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ABSTRACT

Current spectrum analysis is a proven technique for fault diagnosis in electrical machines. Current spectral esti-
mation is usually performed using classical techniques such as periodogram (FFT) or its extensions. However, these
techniques have several drawbacks since their frequency resolution is limited and additional post-processing algorithms
are required to extract a relevant fault detection criterion. Therefore, this paper proposes a new parametric spectral es-
timator that fully exploits the faults sensitive frequencies. The proposed technique is based on the maximum likelihood
estimator (MLE) and offers high-resolution capabilities. Based on this approach, a fault criterion is derived for detecting
several fault types.

The proposed technique is assessed using simulation signals, issued from a coupled electromagnetic circuits
approach-based simulation tool for mechanical unbalance and electrical asymmetry faults detection. It is afterward
validated using experiments on a 0.75-kW induction machine test bed for the particular case of bearing faults.

Keywords

Induction machine, faults detection, bearing faults, stator current, spectral estimation, maximum likelihood estima-
tor.

NOMENCLATURE

DFT = Discrete Fourier Transform;
FFT = Fast Fourier Transform;
ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques;
MLE = Maximum Likelihood Estimator;
MUSIC = Multiple Signal Classification;
DFT = Discrete Fourier Transform;
DSP = Digital Signal Processing;
MCMFT = Maximum Covariance Frequency Tracking;
MDL = Minimum Description Length;
PSD = Power Spectral Density;
SNR = Signal to Noise Ratio;
fs = Stator supply frequency;
s = Per-unit slip;
p = Pole pair number.
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1 INTRODUCTION
Condition monitoring is of high concern in industrial applications since it minimizes the down-
time and improves the reliability, availability, safety and productivity of these systems. For
electrical motors and generators, faults detection is usually performed by vibration monitoring,
temperature measurements, oil monitoring, flux monitoring and current analysis [1], [2]. Among
these various techniques, current analysis has several advantages since it is a noninvasive
technique that avoids the use of extra sensors [3]–[7]. Moreover, the electrical signals (for instance,
the stator current) are usually available and inexpensive to measure.

Stator currents processing-based faults diagnosis of induction machine has received intense
research interest for several decades [8]–[10]. Moreover, the International Standard “ISO FDIS
20958” dealing with “Condition monitoring and diagnostics of machine systems - Electrical
signature analysis of three-phase induction motors” sets out guidelines for the online techniques
recommended for the purposes of condition monitoring and diagnostics of machines, based on
electrical signature analysis. Hence, many studies have shown that fault monitoring could be
performed by supervising the current spectrum. In particular, it has been demonstrated that
faults introduce additional spectral components in the stator current around the supply frequency
[11], [12]. For a faulty machine, the frequency location of these components is given by fk(Ω),
where fk corresponds to the kth component (k ∈ Z), and Ω is a set of parameters that must be
estimated in order to determine the induction machine health condition. These frequencies are
associated with several mechanical and/or electrical faults such as air-gap eccentricity, bearing
failures or broken rotor bars. For instance, In the case of broken rotor bars, the fault signature
is given by

fk(Ω) = fs

[
k

(
1− s
p

)
± s
]

(1)

where Ω = {s, fs}.
Traditional current-based techniques for fault detection monitor the stator current spectrum

and, more precisely, the fault characteristic frequencies [13]. In steady-state conditions, tech-
niques based on conventional PSD estimators have been employed [14]. These techniques can
be classified into two categories: non-parametric and parametric methods [15].

Non-parametric methods include the periodogram, which is usually implemented using the
FFT, and its extensions. The classical periodogram have been applied for fault detection in [11],
[12]. The main drawback of this technique relies on its performance. Indeed, even though the FFT
is computationally efficient, it suffers from a poor frequency resolution (inversely proportional
to the measurement time interval) and leakage effects (the energy of the main lobe leaks into
sidelobes) due to windowing. Moreover, frequencies in the Discrete Fourier Transform (DFT) are
spaced at intervals of Fs

N
where Fs is the sampling frequency and N is the length of the input

time series. Attempting to estimate the amplitude of a sinusoid with a frequency that does not
correspond to a DFT bin can result in an inaccurate estimate. Therefore, several DFT interpolation
techniques have been proposed in order to enhance frequency accuracy such as analytical leakage
compensation [16], zero-padding [15], phase interpolation estimator [17] and many others [18]–
[20]. Furthermore, the periodogram method provides reasonably high resolution for sufficiently
long data lengths, but it is a poor spectral estimator because its variance is high and does
not decrease with increasing data length. In addition of that, it is often advantageous to use
a window function other than a rectangular (natural) one and which has a Fourier transform
with faster decaying side-lobes than sinc-type function. The multiplication of the data with a
particular window function can reduce the sidelobe amplitudes but increases the width of the
mainlobe. Common window functions are: the Bartlett window, Hamming window, Hanning
window, and others [21]. The rectangular window leads to a narrow mainlobe but the highest
sidelobes whereas the Hanning window reduces strongly the sidelobe amplitudes but leads
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to the largest mainlobe [22], [23]. Furthermore, the high variance of the periodogram method
motivates the development of modified methods that have lower variance, at the cost of reduced
resolution. Several modified methods have been introduced such as the Bartlett [24] and the
Welch techniques [24], [25]. Moreover, the so-called Zoom-FFT (ZFFT) technique [26] has been
introduced to improve the frequency accuracy in a specified frequency range without increasing
the computational complexity. Nevertheless, the periodogram and its extensions suffer from
a low frequency resolution, which is defined as the ability to distinguish two closely spaced
frequency components. In [27], demodulation technique based on Hilbert transform was used
to improve the frequency resolution of MCSA method for rotor asymmetries detection without
concern about the signal nature (multi-component signal).

If an a priori signal model is assumed, parametric methods can be employed to improve
the frequency resolution. These techniques are generally called high-resolution methods and
include two sub-classes: the linear prediction methods and the subspace techniques. The linear
prediction class contains several algorithms like the Prony and Pisarenko methods. The use of
these methods for fault detection in electrical drives has been investigated in [28] and [29]. The
subspace class includes the MUSIC and ESPRIT approaches. Applications for induction machine
faults diagnosis are available in [2], [30]–[32]. In [33], the MUSIC algorithm and a zooming
method were combined to reduce the computational cost of the spectral estimator. However
these techniques are generally computationally intensive and lead to suboptimal estimators of
the PSD. Moreover, their performance decrease significantly if the noise level increases.

In addition to the aforementioned techniques, many faults detection procedures based on
statistical analysis of the current signal have been proposed such as MCMFT [34] and adaptive
statistical Time-Frequency Methods [35] without presenting any fault detection criteria for an
automatic fault diagnosis.

The above review emphasizes the compromise between frequency accuracy, frequency res-
olution, statistical performance and computational cost of spectrum analysis techniques for
fault detection in induction machine. Furthermore, these previous techniques are general and
do not exploit the particular structure of the stator current frequency components given in
the existing works dealing with induction machine failure diagnosis. In order to illustrate the
limitations of the classical spectrum analysis techniques, Fig 1 represents the current waveform
and the spectrum using the periodogram, MUSIC and ESPRIT techniques in the case of a
healthy and faulty motor (bearing fault). The simulation parameters for the periodogram are:
sampling frequency Fs = 1000 Hz, N = 2000, a Hanning window, and a zero padding with
Npad = 4096. The number of sinusoids for MUSIC and ESPRIT is setted equal to L = 6 and
M + 1 by M + 1 correlation matrix is computed with M = N

8
. It is obvious that these techniques

provide information about the presence of fault (sidebands-related fault) but no direct fault
detection criterion is provided. Consequently, additional post-processing algorithms are required
to determine the fault-related frequencies (mainly done manually) and to extract a fault detection
criterion. Once the frequency spectrum is obtained and stored, empirical formula are used in
order to reveal frequency signatures in the spectrum within various frequency ranges depending
on the fault to be diagnosed. If predicted frequency patterns are present in the spectrum, a fault
classification is achieved.

In this paper, in order to overcome the above mentioned limitations, we propose a parametric
PSD estimator based on the MLE combined with minimum description length principle (MDL).
In [36], a technique based on the MLE has been proposed for mechanical fault detection in
induction machine. Nevertheless, this technique is limited to particular faults and its extension
to other faults is far from trivial. Moreover, its implementation requires the use of sophisticated
optimization tool. The fault detection algorithm proposed in this paper is composed of the
two steps described in Fig. 2. First, the fault related frequencies number and the PSD are
estimated by using the MLE combined with information theoretic criteria (MDL). This estimation
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(a) Stator current waveform
(Faulty case).
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(b) Periodogram-based
spectrum (Hanning window).
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(c) MUSIC-based pseudospec-
trum.
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(d) ESPRIT-based spectrum.

Fig. 1 . Classical spectrum analysis techniques on experimental data.
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Fig. 2 . Block Diagram of the proposed technique. Symbol C corresponds to the fault detection criterion and v is a
vector containing the estimated parameters of the monitored stator current.

algorithm implies a 3-D optimization problem if we consider the supply frequency unknown.
Then, a simple fault criterion is computed from the amplitude estimate of the fault characteristic
frequencies. The main advantage of the proposed method is its ability to automatically extract
the fault frequency signature and to automatically compute a fault indicator without the need
of an expert to interpret the current spectrum [37].

The major contributions of this paper are threefold:
- We propose a new model order and spectral estimation technique aiming at detecting the

induction machine fault frequency signatures. This technique is asymptotically optimal and
exhibits high-resolution capabilities.

- We demonstrate the appropriateness of the approach on major faults in induction machine.
In fact, it makes a potential failure identifiable and quantifiable.

- We prove the effectiveness of the technique on simulated and experimental data.
The remaining parts of this paper are organized as follows.
- Section 2 introduces the signal model for healthy and faulty machines.
- Section 3 describes the proposed PSD estimator.
- Section 4 presents the fault detection criterion.
- Section 5 deals with the application of the proposed method for air-gap eccentricity, broken

rotor bars, and bearing faults detection, which are the most frequent faults in electric
machines according to [38], [39].

2 STATOR CURRENT SIGNAL MODEL
2.1 Faults Effect on Stator Current Spectrum
The induction machine is subjected to various failures that affect mainly three components : the
stator, the rotor and/or the bearings (Fig. 3a). Recent papers dealing with induction machine
faults distribution [39] have shown that bearings (69%), stator windings (21%), rotor (7%), and
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Fig. 3 . Distribution of known motor failures for the petroleum and chemical industries [39].

Table 1 . Induction machine faults signatures [11], [12].

Induction

machine state

Frequency

Signature
Parameters Ω

Bearing

Damage
|fs ± kfo| k = 1, 2, 3, ... Ω = {fs, f0}

Broken

Rotor Bars
fs
[
k( 1−s

p
)± s

]
k
p

= 1, 3, 5, 7, 11, 13... Ω = {fs, s}

Air Gap

Eccentricity
fs
[
1± k

(
1−s
p

)]
k = 1, 2, 3, ... Ω = {fs, s}

Load

oscillation
fs
[
1± k

(
1−s
p

)]
k = 1, 2, 3, ... Ω = {fs, s}

shaft/coupling (3%) are the most failing components (Fig. 3b). Most of the recent researches on
induction machine faults detection has been directed toward electrical monitoring with emphasis
on stator current supervision. In particular, the current spectrum is analysed to extract the
frequency components introduced by the fault. A summary of induction machine faults effects
on stator current is presented in Table 1.

Where fs corresponds to the supply frequency, s is the per unit slip, and p is the pole-pair
number. Symbol fo corresponds to one of the characteristic vibration frequencies introduced by
bearing fault which depends on the bearing dimensions and mechanical rotor frequency [40]. In
[41], it has been demonstrated that depending on the physical phenomena (eccentricity or torque
variations) introduced by bearing faults, the corresponding frequency signatures are different.
Moreover, these signatures depends on the defected components. Concerning the load oscillation,
the model presented holds only if the load oscillates at the rotating frequency [41], [42]. In fact,
in the case of load oscillations, the stator current is modulated by the shaft rotational speed,
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belt pass frequency, compression frequency, blades rotational frequency, meshing frequency,
resonance frequency of the control loop, etc. Finally, concerning the eccentricity fault, we only
focus on the monitoring of the current at the fundamental sidebands of the supply frequency
given in [11]. In fact, since space harmonics are usually of smaller amplitude, higher order
terms of these harmonics can be supposed to be less affected by the fault than the fundamental
frequency. In general way, the fault detection methods monitors the behavior of the current at
the sidebands of the slot frequencies. These sidebands associated with eccentricity are given in
[9].

The frequencies given by Table 1 are used in the faulty induction machine stator current
model described in the following section. When a fault occurs, the amplitude at these frequencies
increases and reveal abnormal operating conditions.

2.2 Induction Machine Stator Current Signal Model
The stator current signal model is based on the following assumptions:
− H1: The received signal is modeled as a sum of 2L+ 1 sine waves embedded in noise. 2L

corresponds to the number of the sidebands around the supply frequency introduced by
the fault (whose amplitudes rise when a fault occurs).

− H2: The noise is white, Gaussian with zero-mean and variance σ2.
− H3: The signal frequency content obeys to the particular structures given by Table 1.
− H4: The matrix A(Ω) has full column rank 2×L+1, i.e. rank(A(Ω)) = 2L+1. This is verified

for N > 2L+ 1.
In practice, H1 may not be verified since the induction machine stator current may contain

space- and time-harmonics. However, some of these harmonics can be eliminated by filtering
the stator current signal in order to focus on the fault-affected frequency bandwidth. Moreover,
we must note that H1 requires the knowledge of L. In the present work, we propose a technique
to estimate it from the stator current signal. Concerning the assumption H2, it is not particularly
restrictive. In fact, if the noise process is not white and has unknown spectral shape, then accurate
frequency estimates can still be found if we estimate the sinusoids using the non-linear least
squares (NLS) [15, Chapter 4, Introduction].

Under the assumption H1-H3, the stator-current samples x[n] can be expressed as

x[n] =
L∑

k=−L
ak cos

(
2πfk(Ω)×

(
n

Fs

)
+ φk

)
+ b[n] (2)

where b[n] corresponds to the noise sample. Symbols fk(Ω), ak and φk correspond to the fre-
quency, the amplitude and the phase of the kth frequency component, respectively. Symbol Fs
corresponds to the sampling rate. Note that the particular case where k = 0 corresponds to the
fundamental frequency component.

The PSD is defined as the Discrete Time Fourier Transform of the covariance function of
x[n] [15]. Under the assumption H2 and that the initial phases φk, are independent random
variables uniformly distributed on [−π π], the theoretical PSD of x[n] is given by Fig. 4 [15]. In
practice, the PSD is unknown, and must be estimated from N samples. Using a matrix notation,
x[n] (n = 0, · · · , N − 1) can be expressed as

x = A(Ω)v + b (3)

where:
− x = [x[0], · · · , x[N − 1]]T is a N × 1 column vector containing the stator current samples,
− b = [b[0], · · · , b[N − 1]]T is a N × 1 column vector containing the noise samples,



7 3

σ2PS
D

of
x

[n
]

f
fs

a20

f−1(Ω)

a2−1

f−2(Ω)

a2−2

f1(Ω)

a21

f2(Ω)

a22

Amplitude of the frequency

components introduced

by a fault

Fig. 4 . Theoretical PSD for L = 2 [15].

− v is a 2(2L+1)×1 column vector containing the amplitudes and phases of the characteristic
fault frequencies. This vector is given by

v = [a−L cos(φ−L) . . . aL cos(φL),−a−L sin(φ−L) . . .− aL sin(φL)]T (4)

A(Ω) is a N × 2(2L+ 1) matrix whose elements are given by

A(Ω) = [z−L . . . zL,y−L . . . yL] (5)

where

zk =

[
1 cos

(
2πfk(Ω)× 1

Fs

)
. . . cos

(
2πfk(Ω)× N − 1

Fs

)]T
yk =

[
0 sin

(
2πfk(Ω)× 1

Fs

)
. . . sin

(
2πfk(Ω)× N − 1

Fs

)]T
(6)

Non-parametric estimators estimate the PSD from x without using any a priori knowledge
about the signal. Departing from this approach, we propose a parametric estimator that exploits
the signal model in (3) and the fault related frequency presented in Table 1. In this context,
the computation of the current spectrum from stator current samples x is treated as a statistical
estimation problem. The main object is to estimate the parameters Ω in Table 1 and a relevant
fault detection criterion.

3 PARAMETRIC PSD ESTIMATION
In this section, we present the fault detection scheme based on the MLE. The MLE is an asymp-
totically optimal estimator since it has the asymptotic properties of being unbiased, achieving the
Cramer-Rao lower bound, and having a Gaussian Probability Density Function [43]. Application
for PSD estimation has been investigated for harmonic and non-harmonic signal models in [44]
and [45], respectively. Unfortunately, the MLE has a higher computational cost since it requires
the optimization of a cost-function in high dimensional space. In the case of induction machine
fault detection, we demonstrate that the MLE is computationally efficient since it leads to a
2-D optimization problem that is easy to implement. Besides, an efficient implementation of the
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MLE requires the knowledge of frequency components numbers which is called model order
estimation problem. In order to estimate the model order (fundamental frequency and 2 × L
sidebands produced by fault, where L has to be estimated), we propose to combine the MLE
with an order-dependent penalty term based on the MDL principle [46]. It must be emphasized
that the sidebands number (2 × L) estimation is of great interest since it contribute to inform
us about the fault existence. Moreover, if the order is not estimated (chosen) correctly, the fault
characteristic frequency may erroneously be estimated at, for example, half or double of the true
value. In addition to the exact MLE, we propose an FFT-based approximate approach that leads
to significant computational complexity reduction.

3.1 Proposed Estimator
The MLE is used in order to estimate v and Ω. Then a penalty term is applied to the MLE cost
function in order to estimate the model order i.e. L.

3.1.1 Estimate of v and Ω

The ML estimator of v, and Ω is given by

{v̂, Ω̂} = arg max
v,Ω

log(p(x; v,Ω)) (7)

where p(x; v,Ω) is the probability density function (pdf) of x which is given by

p(x; v,Ω) =
1

(2πσ2)
N
2

× exp

[
− 1

2σ2
(x−A(Ω)v)T (x−A(Ω)v)

]
(8)

where (.)T denotes the matrix transpose, and a noise is considered white Gaussian noise with
zero mean and variance equal to σ2 i.e. b[n] ∼ N (0, σ2). The ML estimates of Ω and v are
obtained by maximizing the pdf with respect to the unknown parameters. The maximization in
(7) is equivalent to the minimization of the following cost function:

L(x; v,Ω) = (x−A(Ω)v)T (x−A(Ω)v) (9)

Differentiating L(x; v,Ω) with respect to v and setting the derivative equal to 0 leads to the
ML estimate of v denoted v̂ (see Appendix A for the proof).

v̂ = A†(Ω)x (10)

where A†(Ω) is the pseudo-inverse of A(Ω) i.e.

A†(Ω) =
(
AT (Ω)A(Ω)

)−1 AT (Ω) (11)

and where (.)−1 corresponds to the matrix inverse.
The ML estimate of Ω is obtained by minimizing L(x; v̂,Ω) with respect to Ω. By replacing v

by v̂ in (9), we obtain (see Appendix B):

{Ω̂} = arg max
Ω
J (Ω) (12)

where:
J (Ω) = xTA(Ω)A†(Ω)x (13)
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3.1.2 Estimate of model order L
The estimation of L enhances the performance of the ML estimates of Ω. The information
theoretic criteria are used to estimate L [47]. In fact, a penalty term based on MDL principle
is applied to the MLE cost function in order to estimate L. Hence, the estimation of L can be
performed by maximizing the penalized ML estimate of Ω [46] as follows

{Ω̂, L̂} = arg min
Ω,L

(−2 log p(x, v̂, σ̂2,Ω, L) + c(g,N)) (14)

where:
− The noise variance estimate is given by

σ̂2 =
1

N
‖x−A(Ω̂)v̂‖ (15)

− The penalty function c(g,N) depends on the number of free parameters g and the number
of data samples N . Under the assumption that the number of the components is equal to
2L + 1, g = 4L + 4. The criterion information rule used within this paper is the minimum
description length (also called the Bayesian Information Criterion Rule) [46] and is given
by

c(g,N) = g log(N) (16)

A straightforward computation leads to the following optimization problem (see Appendix C
for the proof):

{Ω̂, L̂} = arg max
Ω,L
−
(
xTx− J (Ω)

)
× exp

(
c(g,N)

N

)
(17)

Finally, the PSD estimate of the stator current is composed of two steps: a) the estimates of
Ω, and L are obtained from (17), and b) the vector v containing the amplitude and the phase
of the fault characteristic frequencies is estimated by replacing Ω, and L with its estimates in
(10). Because of its statistical properties, one should note that the Maximum Likelihood estimate
remains the most accurate method for PSD estimation even in those cases where the noise is
colored [15]. In particular, this estimator overcomes the frequency resolution limitation of the
periodogram. Furthermore, as opposed to other techniques, the proposed approach exploits the
faults characteristic frequencies to improve the accuracy of the PSD estimate.

About the implementation, the main difficulty relies on the optimization problem in (17). As
the maximum can not be found analytically, numerical method should be used to estimate Ω
and L. In our context, the cost function is only composed of three parameters, which implies a
maximization in a 3-D space. The search space is relatively limited since the variation range of
Ω and L are approximately known. For these reasons, we propose to perform the maximization
of (17) with a grid-search algorithm. This algorithm evaluates the cost function at the vertices
of a rectangular grid, and chooses the vertex with the highest value. It should be noted that the
maximization step could be computationally demanding since it requires the construction and
the inversion of a large matrix for each vertex of the grid.

For grid connected induction machine, the fundamental frequency can be assumed to be
known. Consequently, the optimization problem in (17) reduces to 2-D problem. Figure 5a
illustrates the maximization step for a synthetic signal with fk(Ω) = fs±kfc, fs = 50Hz, fc = 1Hz,
L = 1, and SNR=50 dB. The acquisition time and the sampling frequency are equal to 1s and
Fs = 600Hz, respectively. The grid search algorithm evaluates the cost function for fc ranging
from 0Hz to 2Hz with a step size of 0.001 Hz and L varying from 0 to 4. By looking at Fig. 5a, it
can be observed that the cost function is maximized for the true values of fc i.e. 1Hz and L = 1.
Concerning the computational complexity, the evaluation of the cost function requires 26.7s on
a HP ProBook PC at 2.2 Ghz, using Matlab-simulink R©.



10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−80

−60

−40

−20

0

20

40

Fault related frequency

C
os

t f
un

ct
io

n 
(d

B
)

 

 
L=0
L=1
L=2
L=3
L=4

(a) J (fc) (N = 500).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
19.9

19.92

19.94

19.96

19.98

20

20.02

20.04

20.06

20.08

20.1

Fault related frequency

C
os

t f
un

ct
io

n 
(d

B
)

 

 
L=0
L=1
L=2
L=3
L=4

(b) J (fc) (Zoom).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

Fault related frequency

A
pp

ro
x.

 c
os

t f
un

ct
io

n 
(d

B
)

 

 
L=0
L=1
L=2
L=3
L=4

(c) Ja(fc) ( N = 2000).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−12.65

−12.6

−12.55

−12.5

−12.45

−12.4

Fault related frequency

A
pp

ro
x.

 c
os

t f
un

ct
io

n 
(d

B
)

 

 
L=0
L=1
L=2
L=3
L=4

(d) Ja(fc) (zoom).

Fig. 5 . Exact and approximate cost function (fs = 50Hz, fc = 1Hz, Lopt = 1, Fs = 1kHz and SNR = 50dB).

3.2 Link with FFT
The computational complexity of the PSD estimator can be reduced when the number of samples,
N , goes to infinity. Indeed, by using the following limit (see, e.g., [43, Example 7.16]).

lim
N→∞

2

N

(
AT (Ω)A(Ω)

)
= IN (18)

where IN corresponds to the N ×N identity matrix. The cost function can be approximated as
(see Appendix D)

Ja(Ω) = lim
N→∞

J (Ω) =
2

N
xTA(Ω)AT (Ω)x = 2

L∑
k=−L

∣∣∣∣∣ 1√
N

N−1∑
n=0

x[n]e−2jπ(fk(Ω)) n
Fs

∣∣∣∣∣
2

(19)

where the last equality comes from the fact that x[n] ∈ R. The last equation can be expressed
according to the Discrete Fourier Transform (DFT) of x[n]. Indeed,

Ja(Ω) = 2
L∑

k=−L
|DFTx [fk(Ω)/Fs]|2 (20)

where DFTx[f ] is the DFT computed at frequency f i.e.

DFTx[f ] =
1√
N

N−1∑
n=0

x[n]e−2jπfn (21)

Finally the approximate ML estimate of Ω is simply obtained by replacing J (Ω) with Ja(Ω) in
(12). It must be stressed that an approximate MLE can be obtained if fk(Ω)/Fs is not close to 0
and 1/2.

Similarly, the approximate ML estimator of the vector v is then computed using (22).

v̂ =
2

N
AT (Ω)x (22)

This approximate approach can be extended in order to estimate the model order L as follows

{Ω̂, L̂} = arg max
Ω,L
−
(
xTx− Ja(Ω)

)
× exp

(
c(g,N)

N

)
(23)

Equations (23) and (20) show that the approximate cost function is reduced to a sum of DFT
bins. This makes the approximate approach attractive for the following reasons: a) Most DSP-
boards include functions for DFT computation b) the DFT can be efficiently computed using
the FFT. However, it should be stressed that the accuracy of the approximation highly depends
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on the signal length N . In particular, the approximation in (18) is no longer valid for short
signals. In this case, the DFT of the stator current signal exhibits sidelobes which affect the
frequency resolution. The sidelobes can mask components close in frequency and then lead to
false conclusions. Moreover, the sidelobes could be interpreted as fault characteristic frequency
and then lead to false alarm. This may be overcame by choosing different windows (Hanning,
Blackman) in order to attenuate sidelobes [23]. Moreover, interpolating the DFT by zero padding
the data can often increase the frequency accuracy and thus improve the amplitude estimate [15].
The approximated method is then limited by the FFT algorithm resolution: the parameters are
estimated correctly as long as the observed signal length N

Fs
is large enough compared to the

inverse of the smallest frequency difference between two neighbouring poles of the signal i.e.
(24).

N � 1

mink1 6=k2 |fk2 − fk1 |
(24)

Figure 5c illustrates the cost function for synthesized signal. One can notice that the exact
cost function in Fig. 5a and its approximation in Fig. 5c have roughly the same shape and differ
only in low frequencies and while |fs ± kfc| → 0. Indeed, these two shapes differs when the
signal model contains closely spaced frequencies. For closely spaced frequencies, the resolution
limitation of the DFT leads to wrong results. In particular in Fig. 5c, one can notice the spurious
peak located at fc = 0Hz. When using the approximate approach, spurious peaks must be
removed to obtain accurate estimate of fc. This can be done by excluding small values of fc
from the grid search. Despite this drawback, the approximate approach is quite attractive since
it leads to a drastic computational reduction. For example, the evaluation of the approximate
cost function in Fig. 5c requires only 4.2s, while the evaluation of the exact one in Fig. 5a requires
26.7s.

4 FAULT DETECTION CRITERION
In this section, we propose a fault detection criterion based on the amplitude of the fault
characteristic frequencies. As the PSD estimate directly exploits the fault signature, we show
that the fault detection criterion can be easily derived from the vector v̂.

4.1 Proposed Criterion
In order to successfully perform fault detection, a fault criterion is needed to measure the
machine state. As the information about the fault severity is carried out by ak (k 6= 0), we propose
to compute the sum of the squares of the (normalized) amplitude of the fault characteristic
frequencies. This criterion is expressed mathematically as

C =
L∑

k=−L,k 6=0

(
a2
k

a2
0

)
(25)

This criterion exhibits the two following desirable properties.
Property 1: For healthy machines, the criterion is equal to 0 i.e.

C = 0 (26)

Property 2: The proposed criterion is invariant to scale. Indeed, let us denote Cx the fault
criterion relative to the stator current x[n]. It can be demonstrated that the fault criterion Cαx,
relative to the signal αx[n] (α > 0), is equal to:

Cαx = Cx (27)
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The proposed criterion in (25) depends on the amplitudes ak (k = −L, · · · , L). Once the PSD
is estimated, ak can be extracted from the vector v. However, using the structure of v in (4), it
can be shown that C can be obtained directly from v without computing ak. Indeed, the fault
criterion in (25) can be expressed under the following matrix form (see the appendix E for proof):

C =
vTv

vTMv
− 1 (28)

where M is a (4L+ 2)× (4L+ 2) matrix which is given by[
EL+1,L+1 0

0 EL+1,L+1

]
(29)

and where Eu,v is the (2L + 1) × (2L + 1) elementary matrix which is 1 in the uth row and vth

column and is zero elsewhere. In practice, one should note that v is unknown and must be
replaced by its estimate v̂ in (28) to compute C.

4.2 Algorithm Summary
The fault detection algorithm is summed up in Fig. 6. This algorithm can be implemented
for real-time monitoring of an induction machine. Compared to other PSD-based monitoring
technique (Periodogram, MUSIC, ESPRIT), the proposed approach is quite attractive since the
vector v directly conveys information about the characteristic frequencies.

5 APPLICATION TO INDUCTION MACHINE FAULTS DETECTION
The proposed approach has been implemented in Matlab-Simulink R© on a HP ProBook PC at
2.2 Ghz with 2 Go of RAM. Its performance is evaluated with simulated stator currents for
eccentricity and broken rotor bars faults and experimental data for bearing failures.

5.1 Simulation Results
This section deals with the performance of the proposed approaches for induction machine faults
detection. The induction machine modeling is briefly presented, then the proposed approaches
are used to detect eccentricity and broken rotor bars faults.
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5.1.1 Induction machine modeling
An induction machine model for healthy and faulty machines has been developed based on
the coupled magnetic circuits theory [13], [48], [49]. This method is based on the following
assumptions:
− Negligible saturation;
− Negligible eddy current, friction and windage losses;
− Insulated rotor bars.
The induction machine stator consists of three phase concentric winding. Each winding is

considered as a separated coil. The cage rotor has n bars which can be described as n identical
and equally spaced rotor loops; each loop is formed by two adjacent rotor bars connected by
the end-ring portions.

The rotor cage equivalent circuit showing the rotor loops and different currents is displayed
in Fig. 7.

The stator currents are obtained by solving the system of differential equations in (30).
d
dt

I = −L−1
(

R + Ω d
dθm

L
)

I + L−1V
d
dt

Ω = 1
2J

IT
(

d
dθm

L
)

I− f
J

Ω− 1
J

ΓC
d
dt
θm = Ω

(30)

where :

V =

[
Vs

0

]
I =

[
Is
Ir

]
R =

[
Rs 0
0 Rr

]
L =

[
Lss Lsr
Lrs Lrr

]
Symbols Vs, Is and Ir correspond to the stator voltage vector, the stator current vector and the
rotor current vector, respectively. Inductances Lss, Lrr, Lrs and Lsr correspond to the self and
mutual inductances between stator windings and rotor windings. Resistances Rs and Rr refer
to the stator and cage resistances and ΓC , Ω and θm correspond to the load torque, the rotor
mechanical speed and the rotor angular position, respectively. Finally, J is the rotating masses
inertia and f is the viscous friction coefficient.

In (30), the machine inductances L are carried out using the air-gap magnetic energy, which
is determined by means of the actual geometry and winding layout of the machine. A Matlab-
simulink R©-based tool for faulty induction machines has been developed to generate faults database
and therefore to allow testing the proposed faults detection approach.

In these simulations dynamic eccentricities are introduced to emulate a bearing fault. It has
been demonstrated that single-point bearings faults have an effect over the machine eccentricity
and/or load variations [40]–[42], [50]. In fact, bearing fault will induce mechanical eccentricities,
but also load-torque variations. Hence, in the carried-out simulations, bearing faults are emulated
by generating only one sort of physical phenomena: rotating eccentricities at bearing character-
istic fault frequency fc. These eccentricities leads to periodical changes in the induction machine
inductances [40]. Moreover, broken rotor bars are emulated by suppressing the corresponding
broken rotor bar.

Therefore, a 4 kW induction machine operating under nominal load condition have been
simulated. Three machines have been considered: a healthy machine, a faulty one affected by
a 10% (static, dynamic and mixed) eccentricity, and a faulty one affected by broken rotor bars.
Simulations were performed with a supply frequency equal to fs = 50 Hz and nominal speed
equal to Ωm = 1425rpm. The stator current signals have been recorded during 1 second with a
1 kHz sampling rate.
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Fig. 8 . Stator current PSD for a faulty motor (Mixed eccentricity).

Table 2 . Eccentricity fault simulation results.
(a) Exact PSD estimator.

State L̂
f̂c

(Hz)

C

(×10−3)

Healthy 0 0 0

Static
1 24.46 1.1

eccentricity

Dynamic
1 48.87 5.3

eccentricity

Mixed
2 24.43

8eccentricity

(b) Approximated PSD estimator.

State L̂
f̂c

(Hz)

C

(×10−3)

Healthy 4 10 0.94

Static
2 12.3 1.5

eccentricity

Dynamic
2 12.22 5.5

eccentricity

Mixed
4 12.21 8.4

eccentricity

5.1.2 Eccentricity fault detection results
The PSD of the stator current using the periodogram, MUSIC algorithm, and the proposed
approach are depicted in Fig. 8 for the same simulation parameters as the ones used in Fig. 1.

The algorithm shown in Fig. 6 is used to extract a fault detection criterion. The eccentricity
fault characteristic frequency is used, i.e. fk(Ω) = fs ± kfc where fc =

(
1−s
p

)
fs. The grid search

algorithm has been implemented using a fine search: fc ranges from 0 Hz to 100 Hz with a step
size of 0.01 Hz. Table 2 summarizes the simulation results. This table presents the estimated fault
frequency fc, the sidebands number L, and the fault detection criterion C. The fault detection
criterion C is computed using (28).

The analysis of Table 2 allows concluding that the two proposed approaches permit to de-
tect the eccentricity fault. Indeed in presence of eccentricity faults, the fault criterion increases
significantly. Therefore, a simple threshold-based decision can distinguish between the healthy
and the faulty cases. However, it is obvious that the exact method gives more reliable results
since the criterion is null for healthy case which confirms the theoretical study. The FFT-based
approach tends to over-estimate L which leads to values of fc equal to half the true value given
by the exact method. The last ascertainment is due to sidelobes (due to sampling) present in the
signal FFT which are interpreted as sidebands (characteristic fault frequency).
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Fig. 9 . PSD of the stator current with 3 broken rotor bars.

5.1.3 Broken rotor bars fault detection results
Broken rotor bar is one of the electrical faults that is difficult to detect since the squirrel cage
current can not be acquired. The PSD of the stator current using the periodogram, MUSIC
algorithm, and the proposed approach are depicted in Fig. 9 for the same simulation parameters
as the ones used in Fig. 1.

The broken rotor bars characteristic frequency is used in the signal model i.e. fk(Ω) = fk(fs, s) =

fs

[
k
(

1−s
p

)
± s
]
. Computer simulations have been performed for assessment of operating fea-

tures of the proposed fault detection scheme.

Table 3 . Broken rotor bars simulation results.
(a) Exact PSD estimator.

State L̂ k̂/p
ŝ

(%)

C

(×10−3)

Healthy 0 0 0 0

1 broken bar 3 1, 3, 5 5.8 4.6

2 broken bars 4 1, 3, 5, 7 6.2 24.4

3 broken bars 5 1, 3, 5, 7, 11 6.6 49.7

(b) Approximated PSD estimator.

State L̂ k̂/p
ŝ

(%)

C

(×10−3)

Healthy 1 1 3.13 1.8

1 broken bar 3 1, 3, 5 5.85 4.3

2 broken bars 4 1, 3, 5, 7 6.16 22.6

3 broken bars 5 1, 3, 5, 7, 11 6.57 45.2

Table 3 gives simulation results for 1 to 3 broken rotor bars for both the exact and FFT-based
techniques. The broken bars are adjacent. The criterion has been evaluated for different fault
degrees. It can be noticed that the fault criterion varies in proportion to the number of broken
rotor bars. The same conclusions can be drawn from the broken rotor bars results. It is worthy
to notice that in the exact approach case, the estimation of k

p
leads to informations about faults

presence. This is not the case for FFT-based approach since the algorithm interprets sidelobes
as sidebands which may lead to false alarm.

5.2 Experimental Results
This section reports on the performance of the proposed approaches. First, the test rig is pre-
sented, then the proposed techniques was applied off-line using Matlab for bearing faults de-
tection in a conventional induction machine.
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Bearing fault Fault related frequency Theoretical values (Hz)

Cage defect fc = fr
2

(
1− d

D
cos(α)

)
[14.4, 27.077]

Ball defect fbd = D
d
fr
(

1− d2

D2 cos2(α)
)

[105.5, 119.47]

Inner raceway fid = nfr
2

(
1 + d

D
cos(α)

)
[154.04, 255.1]

Outer raceway fod = nfr
2

(
1− d

D
cos(α)

)
[115.5, 216.6]

Table 4 . Theoretical values of bearing faults frequencies
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5

•

Outer race

Cage

Inner race

Ball

D

d

α

(c) Geometry of a rolling-element bearing.

(α) (β)

(γ) (δ)
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Fig. 10 . Bearing structure with main dimensions ((α) outer race deterioration, (β) inner race deterioration, (γ) cage
deterioration, δ ball deterioration).

5.2.1 Test rig
A conventional 0.75 kW induction machine drive test rig is used in order to test the proposed
parametric spectral estimation fault detection approach (Fig. 11). The rated data of the used
induction machine are given in Appendix F.

The test rig mechanical part is composed by a synchronous and an induction machine. The
induction machine is fed by the synchronous generator in order to eliminate time-harmonics.
Indeed, this will automatically eliminate supply harmonics and therefore allow focusing only
on bearing faults effect on the stator current.

The induction machine has two 6204.2 ZR type bearings (single row and deep groove ball
bearings) with the following parameters: outside diameter is 47 mm, inside diameter is 20 mm,
and pitch diameter D is 31.85 mm. A bearing has n = 8 balls with an approximate diameter d
of 12 mm and a contact angle of α = 0 ◦ (Fig. 10). Based on these dimensions, the theoretical
values of the different bearing fault frequencies are given in Table 4.

Bearing failure is one of the foremost causes of breakdowns in rotating machinery, resulting
in costly downtime (Fig. 3b) [39]. One of the key issues in bearing prognostics is to detect the
defect at its incipient stage and alert the operator before it develops into catastrophic failure.
Hence, bearing faults are obtained by simply drilling holes in different parts [51].

In order to study the load influence, the induction machine was operated with various load
levels ranging from 0 W to 400 W.

The measured quantities for off-line bearing fault detection were the line-currents. For all
the experiments, the stator fundamental frequency was equal to fs = 50 Hz. All the signals
were acquired at a 10 kHz sampling frequency by a data acquisition card and processed using
Matlab-simulink R©. As the information relative to the bearing faults is mostly contained in the
low frequency content, these signals were down-sampled at a 600 Hz sampling rate.

5.2.2 Fault detection results
In presence of bearing faults, it has been shown in [40] that the fault characteristic frequencies
are given by: fk(Ω) = |fs ± kfc| (k ∈ Z). In [41], it has been demonstrated that depending on
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the bearing fault effect on the induction machine behavior (eccentricity or torque variations)
the bearing fault-related frequencies in the stator current spectrum is different. In this section,
we consider only the case where the localized single-point bearing defects leads to the torque
variations. Hence, the model in [40] has been considered.

The algorithm in Fig. 6 is again used to extract a fault detection criterion. Similarly to the
simulation configuration, the number L has been estimated in order to decide whether the
induction machine is operating with healthy bearings or damaged once. If L = 0 then the
bearings are safe, otherwise the bearing is damaged and criterion in (28) is computed in order
to measure the fault severity and then take decision. Preliminary tests have shown that most
of the characteristic fault frequencies are greater than fs = 50 Hz which means that most of
the frequency components related to fault are located at the right-side of the supply frequency
fs due to the absolute value of the frequencies introduced by faults (Table 1). Therefore, the
proposed approach has been used to extract these right-side components. This simplification is
not equivalent to minimization of time-harmonics in power supply since these frequencies are
different from multiples of the fundamental frequency fs = 50 Hz.

Experimental results are reported in Figs. 12a and 12b for the exact and approximate ap-
proaches, respectively. These figures display the criterion C for healthy and faulty machines
with various load levels.

For the exact algorithm, in the case of healthy machine, it is obvious that L = 0 which implies
that the criterion is equal to 0. From this bar chart, it could be observed that the proposed
criterion significantly increases for each faulty machine, regardless of the fault type and load
level. Therefore, a simple estimation of L gives an indication of the existence of fault. However,
In the case of approximated approach based on the FFT, the estimation of L can not be a reliable
way to distinguish faulty from healthy case since L is different from 0 even if the machine
is operating correctly. That’s why, the criterion computation is mandatory and threshold-based
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Fig. 12 . Performance of the proposed approaches on experimental data.

fault detector must be defined in order to distinguish between healthy and faulty machines.
By comparing the two techniques, we can note that the exact approach is more reliable than

the approximated method which is less time consuming. However, it must be emphasized that
the approximate approach has practical advantages since it is based on the DFT (easiness of
implementation, fast computation with FFT). The two figures also show that the criterion C
decreases with the load level; there is only one exception to this rule for the healthy machine in
the case of approximated algorithm. This could be explained by the fact that the load tends to
hide the faults effect on the stator current [52]. This is clearly illustrated in Fig.12b when the load
is equal to 400 W. This results obviously confirms the effectiveness of the proposed technique
over the FFT-based one.

The proposed technique allows detecting several induction machine faults. In order to charac-
terize the fault (defected component, fault severity, etc.) another step is required which has not
been addressed within this paper. However, the proposed technique may be used as an input
for a fault classifier since it allows the extraction of the fault frequency signatures. Once the
fault sensitive frequencies are extracted, the signatures given in the literature may be used to
discriminate several faults.

6 CONCLUSIONS
This paper has proposed a statistical-based approach for fault detection in induction machines.
The proposed approach is composed of two steps: a) the estimation of the PSD with a new
parametric technique, and b) the computation of a fault detection criterion.

The proposed PSD estimator has been computed using the maximum likelihood estimation
approach. As opposed to non-parametric PSD estimators, the proposed technique exploits the
fault frequency signatures in order to improve the performance of the fault detection criterion.
As a result, the proposed estimator has better frequency-resolution and frequency-accuracy than
other techniques such as the periodogram. When the number of samples goes to infinity, it has
also been demonstrated that the proposed PSD estimator can be efficiently implemented using
the Discrete Fourier Transform. However, this approximated method does not perform as well
as the exact method for short signals. Concerning the fault detection criterion, we have proposed
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a criterion based on the amplitude of the fault-related frequencies. This criterion is theoretically
equal to zero for healthy machine and increases for faulty once.

The proposed approach was successfully tested on simulations with eccentricity and broken
rotor bars faults and experimental test rig with various bearing faults and load conditions.
Simulation and experimental results have corroborated the efficiency of the proposed method,
regardless of the fault type in contrary to the FFT-based approach. Furthermore, these results
have suggested that the estimation of L is very interesting since it allows to make a direct and
fast first idea about the machine state.

Further investigations are required in order to study the effect of the induction machine faults
over the time- and space-harmonics of the stator current. Furthermore, the impact of these
harmonics over the reliability of the proposed technique should be highlighted.

APPENDIX A
ESTIMATION OF V

By expanding (9), we obtain:

L(x; v,Ω) = (x−A(Ω)v)T (x−A(Ω)v)

=
(

xT − vTAT (Ω)
)(

x−A(Ω)v
)

= xTx− 2vTAT (Ω)x + vTAT (Ω)A(Ω)v (31)

The derivative of L(x; v,Ω) with respect to v is equal to (see reference [53]):

∂L(x; v,Ω)

∂v
= −2AT (Ω)x + 2AT (Ω)A(Ω)v

= −2AT (Ω) (x−A(Ω)v) (32)

Setting the above derivative to zero, we obtain the ML estimator of v, which is denoted v̂:

∂L(x; v,Ω)

∂v

∣∣∣∣∣
v=v̂

= 0⇒ x = A(Ω)v̂ (33)

Finally, we obtain the following ML estimator of v:

v̂ = A†(Ω)x (34)

where A†(Ω) is the pseudo-inverse of A(Ω) i.e.

A†(Ω) =
(
AT (Ω)A(Ω)

)−1 AT (Ω) (35)

APPENDIX B
ESTIMATION OF Ω
The ML estimate of fk(Ω) is obtained by minimizing L(x; v̂,Ω) with respect to Ω. By replacing
v by v̂ in (9), we obtain:

L(x; v̂,Ω) = (x−A(Ω)v̂)T (x−A(Ω)v̂)

=
(
x−A(Ω)A†(Ω)x

)T (
x−A(Ω)A†(Ω)x

)
= xT

(
IN −A(Ω)A†(Ω)

)
x (36)
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where the last equality has been obtained using (35). Neglecting the terms that do not depend
on Ω, it can be shown that the ML estimate of Ω is given by

{Ω̂} = arg max
Ω
J (Ω) (37)

where:

J (Ω) = xTA(Ω)A†(Ω)x (38)

APPENDIX C
MODEL ORDER ESTIMATION

Departing from 14 we have

CF = −2 log p(x, v̂, σ̂2,Ω, L) + c(g,N) (39)

= 2 log
(

(2πσ̂2)
N
2

)
− 1

σ̂2

[
(x−A(Ω)v̂)T (x−A(Ω)v̂)

]
+ c(g,N) (40)

= N log
(
(2πσ̂2)

)
− 1

σ̂2

[
(x−A(Ω)v̂)T (x−A(Ω)v̂)

]
+ c(g,N) (41)

= log
(
(2πσ̂2)

)
− 1

σ̂2

[
(x−A(Ω)v̂)T (x−A(Ω)v̂)

N

]
+
c(g,N)

N
(42)

Using (15) the cost function is equivalent to

CF1 = log
(
(2πσ̂2)

)
+
c(g,N)

N
(43)

Since the exp function is strictly increasing, applying the exp on (43) gives

CF2 = (2πσ̂2)× exp

(
c(g,N)

N

)
(44)

Replacing (15) in (44) gives the equation given in (17).
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APPENDIX D
LINK WITH FFT PROOF

Ja(Ω) =
2

N
xTA(Ω)AT (Ω)x (45)

=
2

N
‖ATx‖F (46)

=
2

N

∥∥∥[z−L . . . zL,y−L . . . yL]T [x[0] x[1] . . . x[N − 1]
]T∥∥∥

F
(47)

=
2

N

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∑N−1
n=0 x[n] cos(2πf−L(Ω)× n

Fs
)

...∑N−1
n=0 x[n] cos(2πfL(Ω)× n

Fs
)∑N−1

n=0 x[n] sin(2πf−L(Ω)× n
Fs

)

...∑N−1
n=0 x[n] sin(2πfL(Ω)× n

Fs
)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

(48)

=
2

N

L∑
k=−L

[
N−1∑
n=0

x[n]cos(2πfk(Ω)
n

Fs
)

]2

+

[
N−1∑
n=0

x[n]sin(2πfk(Ω)
n

Fs
)

]2

(49)

=
2

N

L∑
k=−L

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πfk(Ω) n
Fs

∣∣∣∣∣
2

(50)

APPENDIX E
By using (4), we obtain:

vTv =
L∑

k=−L
a2
k cos2(φk) +

L∑
k=−L

a2
k sin2(φk)

=
L∑

k=−L
a2
k (51)

By using the structure of M, we also get:

vTMv = [0 · · · 0 a0 cos(φ0) 0 · · · 0− a0 sin(φ0)0 · · · 0]v
= a2

0 cos2(φ0) + a2
0 sin2(φ0)

= a2
0 (52)

These two equations lead to the following result:

vTv
vTMv

− 1 =

(
L∑

k=−L

a2
k

a2
0

)
− a2

0

a2
0

(53)

=
L∑

k=−L,k 6=0

(
a2
k

a2
0

)
= C (54)
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APPENDIX F

RATED DATA OF THE TESTED INDUCTION MACHINE

0.75 kW, 50 Hz, 220/380 V, 3.4/1.95 A, 2780 rpm, p =1
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