect
the mesh according to the descent direction θ. However, this implementation
suffers at least from two drawbacks. First, if the shape is deformed too much,
then it is necessary to remesh which can be very costly (especially in 3-d).
Second, different parts of the boundary of the shape may want to merge or
split, but as is well known topology changes are very difficult to handle with
such Lagrangian or front-tracking methods. Therefore, we favor an Eulerian
approach and, following [23] and [27], we use a level-set method to capture the
shape Ω on a fixed mesh.

Let a bounded domainD ⊂ R
d be the working domain in which all admissible

shapes Ω are included, i.e. Ω ⊂ D. In numerical practice, the domain D will
be uniformly meshed once and for all. We parametrize the boundary of Ω by
means of a level-set function, following the idea of Osher and Sethian [24]. We
define this level-set function ψ in D such that







ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ⇔ x ∈ Ω,
ψ(x) > 0 ⇔ x ∈

(

D \ Ω
)

.

The normal n to the shape Ω is recovered as ∇ψ/|∇ψ| and the curvature H
is given by the divergence of the normal divn (these quantities are evaluated
by finite differences since our mesh is uniformly rectangular). Remark that,
although n and H are theoretically defined only on ∂Ω, the level-set method
allows to define easily their extension in the whole domain D (this will be useful
in the sequel).

The elasticity equations for the state u (as well as the adjoint state p) are
extended to the whole domain D by using the so-called “ersatz material” ap-
proach. It amounts to fill the holes D \ Ω by a weak phase mimicking void but
avoiding the singularity of the rigidity matrix. This is a well-known procedure
in topology optimization which can be rigorously justified in some cases [1]. Re-
mark that our method is simpler than the immersed interface method proposed
in [27]. More precisely, we define an elasticity tensor A∗(x) which is a mixture
of A in Ω and of the weak material mimicking holes in D \ Ω

A∗(x) = ρ(x)A with ρ =

{

1 in Ω,
10−3 in D \ Ω.

(18)
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In numerical practice, ρ is piecewise constant in each cell and is adequately
interpolated in those cells cut by the zero level-set ψ = 0 (the shape boundary).
Note that, on the contrary of the homogenization method (or any other gener-
alized material method), the “material density” ρ in (18) is almost always equal
to its extreme values (1 or 10−3) and the zone around the shape boundary where
it takes intermediate values does not increase in size during the optimization
process.

To be more specific, let us consider a simple example for which there is no
body force, f = 0, and the boundary ∂D of the working domain is decomposed
in three parts

∂D = ∂DD ∪ ∂DN ∪ ∂D0,

such that ∂DD corresponds to Dirichlet boundary conditions, ∂DN to non-
homogeneous Neumann boundary conditions (surface loads g 6= 0), and ∂D0 to
homogeneous Neumann boundary conditions (traction-free) respectively. Recall
the decomposition (1) of the shape boundary, ∂Ω = ΓD∪ΓN . Admissible shapes
Ω are further constrained to satisfy

ΓD ⊂ ∂DD, ΓN = ∂DN ∪ Γ0, (19)

where Γ0 supports an homogeneous Neumann boundary conditions (traction-
free). In other words, the surface loads g are applied only on a fixed subset of
the boundary ΓN , while the boundary ΓD, with zero displacement, must be a
subset of the fixed boundary ∂DD. Consequently, the only optimized part of
the shape boundary is Γ0 which is traction free. These conditions are precisely
those assumed in all numerical examples of Section 6. Then, the displacement
u is computed as the solution of















−div (A∗ e(u)) = 0 in D
u = 0 on ∂DD

(

A∗e(u)
)

n = g on ∂DN
(

A∗e(u)
)

n = 0 on ∂D0.

(20)

A similar boundary value problem holds for the adjoint p. The homogeneous
Neumann boundary condition on Γ0 is automatically taken into account in the
weak formulation of (20), at least in the limit when the ersatz material goes to
zero. The case of body forces and surface loads on the optimized boundary is
treated in Section 7.

Following the optimization process, the shape is going to evolve according
to a fictitious time which corresponds to descent stepping (we shall come back
to this issue in the next section). As is well-known, if the shape is evolving
in time, then the evolution of the level-set function is governed by a simple
Hamilton-Jacobi equation. To be precise, assume that the shape Ω(t) evolves
in time t ∈ R

+ with a normal velocity V (t, x). Then

ψ
(

t, x(t)
)

= 0 for any x(t) ∈ ∂Ω(t).
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Differentiating in t yields

∂ψ

∂t
+ ẋ(t) · ∇ψ =

∂ψ

∂t
+ V n · ∇ψ = 0.

Since n = ∇ψ/|∇ψ| we obtain

∂ψ

∂t
+ V |∇ψ| = 0.

This Hamilton-Jacobi equation is posed in the whole box D, and not only on
the boundary ∂Ω, if the velocity V is known everywhere (as will be the case in
the sequel).

5 Optimization algorithm

For the minimization problem

inf
Ω∈Uad

J(Ω),

we computed a shape derivative

J ′(Ω)(θ) =

∫

∂Ω

v θ · n ds,

where the function v(u, p, n,H) is given by a result like Theorem 3.6. Remark
that, since n and H , as well as the state u and the adjoint state p, are computed
everywhere in D, the integrand v in the shape derivative is defined throughout
the domain D and not only on the free boundary ∂Ω. Therefore, we can define
a descent direction in the whole domain D by

θ = −v n.

(It is also possible to regularize θ but that does not change the sequel). The
normal component θ·n = −v is therefore the advection velocity in the Hamilton-
Jacobi equation

∂ψ

∂t
− v|∇ψ| = 0. (21)

Transporting ψ by (21) is equivalent to move the boundary of Ω (the zero level-
set of ψ) along the descent gradient direction −J ′(Ω). Our proposed algorithm
is an iterative method, structured as follows:

1. Initialization of the level-set function ψ0 corresponding to an initial guess
Ω0.

2. Iteration until convergence, for k ≥ 0:

(a) Computation of the state uk and adjoint state pk through two prob-
lems of linear elasticity posed in Ωk, approximated by (20).
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(b) Deformation of the shape by solving the transport Hamilton-Jacobi
equation (21). The new shape Ωk+1 is characterized by the level-set
function ψk+1 solution of (21) after a time step ∆tk starting from
the initial condition ψk(x) with velocity −vk computed in terms of
uk and pk. The time step ∆tk is chosen such that J(Ωk+1) ≤ J(Ωk).

3. From time to time, for stability reasons, we also reinitialize the level-set
function ψ by solving (22).

The Hamilton-Jacobi equation (21) is solved by an explicit first order upwind
scheme (see e.g. [26]) on a Cartesian grid. In one space dimension, the scheme
reads

ψn+1
i − ψn

i

∆t
+min(V n

i , 0) g−(D+
x ψ

n
i , D

−
x ψ

n
i )+max(V n

i , 0) g+(D+
x ψ

n
i , D

−
x ψ

n
i ) = 0

with D+
x ψ

n
i =

ψn
i+1 − ψn

i

∆x
, D−

x ψ
n
i =

ψn
i − ψn

i−1

∆x
, and

g+(d+, d−) =
√

min(d+, 0)2 + max(d−, 0)2,

g−(d+, d−) =
√

max(d+, 0)2 + min(d−, 0)2.

We also implemented a second order scheme in order to improve accuracy (see
Figure 12 for some comparisons). The boundary conditions for ψ are of Neu-
mann type. Since this scheme is explicit in time, its time stepping must satisfy
a CFL condition. Remark that the time step issued from this CFL condition is
usually much smaller than the time step ∆tk which plays the role of the descent
step in the minimization of J(Ω). Remark also that one explicit time step for
(21) is much cheaper, in terms of CPU time and memory requirement, than the
solution of the state equation (2) or adjoint state equation (10). Therefore, for
each iteration k in the above algorithm (corresponding to a single evaluation
of uk and pk), we perform several explicit time steps of the Hamilton-Jacobi
equation (21). The number of such time steps per iteration k is monitored by
the decrease of J(Ωk).

In practice, our algorithm never creates new holes or boundaries in 2-d if the
Hamilton-Jacobi equation (21) is solved under a strict CFL condition because
it satisfies a maximum principle (there is no nucleation mechanism for new
holes). However the level-set method is well known to handle easily topology
changes, i.e. merging or cancellation of holes. Therefore, our algorithm is able
to perform topology optimization. In 2-d, the best results are obtained if the
number of holes of the initial design is sufficiently large (see Figure 1). The
situation is different in 3-d where new holes easily appear by pinching a thin
wall (see Figure 25), and then the initial topology is less important.

Remark 5.1. One of the main advantage of the level-set method is that we
never have to know where precisely is the boundary ∂Ω. In particular, the same
numerical scheme for solving the Hamilton-Jacobi equation (21) is applied ev-
erywhere in the working domain D. Another advantage of the level-set method
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comes from the simple formula to compute the normal n and the mean curvature
H = divn (which plays an important role in perimeter penalization).

In order to regularize the level-set function (which may become too flat or
too steep), we reinitialize it periodically by solving

{

∂ψ

∂t
+ sign(ψ0)

(

|∇ψ| − 1
)

= 0 in D × R
+,

ψ(t = 0, x) = ψ0(x) in D,
(22)

which admits as a stationary solution the signed distance to the initial interface
{ψ0(x) = 0} (see for example Figure 7). In numerical practice, reinitialization
is very important because the level-set function often becomes too steep which
implies a bad approximation of the normal n or of the curvature H .

6 Numerical examples

In all computations we use a quadrangular mesh for both the level-set func-
tion and the elastic displacement. We use Q1 finite elements for the elasticity
analysis. All test cases have the following data, unless otherwise specified. The
Young modulus E of material A is normalized to 1 and the Poisson ratio ν is
fixed to 0.3. The void or holes are mimicked by an ersatz material with the
same Poisson ratio and Young modulus 10−3. For each elasticity analysis (that
we shall call iteration in the sequel) we perform 20 explicit time steps of the
first-order scheme for the Hamilton-Jacobi transport equation. This number
is automatically reduced if the objective function is not decreasing. We also
reinitialize the level-set function every 5 time steps of transport by performing
5 explicit time steps of equation (22).

6.1 2-d cantilever

In the two-dimensional setting d = 2 we first study a medium cantilever problem.
The working domain is a rectangle of size 2 × 1 discretized with a rectangular
80× 40 mesh, with zero displacement boundary condition on the left side and a
unit vertical point load at the middle of the right side (see Figure 1). Admissible
shapes must satisfy the constraint (19), i.e.

∂Ω = ΓD ∪ ∂DN ∪ Γ0,

where the shape Dirichlet boundary ΓD is a subset of the fixed boundary ∂DD,
the surface loads g are applied only the fixed boundary ∂DN , and Γ0, which
is traction free, is varying during the optimization process. There are no body
forces, i.e. f ≡ 0 in (2). The objective function is a combination of the compli-
ance and of the weight of the structure

J(Ω) =

∫

∂DN

g · u ds+ ℓ

∫

Ω

dx, (23)
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where ℓ = 100 is a fixed Lagrange multiplier for the weight constraint, and g = 0
on Γ0. The boundary conditions and two initial configurations with different
number of holes are displayed on Figure 1. Under these assumptions, the shape
derivative of (23) is a special case of Theorem 3.6, namely

J ′(Ω)(θ) =

∫

Γ0

(

ℓ−Ae(u) · e(u)
)

θ · n ds, (24)

since θ · n = 0 on ΓD and on ∂DN where g 6= 0.

Figure 1: Boundary conditions and two initializations of a 2-d cantilever

Figure 2: Iterations 10 and 50 of the two-dimensional cantilever initialized as
in Figure 1 (middle)

Figure 3: Iterations 10 and 50 of the two-dimensional cantilever initialized as
in Figure 1 (right)

The algorithm converges smoothly to a (local) minimum which strongly
depends, of course, on the initial topology as can be checked on Figures 2 and
3, displaying the optimal shapes as well as an intermediate result. We run 50
iterations in order to show the good convergence and stability properties of our
algorithm, but it is clear that it has converged in a much smaller number of
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iterations (see Figure 4). One can also check on Figure 5 that the L2 norm
of the gradient of the objective function is decreasing, although it does not
converge to zero, due to numerical approximations. Our algorithm is just a
steepest descent gradient method; of course, its convergence can be speed up by
using, for example, a quasi-Newton algorithm.
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Figure 2
Figure 3

Figure 4: Convergence of the objective function for the two-dimensional can-
tilever of Figures 2 and 3
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Figure 5: Convergence of the L2 norm of the gradient of the objective function
for the two-dimensional cantilever of Figure 2
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For a given initial guess our results are mesh-independent. For example,
we performed the same cantilever problem on a finer 160 × 80 mesh. Since we
did not change any other parameters and because of the CFL condition for the
Hamilton-Jacobi transport equation, the time step is two times smaller and we
need to run 100 iterations instead of 50. One can check that the final shape in
Figure 6 is almost identical to the final one in Figure 2.

Figure 6: Iterations 50 and 100 of the two-dimensional cantilever on a finer
160 × 80 mesh initialized as in Figure 1 (middle)

The effect of reinitialization is best seen on fine meshes and is less important
on coarse meshes. For the previous cantilever example on a 160 × 80 mesh, we
can see on Figure 8 that no reinitialization yields a poorer convergence than
reinitializing every 5 time steps of transport (i.e. 4 times every elasticity iter-
ation). Remark on Figure 7 the effect of reinitialization on the final level-set
function ψ. On the other hand, Figure 8 shows that there is no clear difference
on the objective function between a first-order or second-order scheme for the
Hamilton-Jacobi equations (both the transport equation (21) and the reinitial-
ization equation (22)). However, second-order accuracy improves greatly the
efficiency of the reinitialization process (it is less important on the transport
equation). The optimal shapes for first or second order schemes are slightly dif-
ferent, mainly near the boundary of the working domain D (compare Figures 6
and 11).

Figure 7: Level-set function for the 2-d cantilever without reinitialization (left)
and with reinitialization (right)
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Figure 8: Convergence of the objective function for the two-dimensional can-
tilever of Figure 6 with various options

As is well known, a necessary condition of optimality for a shape minimizing

the objective function (23) is that the “velocity”
(

ℓ − Ae(u) · e(u)
)

is zero on

the boundary. Figure 9 displays the isocontours of this scalar velocity. One can
check that the velocity is approximately zero on the boundary.
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Figure 9: Scalar velocity
(

ℓ−Ae(u) · e(u)
)

for the 2-d cantilever of Figure 6
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6.2 Comparison with the homogenization method

We compare the level-set method with the homogenization method as described
in [1], [2]. For “good” initializations, the numerical result of our level-set method
are similar to those obtained by the homogenization method (see Chapter 5 in
[1]). To make a precise comparison we study the medium cantilever, as in the
previous subsection, with a fine mesh (160 × 80). The Lagrange multiplier is
now fixed to the value ℓ = 150 and we use a second order scheme. Figure 10
shows the optimal cantilever obtained by the homogenization method, while
Figure 11 displays two results of the level-set method corresponding to two
different initializations. The shapes are slightly different but the best result
is obtained by homogenization as can be checked on Figure 12. Remark that
the bump on the homogenization convergence curve in Figure 12 is due to the
penalization process, while the small bump in the convergence curve of the level-
set method for initialization 2 is due to a change of topology (bar elimination).

Figure 10: Cantilever computed with the homogenization method. Composite
(left) and penalized solution (right)

6.3 2-d bridge

The next example in dimension d = 2 is a bridge problem. The working domain
is a rectangle of size 2× 1.2 discretized with a rectangular 80× 48 mesh, at the
two lower corners the vertical displacement is zero, and a unit vertical force is
applied at the middle of the bottom side (see Figure 13). We again impose that
the shape Dirichlet boundary ΓD is a subset of the fixed boundary ∂DD, that
the surface loads g are applied only the fixed boundary ∂DN , and that only
the traction free boundary Γ0 is varying during the optimization process. We
neglect body forces, i.e. f ≡ 0. The objective function is (23) and its shape
derivative is (24). The Lagrange multiplier for the weight constraint is ℓ = 30.
The optimal design is displayed in Figure 14. We run the same problem with a
perimeter constraint, namely we minimize

J(Ω) =

∫

∂DN

g · u ds+ ℓ

∫

Ω

dx+ ℓ′
∫

∂Ω

ds, (25)

with ℓ′ = 1. Recall that the derivative of the perimeter is the curvature as
stated in Remark 3.5. We clearly see on Figure 15 that the resulting optimal
shape has fewer holes although the initialization was the same.
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Figure 11: Level-set method: initializations 1 and 2 (left) and resulting optimal
designs (right)
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Figure 12: Convergence of the objective function for the two-dimensional can-
tilevers of Figures 10 and 11

6.4 3-d examples

One advantage of the level-set method is its easy extension to three space di-
mensions. We therefore turn to a first three-dimensional test case: the 3-d
cantilever. The domain is a parallelepiped of dimensions 5 × 2.4 × 3 discretized
with 50 × 24 × 30 elements. The right wall is fixed and a unit force is applied
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Figure 13: Boundary conditions and initialization of the bridge problem.

Figure 14: Iterations 30 and 50 of the two-dimensional bridge initialized as in
Figure 13

Figure 15: Iterations 50 and 200 of the two-dimensional bridge, initialized as in
Figure 13, with a perimeter constraint

downward on the middle of the left wall. Due to symmetry, the computation
is performed on half of the domain. We still minimize the weighted sum (23)
of the compliance and the weight for a Lagrange multiplier ℓ = 15. Figure 16
shows the initial and optimal designs.

A second example is that proposed in [2]: the optimal electrical mast. The
workspace is a T -like box. Two symmetric vertical loads are applied in the
middle of the lower edges of the horizontal part of the T and represent the force
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Figure 16: Initial guess and optimal shape for the three-dimensional cantilever.

exerted by the wires on the mast. Simply supported boundary conditions are
imposed at the corners of the base of the T . We still minimize the weighted
sum (23) of the compliance and the weight for a Lagrange multiplier ℓ = 2.
Only a quarter of the object is computed, by virtue of the symmetries. The
mesh of the T -box is made of a 24 × 12 × 28 bar and a 12 × 12 × 48 foot, for a
total number of 14976 hexaedral elements. Starting with an initial design with
regularly distributed holes, the resulting optimal shape, displayed on Figure 17,
evokes the shape of actual electric masts.

6.5 Another objective function

We now give a numerical example for the minimization of the least square
objective function (4). This is a classical gripping mechanism test case which is
described, e.g., in [1], [28]. The working domain is a rectangle of size 5× 4 with
a rectangular hole of size 0.2× 1.4 on the middle of the left side. By symmetry,
only the upper half of the domain is meshed with a rectangular 50 × 20 mesh.

In the objective function (4) the localizing factor k(x) is zero except on the
black zone on the left side (the jaws of the mechanism) where it is equal to 1,
whereas the target displacement u0(x) is set to (−100, 0) in the upper left black
zone (see Figure 18). This objective function has been cooked up in order to
obtain a gripping mechanism for which the jaws close. From a mathematical
point of view the main difference between this test case and the previous ones
is that it needs an adjoint system in order to evaluate the derivative. Figure 19
shows the resulting optimal shape.

We perform the same optimization in 3-d. A uniform pressure load is applied
on the left side of the box, while the upper and lower sides are fixed. The
initialization and the optimal deformed shape are displayed on Figure 20. One
can see in Figure 21 that the algorithm is stable and convergence occurs quite
early during the process.
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Figure 17: Initial guess and optimal shape for the three-dimensional electrical
mast.

input force

output force

Figure 18: Boundary conditions for a plane gripping mechanism.

7 Application to design-dependent loads

Until now and in the whole section 6 we neglected the body forces f and the
surface loads g were applied on a fixed part of the shape boundary ∂DN . In such
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Figure 19: Initialization, and deformed optimal shape of a plane gripping mech-
anism.

Figure 20: Initialization and deformed optimal configuration of a 3-d gripping
mechanism.

a case the elasticity system was simply (20). We now explain how to generalize
it for more complicated loadings, including design-dependent loads as discussed
for example in [11].

In the case of body forces f , it suffices to extend them by 0 in D \ Ω. This
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Figure 21: Convergence of the objective function for the three-dimensional grip-
ping mechanism of Figure 20.

is easily done by multiplying f by the characteristic function χ defined in terms
of the level-set function ψ by

χ(x) =

{

0 if ψ(x) > 0,
1 if ψ(x) < 0.

Since our code discretizes the body forces as piecewise constants in each cell,
the characteristic function χ is also constant in each cell. In the cells cut by
the zero level-set we use the same interpolation procedure as that used for the
density ρ defined in (18).

Surface loads g which are applied on the moving shape boundary Γ0 (see (19)
for this notation) are called design-dependent since they depend on the position
of the shape (recall that g is defined a priori everywhere in D). Numerically,
we shall replace these surface loads by equivalent volume forces using the fact
that, in the variational formulation of (2), they appear as

∫

Γ0

g · u ds =

∫

D

δΓ0
g · u dx,

where δΓ0
(x) is the Dirac mass function concentrated on Γ0. Remark that

∇(sign(ψ)) = 2δΓ0
n, (26)

and thus
1

2
|∇(sign(ψ))| = δΓ0

.
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Introducing the following approximation of the sign function

s(x) =
ψ(x)

√

ψ(x)2 + ǫ2
,

where ǫ > 0 is a small parameter chosen to regularize the jump over a few mesh
elements. In all our computations, ǫ is equal to h/20 where h is the typical
element size. This value spreads the jump in the sign function over 2 cells
in average. It allows classically to define an approximation d(x) of the Dirac
function δΓ0

d(x) =
1

2
|∇s(x)|.

Finally, recalling definition (18) of the mixture A∗ of the true and ersatz mate-
rials, the elasticity equations in the working domain D are given by















−div (A∗ e(u)) = χ f + d g in D
u = 0 on ∂DD

(

A∗e(u)
)

n = g on ∂DN
(

A∗e(u)
)

n = 0 on ∂D0.

(27)

As an example we computed the optimal shape of a vertical mast submitted
to a uniform horizontal surface load g = (1, 0, 0). This is a reinforcement prob-
lem for a column which is not subject to optimization. The objective function
is the compliance

J(Ω) =

∫

Γ0

g · u ds+ ℓ

∫

Ω

dx,

with ℓ = 100. The size of the working domain D is 4×1×4. The bottom of the
box is fixed, i.e. equal to ∂DD, the other sides are free, i.e. equal to ∂D0, and
∂DN = ∅. In truth we applied g only where its scalar product with the exterior
normal n is negative: this is a very crude model of the effect of the wind. The
resulting optimal shape can be seen on Figure 22.

Another type of design-dependent loads is the case of a pressure load p0 n
where p0 is a given pressure distribution. In other words, we now consider
the elasticity system (14). Note that this load depends on the normal to the
boundary and therefore, if two different configurations of the free boundary Γ0

pass through the same point, the loads at this point may be different for each
configuration according to the orientation of Γ0. Once again, the surface loads
give the following contribution in the variational formulation

∫

Γ0

p0 n · u ds =

∫

D

p0δΓ0
n · u dx,

and from (26) we define an approximation of the function (δΓ0
n) by

1

2
∇s.

We therefore replace the surface pressure load by the approximate volume force
p0

2
∇s which is zero in the whole domain D except in a neighborhood of Γ0. One
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Figure 22: Vertical mast reinforced to support a uniform horizontal load (from
the left) modelizing the effects of the wind
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Figure 23: Optimal shape under a uniform pressure load with two anchor points
(left). Applied forces on a zoomed area of the same structure (right)

can see on the 2-d example of Figure 23 that the approximate volume force is
really close to a surface pressure load.
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The objective function is again the compliance

J(Ω) =

∫

Γ0

p0 n · u ds+ ℓ

∫

Ω

dx,

with ℓ = 100. Its shape derivative is computed by Corollary 3.8. The size of
the working domain D is 4 × 4 × 1. In 3-d we impose 5 fixed (anchor) points
on the bottom of the domain and a uniform pressure load p0 = −1 on the free
boundary Γ0. If there is an additional unit vertical load in the middle of the
bottom side we obtain a nice starfish as can be seen of Figure 24. Without
this vertical load, we obtain a more complex topology as can be checked on
Figure 25. Remark that the initialization in both cases was a convex domain
and that the level-set algorithm was able to create holes in the case of Figure 25.

Figure 24: Optimal shape under a uniform pressure load with five anchor points
and a vertical force at center.

8 Generalization to nonlinear elasticity

8.1 Model and shape derivative

In this section we consider a nonlinear hyperelastic model (see [18]). If u is
the displacement field, F = (I + ∇u) denotes the deformation gradient and
the boundary value problem writes in the reference configuration Ω (i.e. the
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Figure 25: Two views of the optimal shape under a uniform pressure load with
five anchor points.

undeformed configuration):






−div (T (F )) = f in Ω
u = 0 on ΓD

T (F )n = g on ΓN .
(28)

For the sake of simplicity, the volume forces f and the surface loads g are
supposed to be dead loads, i.e. independent of the displacement u.

If the material is hyperelastic, the first Piola-Kirchhoff stress tensor T derives
from a potential W (F ) (supposed smooth enough) called stored energy function

Tij =
∂W (F )

∂Fij
, i, j ∈ {1, . . . , d},

and for any deformation tensor F , the elasticity tensor A(u) (which is the tan-
gential operator around F ) is defined by

Aijkl(u) =
∂Tij(F )

∂Fkl
=
∂2W (F )

∂Fij∂Fkl
.

The variational formulation of (28) is
∫

Ω

T (F ) · ∇v dx−

∫

Ω

f · v dx−

∫

ΓN

g · v ds = 0 ∀v ∈ H1(Ω)d, v = 0 on ΓD,

and it is formally equivalent to a stationarity condition on the energy

I(u) =

∫

Ω

W (I + ∇u) dx−

∫

Ω

f · u dx−

∫

ΓN

g · u ds

Remark 8.1. The minimization problem

min
v
I(v)
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has a solution if W satisfies some convexity, growth and regularity conditions
(see [7]) but the question of existence of solutions to the boundary value problem
(28) is still open.

We give a variant of Theorem 3.6 for nonlinear elasticity and for the following
objective function

J(Ω) =

∫

Ω

j
(

x, u(x)
)

dx+

∫

∂Ω

l
(

x, u(x)
)

ds, (29)

where j and l are smooth functions satisfying suitable growth conditions (so
that J(Ω), as well as the ajoint problem (30), make sense). In order to avoid
unnecessary technical complications, we assume enough smoothness of the data
and existence and uniqueness of solutions in simple functional spaces.

Theorem 8.2. Let Ω be a smooth bounded open set and θ ∈ W 1,∞(Rd;Rd).
Assume that the data f and g are smooth (f ∈ H1(Ω)d, g ∈ H2(Ω)d) and
that there exists a unique smooth solution u ∈ H2(Ω)d of (28). Assume also
that there exists a unique smooth solution p ∈ H2(Ω)d of the following (linear)
adjoint problem







−div (A(u)∇p) = −j′(u) in Ω
p = 0 on ΓD

(

A(u)∇p
)

n = −l′(u) on ΓN .
(30)

Assuming that A(u) and A(p) are coercive, the shape derivative of (29) is

J ′(Ω)(θ) =

∫

∂Ω

θ · n
(

j(u) + T (I + ∇u) · ∇p− p · f
)

ds

+

∫

∂Ω

θ · n

(

∂l(u)

∂n
+H l(u)

)

ds

−

∫

ΓN

θ · n

(

∂(g · p)

∂n
+H g · p

)

ds

−

∫

ΓD

θ · n

(

∂h

∂n

)

ds,

(31)

where h = u · T (I + ∇p)n+ p · T (I + ∇u)n.

Remark 8.3. In a nonlinear setting, the compliance is obtained by taking
j(x, u) = f · u and l(x, u) = g · u in (29). In such a case, the adjoint state
p is different from (−u).

Remark 8.4. The adjoint problem (30) is linear. The elasticity tensor A(u) in-
volved is the tangential operator around the solution u. If the numerical method
used to solve the problem (28) is Newton-like, this elasticity tensor has to be
computed during the resolution of (28). Furthermore, if the linear systems are
solved by a direct solver (Cholesky factorization), then the additional cost of
the adjoint problem is very small since the rigidity matrix has already being
factorized during the resolution of the direct problem.
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Remark 8.5. Usually the stored elastic energy W (F ) is strongly convex near
the identity, so that A(u) is coercive if u is close to 0 (and thus, automatically,
there exists a unique solution p to the adjoint problem). Such a condition is met
if, for example, the applied loads f and g are sufficiently small. Furthermore, if
j′(0) = 0 and l′(0) = 0, then u small implies that p is also small and thus A(p)
is coercive.

Proof. The (formal) proof is very similar to that of Theorem 3.6. We introduce

the Lagrangian defined for (v, q) ∈
(

H1(Rd;Rd)
)2

by

L(Ω, v, q) =

∫

Ω

j(v) dx +

∫

∂Ω

l(v) ds+

∫

Ω

T (I + ∇v) · ∇q dx−

∫

Ω

q · f dx

−

∫

ΓN

q · g ds−

∫

ΓD

(

q · T (I + ∇v)n+ v · T (I + ∇q)n
)

ds,

And we investigate its stationarity conditions.

The partial derivative of L with respect to q, in the direction φ ∈ H1(Rd;Rd),
after integration by parts, leads to

〈
∂L

∂q
(Ω, u, p), φ〉 = 0 = −

∫

Ω

φ ·
(

div(T (I + ∇u)) + f
)

dx

+

∫

ΓN

φ ·
((

T (I + ∇u)
)

n− g
)

ds

−

∫

ΓD

u ·
(

A(p)∇φ
)

n ds.

Taking first φ with compact support in Ω gives the state equation of (28). Then,
varying the trace function φ on ΓN gives the Neumann boundary condition for
u, while varying the corresponding normal stress

(

A(p)∇φ
)

n on ΓD gives the
Dirichlet boundary condition for u. (At this point we use the coercivity of
A(p) which is a sufficient condition for

(

A(p)∇φ
)

n to span a dense subset of
L2(ΓD)d.)

Then we differentiate L with respect to v in the direction φ ∈ H1(Rd;Rd).
This yields after integration by parts

〈
∂L

∂v
(Ω, u, p), φ〉 = 0 =

∫

Ω

(

j′(u) − div(A(u)∇p)
)

· φdx

+

∫

ΓN

φ ·
(

(

A(u)∇p
)

n+ l′(u)
)

ds

+

∫

ΓD

(

φ ·
(

l′(u) + A(u)∇pn− T (I + ∇p)n
)

−p ·
(

A(u)∇φ
)

n
)

ds.

Taking first φ with compact support in Ω gives the adjoint state equation

−div(A(u)∇p) = −j′(u) in Ω,
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varying the trace of φ on ΓN yields the Neumann boundary condition

(

A(u)∇p
)

n = −l′(u) on ΓN ,

then varying the normal stress
(

A(u)∇φ
)

n with φ = 0 on ΓD gives

p = 0 on ΓD.

Finally, just like in the linear case, we have

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u, p)(θ),

and the claimed expression of J ′(Ω)(θ) is obtained by applying Lemma 3.3 and
3.4 and remarking that h = 0 on ΓD. �

8.2 A numerical example

We come back to the medium cantilever problem described at the beginning
of Section 6. The working domain is a rectangle of size 2 × 1 discretized with
a rectangular 160 × 80 mesh, with zero displacement boundary condition on
the left side and a downward vertical point load at the middle of the right
side. The initialization is that of Figure 1 (middle). We use a Saint Venant-
Kirchhoff material (see [18]) with a Young modulus equal to 1000 and a Poisson’s
coefficient equal to 0.3. This constitutive law is characterized by the following
relations:

F = I + ∇u, E =
1

2

(

FTF − I),

Σ = λTr(E)I + 2µE,
T (F ) = F Σ.

This constitutive law does not satisfy any type of convexity (see Remark 8.1)
so it is not clear that the elasticity equations (28) are well posed. Neverthe-
less, we follow the usual practice in structural optimization (see e.g. [12]) and
adopt this Saint Venant-Kirchhoff law. The intensity of the force is now vary-
ing between 1 and 3, while the Lagrange multiplier for the weight constraint
is adjusted to maintain a given global material proportion of 40% of the total
volume. We first perform 10 iterations in the setting of linear elasticity to get
a rough approximation of the shape, and then 100 in nonlinear elasticity. The
resulting optimal shape in Figure 26 displays thicker bars under compression
than under traction as it should be, the disymmetry being amplified by the
intensity of the force.

9 Conclusion

We have proposed a method for shape and topology optimization in two and
three space dimensions which has the following advantages:
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Linear f = 1

f = 2 f = 3

Figure 26: Optimal shape of a cantilever in nonlinear elasticity for different
intensities of the force compared to the optimal shape in linear elasticity. Fine
mesh (160 × 80), initialized as in Figure 1 (middle)

Figure 27: Deformed configuration for the optimal cantilever in nonlinear elas-
ticity: the intensity of the force is 3 and the maximum displacement norm is
equal to 0.4 (2 × 1 domain).

1. it allows for drastic topology changes during the optimization process ;

2. its cost is moderate in terms of CPU time since this is an Eulerian shape
capturing method ;

3. it can handle very general objective functions and mechanical models,
including nonlinear elasticity and design-dependent loads ;

4. with a good initialization it is as efficient as the homogenization method

34



(when the latter one is available).

However, contrary to the homogenization method (see e.g. [1], [8], [17]), it
is not a relaxation method, which means that local minima have not been fully
eliminated in favor of global minima. It is clear from the numerical examples
that there still exist local (and non-global) minima to which the method may
converge if the initialization is too far from a global minimum. In practice, this
level-set method behaves differently in 2-d and 3-d. In 2-d the method works
as if it can reduce the topology (i.e. the number of holes) but it can not create
new holes since there is no nucleation mechanism in our algorithm. Therefore,
one must be careful in the choice of the initialization that should contain a
large number of holes if one seek a non-trivial topology. In 3-d, there are less
topological restrictions and the algorithm can easily create holes or non-simply
connected shapes even if the initial guess is convex. The mechanism of 3-d
topology changes is the possible crossing of two separate zero level-set surfaces
without breaking the connectivity of the shape or of the void. Frequently the
final shape has a much more complex topology than the initial shape. Never-
theless, different initializations can still drive the algorithm to different optimal
shapes in 3-d.

The problem of choosing an adequate initialization can be managed in two
ways, at least. First, one can run the homogenization method on a simplified
problem (say, linear elasticity with compliance objective function) as a pre-
processor in order to find a correct initial topology. Second, one can couple our
method with the so-called bubble method, or topological derivative, proposed
by [19], [20], and [30], which is precisely a criteria for hole nucleation.

Finally, the present level-set method of shape and topology optimization can
easily (in principle) be extended to multi-physics applications.
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