
HAL Id: hal-01079428
https://hal.science/hal-01079428v1

Submitted on 1 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting easy data in online optimization
Amir Sani, Gergely Neu, Alessandro Lazaric

To cite this version:
Amir Sani, Gergely Neu, Alessandro Lazaric. Exploiting easy data in online optimization. Advances
in Neural Information Processing 27, Dec 2014, Montreal, Canada. �hal-01079428�

https://hal.science/hal-01079428v1
https://hal.archives-ouvertes.fr

Exploiting easy data in online optimization

Amir Sani Gergely Neu Alessandro Lazaric
SequeL team, INRIA Lille – Nord Europe, France

{amir.sani,gergely.neu,alessandro.lazaric}@inria.fr

Abstract

We consider the problem of online optimization, where a learner chooses a deci-
sion from a given decision set and suffers some loss associated with the decision
and the state of the environment. The learner’s objective is to minimize its cu-
mulative regret against the best fixed decision in hindsight. Over the past few
decades numerous variants have been considered, with many algorithms designed
to achieve sub-linear regret in the worst-case. However, this level of robustness
comes at a cost. Proposed algorithms are often over-conservative, failing to adapt
to the actual complexity of the loss sequence which is often far from the worst-
case. In this paper we introduce a general algorithm that, provided with a “safe”
learning algorithm and an opportunistic “benchmark”, can effectively combine
good worst-case guarantees with much improved performance on “easy” data.
We derive general theoretical bounds on the regret of the proposed algorithm and
discuss its implementation in a wide range of applications, notably in the prob-
lem of learning with shifting experts (a recent COLT open problem). Finally, we
provide numerical simulations in the setting of prediction with expert advice with
comparisons to the state-of-the-art.

1 Introduction

We consider a general class of online decision-making problems, where a learner sequentially de-
cides which actions to take from a given decision set and suffers some loss associated with the
decision and the state of the environment. The learner’s goal is to minimize its cumulative loss as
the interaction between the learner and the environment is repeated. Performance is usually mea-
sured with regard to regret; that is, the difference between the cumulative loss of the algorithm and
the best single decision over the horizon in the decision set. The objective of the learning algorithm
is to guarantee that the per-round regret converges to zero as time progresses. This general setting
includes a wide range of applications such as online linear pattern recognition, sequential investment
and time series prediction.

Numerous variants of this problem were considered over the last few decades, mainly differing in the
shape of the decision set (see [7] for an overview). One of the most popular variants is the problem
of prediction with expert advice, where the decision set is the N -dimensional simplex and the per-
round losses are linear functions of the learner’s decision. In this setting, a number of algorithms are

known to guarantee regret of order
√
T after T repetitions of the game. Another well-studied setting

is online convex optimization (OCO), where the decision set is a convex subset of Rd and the loss
functions are convex and smooth. Again, a number of simple algorithms are known to guarantee

a worst-case regret of order
√
T in this setting. These results hold for any (possibly adversarial)

assignment of the loss sequences. Thus, these algorithms are guaranteed to achieve a decreasing
per-round regret that approaches the performance of the best fixed decision in hindsight even in the
worst case. Furthermore, these guarantees are unimprovable in the sense that there exist sequences

of loss functions where the learner suffers Ω(
√
T) regret no matter what algorithm the learner uses.

However this robustness comes at a cost. These algorithms are often overconservative and fail to
adapt to the actual complexity of the loss sequence, which in practice is often far from the worst

1

possible. In fact, it is well known that making some assumptions on the loss generating mechanism
improves the regret guarantees. For instance, the simple strategy of following the leader (FTL,
otherwise known as fictitious play in game theory, see, e.g., [7, Chapter 7]), which at each round
picks the single decision that minimizes the total losses so far, guarantees O(log T) regret in the
expert setting when assuming i.i.d. loss vectors. The same strategy also guarantees O(log T) regret
in the OCO setting, when assuming all loss functions are strongly convex. On the other hand, the
risk of using this strategy is that it’s known to suffer Ω(T) regret in the worst case.

This paper focuses on how to distinguish between “easy” and “hard” problem instances, while
achieving the best possible guarantees on both types of loss sequences. This problem recently re-
ceived much attention in a variety of settings (see, e.g., [9] and [14]), but most of the proposed
solutions required the development of ad-hoc algorithms for each specific scenario and definition of
“easy” problem. Another obvious downside of such ad-hoc solutions is that their theoretical analysis
is often quite complicated and difficult to generalize to more complex problems. In the current pa-
per, we set out to define an algorithm providing a general structure that can be instantiated in a wide
range of settings by simply plugging in the most appropriate choice of two algorithms for learning
on “easy” and “hard” problems.

Aside from exploiting easy data, our method has other potential applications. For example, in some
sensitive applications we may want to protect ourselves from complete catastrophe, rather than take
risks for higher payoffs. In fact, our work builds directly on the results of Even-Dar et al. [10],
who point out that learning algorithms in the experts setting may fail to satisfy the rather natural
requirement of performing strictly better than a trivial algorithm that merely decides on which expert
to follow by uniform coin flips. While Even-Dar et al. propose methods that achieve this goal, they
leave open an obvious open question. Is it possible to strictly improve the performance of an existing
(and possibly naı̈ve) solution by means of principled online learning methods? This problem can be
seen as the polar opposite of failing to exploit easy data. In this paper, we push the idea of Even-Dar
et al. one step further. We construct learning algorithms with order-optimal regret bounds, while
also guaranteeing that their cumulative loss is within a constant factor of some pre-defined strategy
referred to as the benchmark. We stress that this property is much stronger than simply guaranteeing
O(1) regret with respect to some fixed distribution D as done by Even-Dar et al. [10] since we
allow comparisons to any fixed strategy that is even allowed to learn. Our method guarantees that
replacing an existing solution can be done at a negligible price in terms of output performance with
additional strong guarantees on the worst-case performance. However, in what follows, we will
only regard this aspect of our results as an interesting consequence while emphasizing the ability
of our algorithm to exploit easy data. Our general structure, referred to as (A,B)-PROD, receives a
learning algorithm A and a benchmark B as input. Depending on the online optimization setting, it
is enough to set A to any learning algorithm with performance guarantees on “hard” problems and
B to an opportunistic strategy exploiting the structure of “easy” problems. (A,B)-PROD smoothly
mixes the decisions of A and B, achieving the best possible guarantees of both.

2 Online optimization with a benchmark

Parameters: set of decisions S, number of rounds T ;
For all t = 1, 2, . . . , T , repeat

1. The environment chooses loss function ft : S → [0, 1].

2. The learner chooses a decision xt ∈ S .

3. The environment reveals ft (possibly chosen depending on the past history
of losses and decisions).

4. The forecaster suffers loss ft(xt).

Figure 1: The protocol of online optimization.

We now present the formal setting and an algorithm for online optimization with a benchmark. The
interaction protocol between the learner and the environment is formally described on Figure 1. The
online optimization problem is characterized by the decision set S and the class F ⊆ [0, 1]S of loss
functions utilized by the environment. The performance of the learner is usually measured in terms

of the regret, defined as RT = supx∈S

∑T
t=1

(ft(xt)− ft(x)). We say that an algorithm learns if it
makes decisions so that RT = o(T).

2

Let A and B be two online optimization algorithms that map observation histories to decisions in a
possibly randomized fashion. For a formal definition, we fix a time index t ∈ [T] = {1, 2, . . . , T}
and define the observation history (or in short, the history) at the end of round t − 1 as Ht−1 =
(f1, . . . , ft−1). H0 is defined as the empty set. Furthermore, define the random variables Ut and Vt,
drawn from the standard uniform distribution, independently of Ht−1 and each other. The learning
algorithms A and B are formally defined as mappings from F∗ × [0, 1] to S with their respective
decisions given as

at
def
= A(Ht−1, Ut) and bt

def
= B(Ht−1, Vt).

Finally, we define a hedging strategy C that produces a decision xt based on the history of deci-
sions proposed by A and B, with the possible help of some external randomness represented by
the uniform random variable Wt as xt = C

(
at, bt,H∗

t−1,Wt

)
. Here, H∗

t−1 is the simplified history

consisting of (f1(a1), f1(b1), . . . , ft−1(at−1), ft−1(bt−1)) and C bases its decisions only on the past
losses incurred by A and B without using any further information on the loss functions. The total

expected loss of C is defined as L̂T (C) = E[
∑T

t=1
ft(xt)], where the expectation integrates over the

possible realizations of the internal randomization of A,B and C. The total expected losses of A, B
and any fixed decision x ∈ S are similarly defined.

Our goal is to define a hedging strategy with low regret against a benchmark strategy B, while also
enjoying near-optimal guarantees on the worst-case regret against the best decision in hindsight. The
(expected) regret of C against any fixed decision x ∈ S and against the benchmark, are defined as

RT (C, x) = E

[
T∑

t=1

(ft(xt)− ft(x))

]
, RT (C,B) = E

[
T∑

t=1

(ft(xt)− ft(bt))

]
.

Input: learning rate η ∈ (0, 1/2], initial
weights {w1,A, w1,B}, num. of rounds T ;
For all t = 1, 2, . . . , T , repeat

1. Let
st =

wt,A

wt,A + w1,B

.

2. Observe at and bt and predict

xt =

{

at with probability st,

bt otherwise.

3. Observe ft and suffer loss ft(xt).

4. Feed ft to A and B.

5. Compute δt = ft(bt)− ft(at) and set

wt+1,A = wt,A · (1 + ηδt) .

Figure 2: (A,B)-PROD

Our hedging strategy, (A,B)-PROD, is based on the
classic PROD algorithm popularized by Cesa-Bianchi
et al. [8] and builds on a variant of PROD called D-
PROD, proposed in Even-Dar et al. [10], which (when
properly tuned) achieves constant regret against the per-
formance of a fixed distribution D over experts, while

guaranteeing O(
√
T log T) regret against the best ex-

pert in hindsight. Our variant (A,B)-PROD (shown in
Figure 2) is based on the observation that it is not neces-
sary to use a fixed distribution D in the definition of the
benchmark, but actually any learning algorithm or sig-
nal can be used as a baseline. (A,B)-PROD maintains
two weights, balancing the advice of learning algorithm
A and a benchmark B. The benchmark weight is de-
fined as w1,B ∈ (0, 1) and is kept unchanged during the
entire learning process. The initial weight assigned to
A is w1,A = 1 − w1,B, and in the remaining rounds
t = 2, 3, . . . , T is updated as

wt,A = w1,A

t−1∏

s=1

(1− η (fs(as)− fs(bs))) ,

where the difference between the losses of A and B is used. Output xt is set to at with probability
st = wt,A/(wt,A+w1,B), otherwise it is set to bt.

1 The following theorem states the performance
guarantees for (A,B)-PROD.

Theorem 1 (cf. Lemma 1 in [10]). For any assignment of the loss sequence, the total expected loss
of (A,B)-PROD initialized with weights w1,B ∈ (0, 1) and w1,B = 1−w1,A simultaneously satisfies

L̂T ((A,B)-PROD) ≤ L̂T (A) + η

T∑

t=1

(ft(bt)− ft(at))
2 − logw1,A

η

and

L̂T ((A,B)-PROD) ≤ L̂T (B)−
logw1,B

η
.

1For convex decision sets S and loss families F , one can directly set xt = stat +(1− st)bt at no expense.

3

The proof directly follows from the PROD analysis of Cesa-Bianchi et al. [8]. Next, we suggest
a parameter setting for (A,B)-PROD that guarantees constant regret against the benchmark B and
O(

√
T log T) regret against the learning algorithm A in the worst case.

Corollary 1. Let C ≥ 1 be an upper bound on the total benchmark loss L̂T (B). Then setting

η = 1/2 ·
√
(logC)/C < 1/2 and w1,B = 1− w1,A = 1− η simultaneously guarantees

RT ((A,B)-PROD, x) ≤ RT (A, x) + 2
√

C logC

for any x ∈ S and
RT ((A,B)-PROD,B) ≤ 2 log 2

against any assignment of the loss sequence.

Notice that for any x ∈ S , the previous bounds can be written as

RT ((A,B)-PROD, x) ≤ min{RT (A, x) + 2
√
C logC,RT (B, x) + 2 log 2},

which states that (A,B)-PROD achieves the minimum between the regret of the benchmark B and
learning algorithm A plus an additional regret of O(

√
C logC). If we consider that in most online

optimization settings, the worst-case regret for a learning algorithm is O(
√
T), the previous bound

shows that at the cost of an additional factor of O(
√
T log T) in the worst-case, (A,B)-PROD per-

forms as well as the benchmark, which is very useful whenever RT (B, x) is small. This suggests
that if we set A to a learning algorithm with worst-case guarantees on “difficult” problems and B to
an algorithm with very good performance only on “easy” problems, then (A,B)-PROD successfully
adapts to the difficulty of the problem by finding a suitable mixture of A and B. Furthermore, as
discussed by Even-Dar et al. [10], we note that in this case the PROD update rule is crucial to achieve
this result: any algorithm that bases its decisions solely on the cumulative difference between ft(at)

and ft(bt) is bound to suffer an additional regret of O(
√
T) on both A and B. While HEDGE and

follow-the-perturbed-leader (FPL) both fall into this category, it can be easily seen that this is not
the case for PROD. A similar observation has been made by de Rooij et al. [9], who discuss the
possibility of combining a robust learning algorithm and FTL by HEDGE and conclude that this
approach is insufficient for their goals – see also Sect. 3.1.

Finally, we note that the parameter proposed in Corollary 1 can hardly be computed in practice,

since an upper-bound on the loss of the benchmark L̂T (B) is rarely available. Fortunately, we can
adapt an improved version of PROD with adaptive learning rates recently proposed by Gaillard et al.
[12] and obtain an anytime version of (A,B)-PROD. The resulting algorithm and its corresponding
bounds are reported in App. B.

3 Applications

The following sections apply our results to special cases of online optimization. Unless otherwise
noted, all theorems are direct consequences of Corollary 1 and thus their proofs are omitted.

3.1 Prediction with expert advice

We first consider the most basic online optimization problem of prediction with expert advice. Here,

S is the N -dimensional simplex ∆N =
{
x ∈ R

N
+ :

∑N
i=1

xi = 1
}

and the loss functions are linear,

that is, the loss of any decision x ∈ ∆N in round t is given as the inner product ft(x) = x⊤ℓt
and ℓt ∈ [0, 1]N is the loss vector in round t. Accordingly, the family F of loss functions can
be equivalently represented by the set [0, 1]N . Many algorithms are known to achieve the opti-
mal regret guarantee of O(

√
T logN) in this setting, including HEDGE (so dubbed by Freund and

Schapire [11], see also the seminal works of Littlestone and Warmuth [21] and Vovk [24]) and the
follow-the-perturbed-leader (FPL) prediction method of Hannan [17], later rediscovered by Kalai
and Vempala [20]. However, as de Rooij et al. [9] note, these algorithms are usually too conser-
vative to exploit “easily learnable” loss sequences and might be significantly outperformed by a

simple strategy known as follow-the-leader (FTL), which predicts bt = argminx∈S x⊤
∑t−1

s=1
ℓs.

For instance, FTL is known to be optimal in the case of i.i.d. losses, where it achieves a regret of
O(log T). As a direct consequence of Corollary 1, we can use the general structure of (A,B)-PROD

to match the performance of FTL on easy data, and at the same time, obtain the same worst-case
guarantees of standard algorithms for prediction with expert advice. In particular, if we set FTL as
the benchmark B and ADAHEDGE (see [9]) as the learning algorithm A, we obtain the following.

4

Theorem 2. Let S = ∆N and F = [0, 1]N . Running (A,B)-PROD with A = ADAHEDGE and
B = FTL, with the parameter setting suggested in Corollary 1 guarantees

RT ((A,B)-PROD, x) ≤ RT (ADAHEDGE, x) + 2
√

C logC ≤
√

L∗
T (T − L∗

T)

T
logN + 2

√
C logC

for any x ∈ S , where L∗
T = minx∈∆N

LT (x), and

RT ((A,B)-PROD, FTL) ≤ 2 log 2.

against any assignment of the loss sequence.

While we recover the worst-case guarantee of O(
√
T logN) plus an additional regret O(

√
T log T)

on “hard” loss sequences, on “easy” problems we inherit the good performance of FTL.

Comparison with FLIPFLOP. The FLIPFLOP algorithm proposed by de Rooij et al. [9] addresses
the problem of constructing algorithms that perform nearly as well as FTL on easy problems while
retaining optimal guarantees on all possible loss sequences. More precisely, FLIPFLOP is a HEDGE

algorithm where the learning rate η alternates between infinity (corresponding to FTL) and the value
suggested by ADAHEDGE depending on the cumulative mixability gaps over the two regimes. The
resulting algorithm is guaranteed to achieve the regret guarantees of

RT (FLIPFLOP, x) ≤ 5.64RT (FTL, x) + 3.73

and

RT (FLIPFLOP, x) ≤ 5.64

√
L∗
T (T − L∗

T)

T
logN +O(logN)

against any fixed x ∈ ∆N at the same time. Notice that while the guarantees in Thm. 2 are very
similar in nature to those of de Rooij et al. [9] concerning FLIPFLOP, the two results are slightly
different. The first difference is that our worst-case bounds are inferior to theirs by a factor of
order

√
T log T .2 On the positive side, our guarantees are much stronger when FTL outperforms

ADAHEDGE. To see this, observe that their regret bound can be rewritten as

LT (FLIPFLOP) ≤ LT (FTL) + 4.64
(
LT (FTL)− infxLT (x)

)
+ 3.73,

whereas our result replaces the last two terms by 2 log 2.3 The other advantage of our result is that
we can directly bound the total loss of our algorithm in terms of the total loss of ADAHEDGE (see
Thm. 1). This is to be contrasted with the result of de Rooij et al. [9], who upper bound their regret
in terms of the regret bound of ADAHEDGE, which may not be tight and be much worse in practice
than the actual performance of ADAHEDGE. All these advantages of our approach stem from the fact
that we smoothly mix the predictions of ADAHEDGE and FTL, while FLIPFLOP explicitly follows
one policy or the other for extended periods of time, potentially accumulating unnecessary losses
when switching too late or too early. Finally, we note that as FLIPFLOP is a sophisticated algorithm
specifically designed for balancing the performance of ADAHEDGE and FTL in the expert setting,
we cannot reasonably hope to beat its performance in every respect by using our general-purpose
algorithm. Notice however that the analysis of FLIPFLOP is difficult to generalize to other learning
settings such as the ones we discuss in the sections below.

Comparison with D-PROD. In the expert setting, we can also use a straightforward modification of
the D-PROD algorithm originally proposed by Even-Dar et al. [10]: This variant of PROD includes
the benchmark B in ∆N as an additional expert and performs PROD updates for each base expert
using the difference between the expert and benchmark losses. While the worst-case regret of this
algorithm is of O(

√
C logC logN), which is asymptotically inferior to the guarantees given by

Thm. 2, D-PROD also has its merits in some special cases. For instance, in a situation where the

total loss of FTL and the regret of ADAHEDGE are both Θ(
√
T), D-PROD guarantees a regret of

O(T 1/4) while the (A,B)-PROD guarantee remains O(
√
T).

2In fact, the worst case for our bound is realized when C = Ω(T), which is precisely the case when
ADAHEDGE has excellent performance as it will be seen in Sect. 4.

3While one can parametrize FLIPFLOP so as to decrease the gap between these bounds, the bound on
LT (FLIPFLOP) is always going to be linear in RT (FLIPFLOP, x).

5

3.2 Tracking the best expert

We now turn to the problem of tracking the best expert, where the goal of the learner is to control the
regret against the best fixed strategy that is allowed to change its prediction at most K times during
the entire decision process (see, e.g., [19, 15]). The regret of an algorithm A producing predictions
a1, . . . , aT against an arbitrary sequence of decisions y1:T ∈ ST is defined as

RT (A, y1:T) =

T∑

t=1

(
ft(at)− ft(yt)

)
.

Regret bounds in this setting typically depend on the complexity of the sequence y1:T as measured
by the number decision switches C(y1:T) = {t ∈ {2, . . . , T} : yt 6= yt−1}. For example, a properly
tuned version of the FIXED-SHARE (FS) algorithm of Herbster and Warmuth [19] guarantees that
RT (FS, y1:T) = O

(
C(y1:T)

√
T logN

)
. This upper bound can be tightened to O(

√
KT logN)

when the learner knows an upper bound K on the complexity of y1:T . While this bound is unim-
provable in general, one might wonder if it is possible to achieve better performance when the loss
sequence is easy. This precise question was posed very recently as a COLT open problem by War-
muth and Koolen [25]. The generality of our approach allows us to solve their open problem by using
(A,B)-PROD as a master algorithm to combine an opportunistic strategy with a principled learning
algorithm. The following theorem states the performance of the (A,B)-PROD-based algorithm.

Theorem 3. Let S = ∆N , F = [0, 1]N and y1:T be any sequence in S with known complexity
K = C(y1:T). Running (A,B)-PROD with an appropriately tuned instance of A = FS (see [19]),
with the parameter setting suggested in Corollary 1 guarantees

RT ((A,B)-PROD, y1:T) ≤ RT (FS, y1:T) + 2
√
C logC = O(

√
KT logN) + 2

√
C logC

for any x ∈ S and
RT ((A,B)-PROD,B) ≤ 2 log 2.

against any assignment of the loss sequence.

The remaining problem is then to find a benchmark that works well on “easy” problems, notably
when the losses are i.i.d. in K (unknown) segments of the rounds 1, . . . , T . Out of the strategies
suggested by Warmuth and Koolen [25], we analyze a windowed variant of FTL (referred to as
FTL(w)) that bases its decision at time t on losses observed in the time window [t−w−1, t−1] and

picks expert bt = argminx∈∆N
x⊤

∑t−1

s=t−w−1
ℓs. The next proposition (proved in the appendix)

gives a performance guarantee for FTL(w) with an optimal parameter setting.

Proposition 1. Assume that there exists a partition of [1, T] into K intervals such that the loss
vectors are generated i.i.d. within each interval. Furthermore, assume that the expectation of the
loss of the best expert within each interval is at least δ away from the expected loss of all other
experts. Then, setting w =

⌈
4 log(NT/K)/δ2

⌉
, the regret of FTL(w) is upper bounded for any

y1:T as

E [RT (FTL(w), y1:T)] ≤
4K

δ2
log(NT/K) + 2K,

where the expectation is taken with respect to the distribution of the losses.

3.3 Online convex optimization

Here we consider the problem of online convex optimization (OCO), where S is a convex and closed
subset of Rd and F is the family of convex functions on S . In this setting, if we assume that the
loss functions are smooth (see [26]), an appropriately tuned version of the online gradient descent

(OGD) is known to achieve a regret of O(
√
T). As shown by Hazan et al. [18], if we additionally

assume that the environment plays strongly convex loss functions and tune the parameters of the
algorithm accordingly, the same algorithm can be used to guarantee an improved regret of O(log T).
Furthermore, they also show that FTL enjoys essentially the same guarantees. The question whether
the two guarantees can be combined was studied by Bartlett et al. [5], who present the adaptive
online gradient descent (AOGD) algorithm that guarantees O(log T) regret when the aggregated

loss functions Ft =
∑t

s=1
fs are strongly convex for all t, while retaining the O(

√
T) bounds if

this is not the case. The next theorem shows that we can replace their complicated analysis by our
general argument and show essentially the same guarantees.

6

Theorem 4. Let S be a convex closed subset of Rd and F be the family of smooth convex functions
on S . Running (A,B)-PROD with an appropriately tuned instance of A = OGD (see [26]) and
B = FTL, with the parameter setting suggested in Corollary 1 guarantees

RT ((A,B)-PROD, x) ≤ RT (OGD, x) + 2
√

C logC = O(
√
T) + 2

√
C logC

for any x ∈ S and
RT ((A,B)-PROD, FTL) ≤ 2 log 2.

against any assignment of the loss sequence. In particular, this implies that

RT ((A,B)-PROD, x) = O(log T)

if the loss functions are strongly convex.

Similar to the previous settings, at the cost of an additional regret of O(
√
T log T) in the worst-case,

(A,B)-PROD successfully adapts to the “easy” loss sequences, which in this case corresponds to
strongly convex functions, on which it achieves a O(log T) regret.

3.4 Learning with two-points-bandit feedback

We consider the multi-armed bandit problem with two-point feedback, where we assume that in each
round t, the learner picks one arm It in the decision set S = {1, 2, . . . ,K} and also has the possi-
bility to choose and observe the loss of another arm Jt. The learner suffers the loss ft(It). Unlike
the settings considered in the previous sections, the learner only gets to observe the loss function
for arms It and Jt. This is a special case of the partial-information game recently studied by Seldin
et al. [22]. A similar model has also been studied as a simplified version of online convex opti-
mization with partial feedback [1]. While this setting does not entirely conform to our assumptions
concerning A and B, observe that a hedging strategy C defined over A and B only requires access to
the losses suffered by the two algorithms and not the entire loss functions. Formally, we give A and
B access to the decision set S , and C to S2. The hedging strategy C selects the pair (It, Jt) based on
the arms suggested by A and B as:

(It, Jt) =

{
(at, bt) with probability st,

(bt, at) with probability 1− st.

The probability st is a well-defined deterministic function of H∗
t−1, thus the regret bound of (A,B)-

PROD can be directly applied. In this case, “easy” problems correspond to i.i.d. loss sequences
(with a fixed gap between the expected losses), for which the UCB algorithm of Auer et al. [2] is
guaranteed to have a O(log T) regret, while on “hard” problems, we can rely on the EXP3 algorithm

of Auer et al. [3] which suffers a regret of O(
√
TK) in the worst case. The next theorem gives the

performance guarantee of (A,B)-PROD when combining UCB and EXP3.

Theorem 5. Consider the multi-armed bandit problem with K arms and two-point feedback. Run-
ning (A,B)-PROD with an appropriately tuned instance of A = EXP3 (see [3]) and B = UCB (see
[2]), with the parameter setting suggested in Corollary 1 guarantees

RT ((A,B)-PROD, x) ≤ RT (EXP3, x) + 2
√
C logC = O(

√
TK logK) + 2

√
C logC

for any arm x ∈ {1, 2, . . . ,K} and

RT ((A,B)-PROD, UCB) ≤ 2 log 2.

against any assignment of the loss sequence. In particular, if the losses are generated in an i.i.d. fash-
ion and there exists a unique best arm x∗ ∈ S , then

E [RT ((A,B)-PROD, x)] = O(log T),

where the expectation is taken with respect to the distribution of the losses.

This result shows that even in the multi-armed bandit setting, we can achieve nearly the best per-
formance in both “hard” and “easy” problems given that we are allowed to pull two arms at the
time. This result is to be contrasted with those of Bubeck and Slivkins [6], later improved by Seldin
and Slivkins [23], who consider the standard one-point feedback setting. The algorithm of Seldin
and Slivkins, called EXP3++ is a variant of the EXP3 algorithm that simultaneously guarantees

O(log2 T) regret in stochastic environments while retaining the regret bound of O(
√
TK logK)

in the adversarial setting. While our result holds under stronger assumptions, Thm. 5 shows that
(A,B)-PROD is not restricted to work only in full-information settings. Once again, we note that
such a result cannot be obtained by simply combining the predictions of UCB and EXP3 by a generic
learning algorithm as HEDGE.

7

4 Empirical Results

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

Time

R
e
g
re

t

Setting 1

FTL
Adahedge
FlipFlop
D-Prod
(A, B)-Prod
(A, B)-Hedge

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Time

R
e
g
re

t

Setting 2

FTL
Adahedge
FlipFlop
D-Prod
(A, B)-Prod
(A, B)-Hedge

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

Time

R
e
g
re

t

Setting 3

FTL
Adahedge
FlipFlop
D-Prod
(A, B)-Prod
(A, B)-Hedge

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

R
e
g
re

t

Setting 4

FTL
Adahedge
FlipFlop
D-Prod
(A, B)-Prod
(A, B)-Hedge

Figure 3: Hand tuned loss sequences from de Rooij et al. [9]

We study the performance of (A,B)-PROD in the experts setting to verify the theoretical results of
Thm. 2, show the importance of the (A,B)-PROD weight update rule and compare to FLIPFLOP. We
report the performance of FTL, ADAHEDGE, FLIPFLOP, and B = FTL and A = ADAHEDGE for
the anytime versions of D-PROD, (A,B)-PROD, and (A,B)-HEDGE, a variant of (A,B)-PROD

where an exponential weighting scheme is used. We consider the two-expert settings defined
by de Rooij et al. [9] where deterministic loss sequences of T = 2000 steps are designed to ob-
tain different configurations. (We refer to [9] for a detailed specification of the settings.) The results
are reported in Figure 3. The first remark is that the performance of (A,B)-PROD is always com-
parable with the best algorithm between A and B. In setting 1, although FTL suffers linear regret,
(A,B)-PROD rapidly adjusts the weights towards ADAHEDGE and finally achieves the same order
of performance. In settings 2 and 3, the situation is reversed since FTL has a constant regret, while

ADAHEDGE has a regret of order of
√
T . In this case, after a short initial phase where (A,B)-PROD

has an increasing regret, it stabilizes on the same performance as FTL. In setting 4 both ADAHEDGE

and FTL have a constant regret and (A,B)-PROD attains the same performance. These results match
the behavior predicted in the bound of Thm. 2, which guarantees that the regret of (A,B)-PROD is
roughly the minimum of FTL and ADAHEDGE. As discussed in Sect. 2, the PROD update rule
used in (A,B)-PROD plays a crucial role to obtain a constant regret against the benchmark, while
other rules, such as the exponential update used in (A,B)-HEDGE, may fail in finding a suitable
mix between A and B. As illustrated in settings 2 and 3, (A,B)-HEDGE suffers a regret similar to
ADAHEDGE and it fails to take advantage of the good performance of FTL, which has a constant
regret. In setting 1, (A,B)-HEDGE performs as well as (A,B)-PROD because FTL is constantly
worse than ADAHEDGE and its corresponding weight is decreased very quickly, while in setting
4 both FTL and ADAHEDGE achieves a constant regret and so does (A,B)-HEDGE. Finally, we
compare (A,B)-PROD and FLIPFLOP. As discussed in Sect. 2, the two algorithms share similar the-
oretical guarantees with potential advantages of one on the other depending on the specific setting.
In particular, FLIPFLOP performs slightly better in settings 2, 3, and 4, whereas (A,B)-PROD ob-
tains smaller regret in setting 1, where the constants in the FLIPFLOP bound show their teeth. While
it is not possible to clearly rank the two algorithms, (A,B)-PROD clearly avoids the pathological
behavior exhibited by FLIPFLOP in setting 1. Finally, we note that the anytime version of D-PROD

is slightly better than (A,B)-PROD, but no consistent difference is observed.

5 Conclusions
We introduced (A,B)-PROD, a general-purpose algorithm which receives a learning algorithm A
and a benchmark strategy B as inputs and guarantees the best regret between the two. We showed
that whenever A is a learning algorithm with worst-case performance guarantees and B is an op-
portunistic strategy exploiting a specific structure within the loss sequence, we obtain an algorithm
which smoothly adapts to “easy” and “hard” problems. We applied this principle to a number of dif-
ferent settings of online optimization, matching the performance of existing ad-hoc solutions (e.g.,
AOGD in convex optimization) and solving the open problem of learning on “easy” loss sequences
in the tracking the best expert setting proposed by Warmuth and Koolen [25]. We point out that
the general structure of (A,B)-PROD could be instantiated in many other settings and scenarios
in online optimization, such as learning with switching costs [13, 16], and, more generally, in any
problem where the objective is to improve over a given benchmark strategy. The main open question
is the extension of (A,B)-PROD to the one-point bandit feedback.

Acknowledgements This work was supported by the French Ministry of Higher Education and
Research and by the European Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement 270327 (project CompLACS), and by FUI project Hermès.

8

References

[1] Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-
point bandit feedback. In Kalai, A. and Mohri, M., editors, Proceedings of the 23rd Annual Conference on
Learning Theory, pages 28–40.

[2] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem.
Mach. Learn., 47(2-3):235–256.

[3] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77.

[4] Balcan, M. F., F. V. S. t., editor (2014). Proceedings of the 26th Annual Conference on Learning Theory.

[5] Bartlett, P. L., Hazan, E., and Rakhlin, A. (2008). Adaptive online gradient descent. In Platt, J. C., Koller,
D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information Processing Systems 20, pages
65–72. Curran Associates. (December 3–6, 2007).

[6] Bubeck, S. and Slivkins, A. (2012). The best of both worlds: Stochastic and adversarial bandits. In COLT,
pages 42.1–42.23.

[7] Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games. Cambridge University Press,
New York, NY, USA.

[8] Cesa-Bianchi, N., Mansour, Y., and Stoltz, G. (2007). Improved second-order bounds for prediction with
expert advice. Machine Learning, 66(2-3):321–352.

[9] de Rooij, S., van Erven, T., Grünwald, P. D., and Koolen, W. M. (2014). Follow the leader if you can,
hedge if you must. Accepted to the Journal of Machine Learning Research.

[10] Even-Dar, E., Kearns, M., Mansour, Y., and Wortman, J. (2008). Regret to the best vs. regret to the
average. Machine Learning, 72(1-2):21–37.

[11] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139.

[12] Gaillard, P., Stoltz, G., and van Erven, T. (2014). A second-order bound with excess losses. In [4], pages
176–196.

[13] Geulen, S., Vöcking, B., and Winkler, M. (2010). Regret minimization for online buffering problems
using the weighted majority algorithm. In COLT, pages 132–143.

[14] Grunwald, P., Koolen, W. M., and Rakhlin, A., editors (2013). NIPS Workshop on “Learning faster from
easy data”.

[15] György, A., Linder, T., and Lugosi, G. (2012). Efficient tracking of large classes of experts. IEEE
Transactions on Information Theory, 58(11):6709–6725.

[16] György, A. and Neu, G. (2013). Near-optimal rates for limited-delay universal lossy source coding.
Submitted to the IEEE Transactions on Information Theory.

[17] Hannan, J. (1957). Approximation to Bayes risk in repeated play. Contributions to the theory of games,
3:97–139.

[18] Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69:169–192.

[19] Herbster, M. and Warmuth, M. (1998). Tracking the best expert. Machine Learning, 32:151–178.

[20] Kalai, A. and Vempala, S. (2005). Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71:291–307.

[21] Littlestone, N. and Warmuth, M. (1994). The weighted majority algorithm. Information and Computation,
108:212–261.

[22] Seldin, Y., Bartlett, P., Crammer, K., and Abbasi-Yadkori, Y. (2014). Prediction with limited advice and
multiarmed bandits with paid observations. In Proceedings of the 30th International Conference on Machine
Learning (ICML 2014), pages 280–287.

[23] Seldin, Y. and Slivkins, A. (2014). One practical algorithm for both stochastic and adversarial bandits. In
Proceedings of the 30th International Conference on Machine Learning (ICML 2014), pages 1287–1295.

[24] Vovk, V. (1990). Aggregating strategies. In Proceedings of the third annual workshop on Computational
learning theory (COLT), pages 371–386.

[25] Warmuth, M. and Koolen, W. (2014). Shifting experts on easy data. In [4], pages 1295–1298.

[26] Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on Machine Learning (ICML).

9

A Proof of Corollary 1

The second part follows from the fact that log(1 − η)/η is an decreasing function on η ∈ (0, 1/2).

For the first part, we study two cases. In the first case, we assume that L̂T (B) ≤ L̂T (A) holds,
which proves the statement for this case. For the second case, we assume the contrary and notice
that

T∑

t=1

(ft(bt)− ft(at))
2 ≤

T∑

t=1

|ft(bt)− ft(at)|

=

T∑

t=1

(ft(bt)− ft(at))
+ +

T∑

t=1

(ft(bt)− ft(at))
−,

where (z)+ and (z)− are the positive and negative parts of z ∈ R, respectively. Now observe that

T∑

t=1

(ft(bt)− ft(at))
+ −

T∑

t=1

(ft(bt)− ft(at))
− = L̂T (B)− L̂T (A) ≥ 0,

implying
T∑

t=1

(ft(bt)− ft(at))
− ≤

T∑

t=1

(ft(bt)− ft(at))
+

and thus

T∑

t=1

(ft(bt)− ft(at))
2 ≤ 2

T∑

t=1

(ft(bt)− ft(at))
+ ≤ 2L̂T (B) ≤ 2C.

Plugging this result into the first bound of Thm. 1 and substituting the choice of η gives the result.

B Anytime (A,B)-PROD

Algorithm 1 Anytime (A,B)-PROD

Initialization: η1 = 1/2, w1,A = w1,B = 1/2
For all t = 1, 2, . . . , T , repeat

1. Let

ηt =

√
1

1 +
∑t−1

s=1
(fs(bs)− fs(as))2

and

st =
ηtwt,A

ηtwt,A + w1,B/2
.

2. Observe at and bt and predict

xt =

{
at with probability st,

bt with probability 1− st.

3. Suffer loss ft(xt) and observe ft.

4. Feed ft to A and B.

5. Compute δt = ft(bt)− ft(at) and set

wt+1,A = wt,A · (1 + ηt−1δt)
ηt/ηt−1 .

Algorithm 1 presents the adaptation of the adaptive-learning-rate PROD variant recently proposed by
Gaillard et al. [12] to our setting. Following their analysis, we can prove the following performance
guarantee concerning the adaptive version of (A,B)-PROD.

10

Theorem 6. Let C be an upper bound on the total benchmark loss L̂T (B). Then anytime (A,B)-
PROD simultaneously guarantees

RT ((A,B)-PROD, x) ≤ RT (A, x) +KT

√
C + 1 + 2KT

for any x ∈ S and
RT ((A,B)-PROD,B) ≤ 2 log 2 + 2KT

against any assignment of the loss sequence, where KT = O(log log T).

There are some notable differences between the guarantees given by the above theorem and Thm. 1.
The most important difference is that the current statement guarantees an improved regret of

O(
√
T log log T) instead of

√
T log T in the worst case – however, this comes at the price of an

O(log log T) regret against the benchmark strategy.

C Proof of Proposition 1

We start by stating the proposition more formally.

Proposition 2. Assume that there exist a partition of [1, T] into K intervals I1, . . . , IK such that
the i-th component of the loss vectors within each interval Ik are drawn independently from a fixed
probability distribution Dk,i dependent on the index k of the interval and the identity of expert i.
Furthermore, assume that at any time t, there exists a unique expert i∗t and gap parameter δ > 0
such that E

[
ℓt,i∗

t

]
≤ E [ℓt,i] − δ holds for all i 6= i∗t . Then, the regret FTL(w) with parameter

w > 0 is bounded as

E [RT (FTL(w), y1:T)] ≤ wK +NT exp

(
−wδ2

4

)
,

where the expectation is taken with respect to the distribution of the losses. Setting w =⌈
4 log(NT/K)/δ2

⌉
, the bound becomes

E [RT (FTL(w), y1:T)] ≤
4K log(NT/K)

δ2
+ 2K.

Proof. The proof is based on upper bounding the probabilities qt = P [bt 6= it∗] for all t. First,
observe that the contribution of a round when bt = i∗t to the expected regret is zero, thus the

expected regret is upper bounded by
∑T

t=1
qt. We say that t is in the w-interior of the partition if

t ∈ Ik and t > min {Ik}+w hold for some k, so that bt is computed solely based on samples from

Dk. Let ℓ̂t =
∑t−1

s=t−w−1
ℓs and ℓ̄t = E [ℓt]. By Hoeffding’s inequality, we have that

qt = P [bt 6= i∗t] ≤ P

[
∃i : ℓ̂t,i∗

t
> ℓ̂t,i

]

≤
N∑

i=1

P

[(
ℓ̄t,i − ℓ̄t,i∗

t

)
− (ℓ̂t,i − ℓ̂t,i∗

t

)
> δ

]

≤ N exp

(
−wδ2

4

)

holds for any t in the w-interior of the partition. The proof is concluded by observing that there are
at most wK rounds ouside the w-interval of the partition and using the trivial upper bound on qt on
such rounds.

11

	Introduction
	Online optimization with a benchmark
	Applications
	Prediction with expert advice
	Tracking the best expert
	Online convex optimization
	Learning with two-points-bandit feedback

	Empirical Results
	Conclusions
	Proof of Corollary 1
	Anytime (A,B)-Prod
	Proof of Proposition 1

