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We consider the maximal regularity problem for non-autonomous evolution equations

 that if the forms have some regularity with respect to t (e.g., piecewise α-Hölder continuous for some α > 1 /2) then the above problem has maximal Lp-regularity for all u 0 in the real-interpolation space (H, D(A(0))) 1-1/p,p . In this paper we prove that the regularity required there can be improved for a class of sesquilinear forms. The forms considered here are such that the difference a(t; •, •)a(s; •, •) is continuous on a larger space than the common domain V . We give three examples which illustrate our results.

Introduction and main results

Let H and V be real or complex Hilbert spaces such that V is densely and continuously embedded in H. We denote by V ′ the (anti-)dual of V and by [• | •] H the scalar product of H and •, • the duality pairing V ′ × V . The latter satisfies (as usual) v, h = [v | h] H whenever v ∈ H and h ∈ V . By the standard identification of H with H ′ we then obtain continuous and dense embeddings V ֒→ H H ′ ֒→ V ′ . We denote by . V and . H the norms of V and H, respectively.

We consider the non-autonomous evolution equation u ′ (t) + A(t) u(t) = f (t), t ∈ (0, τ ] u(0) = u 0 , (P)

where each operator A(t), t ∈ [0, τ ], is associated with a sesquilinear form a(t). We assume that t → a(t; u, v) is measurable for all u, v ∈ V and

[H1] (constant form domain) D(a(t)) = V .

[H2] (uniform boundedness) there exists M > 0 such that for all t ∈ [0, τ ] and u, v ∈ V , we have |a(t; u, v)| ≤ M u V v V . [H3] (uniform quasi-coercivity) there exist α 1 > 0, δ ∈ R such that for all t ∈ [0, τ ] and all u, v ∈ V we have α 1 u 2 V ≤ Rea(t; u, u) + δ u 2 H . For each t, we can associate with the form a(t; •, •) an operator A(t) defined as follows

D(A(t)) = {u ∈ V, ∃v ∈ H : a(t, u, ϕ) = [v | ϕ] H ∀ϕ ∈ V } A(t)u := v.
On the other hand, there exists a linear operator A(t) : V → V ′ such that a(t; u, v) = A(t)u, v for all u, v ∈ V . The operator A(t) can be seen as an unbounded operator on V ′ with domain V and A(t) is the part of A(t) on H, that is,

D(A(t)) = {u ∈ V, A(t)u ∈ H}, A(t)u = A(t)u.
It is a known fact that -A(t) and -A(t) both generate holomorphic semigroups (e -s A(t) ) s≥0 and (e -s A(t) ) s≥0 on H and V ′ , respectively. For each s ≥ 0, e -s A(t) is the restriction of e -s A(t) to H. For all this, we refer to Ouhabaz [START_REF] Maati | Analysis of heat equations on domains[END_REF]Chapter 1].

The notion of maximal L p -regularity for the above Cauchy problem is defined as follows.

Definition 1.1. Fix u 0 ∈ H. We say that (P) has maximal L p -regularity (in H) if for each f ∈ L p (0, τ ; H) there exists a unique u ∈ W 1 p (0, τ ; H), such that u(t) ∈ D(A(t)) for almost all t, which satisfies (P) in the L p -sense.

Recall that under the assumptions [H1]-[H3], J.L. Lions proved maximal L 2 -regularity in V ′ for all initial data u 0 ∈ H, see e.g. [START_REF] Lions | Équations différentielles opérationnelles et problèmes aux limites[END_REF], [17, page 112]. This means that for every u 0 ∈ H and f ∈ L 2 (0, τ ; V ′ ), the equation

u ′ (t) + A(t) u(t) = f (t) u(0) = u 0 (P') has a unique solution u ∈ W 1 2 (0, τ ; V ′ ) ∩ L 2 (0, τ ; V ).
It is a remarkable fact that Lions's theorem does not require any regularity assumption (with respect to t) on the sesquilinear forms apart from measurability. Note however that maximal regularity in H differs considerably from maximal regularity in V ′ . The fact that the forms have the same domain means that the operators A(t) have constant domains in V ′ and this fact plays an important role in proving maximal regularity. The operators A(t) may have different domains as operators on H. The problem of maximal regularity in H for (P) was stated explicitly by Lions and it is still open in general. Some progress has been made in recent years. First, recall that Bardos [START_REF] Bardos | A regularity theorem for parabolic equations[END_REF] proved maximal L 2 -regularity in H with initial data u 0 ∈ V provided D(A(t) 1 /2 ) = V as space and topologically and assuming that t → a(t; u, v) is C 1 on [0, τ ]. His result was extended in Arendt et al. [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] for Lipschitz forms (with respect to t) and allowing a multiplicative perturbation by bounded operators B(t) which are measurable in t. The maximal L 2 -regularity is then proved for the evolution problem associated with B(t)A(t). Ouhabaz and Spina [START_REF] El | Maximal regularity for non-autonomous Schrödinger type equations[END_REF] proved maximal L p -regularity on H for all p ∈ (1, ∞) under the assumption that t → a(t; u, v) is α-Hölder continuous for some α > 1 /2. The result in [START_REF] El | Maximal regularity for non-autonomous Schrödinger type equations[END_REF] concerns the problem (P) with initial data u(0) = 0. A simple example was given recently by Dier [START_REF] Dier | Non-autonomous Cauchy problems governed by forms[END_REF] which shows that in general the answer to Lions' problem is negative. The following positive result was proved by Haak and Ouhabaz [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF].

Theorem 1.2. Suppose that the forms (a(t)) 0≤t≤τ satisfy the hypotheses [H1]-[H3] and the regularity condition

|a(t; u, v) -a(s; u, v)| ≤ ω(|t-s|) u V v V (1.1)
where In the case where p = 2, we obtain maximal L 2 -regularity for u(0) ∈ D((δ + A(0)) 1 /2 ). The theorem can be used in the case where t → a(t; u, v) is α-Hölder continuous for some α > 1 2 . The case of piecewise α-Hölder continuous is also covered. See [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] for the details. The aim of the present paper is to weaken the regularity assumption measured by (1.2) and (1.3) in some situations. More precisely, we assume in addition to [H1]-[H3] that there exist β, γ

ω : [0, τ ] → [0, ∞) is a non-decreasing function such that τ 0 ω(t) t 3 /2 dt < ∞. ( 1 
∈ [0, 1] such that for all u, v ∈ V |a(t; u, v) -a(s; u, v)| ≤ ω(|t-s|) u V β v Vγ , (1.4) 
where

V β := [H, V ] β is the classical complex interpolation space for β ∈ [0, 1] with V 0 = H and V 1 = V . If β, γ ∈ (0, 1
), the assumption (1.4) means that the difference of the forms is defined on a larger space than the common form domain V .

Our main result is the following.

Theorem 1.3. Suppose that the forms (a(t)) 0≤t≤τ satisfy the hypotheses [H1]-[H3] and (1.4)

where ω : [0, τ ] → [0, ∞) is a non-decreasing function such that τ 0 ω(t) t 1+ γ 2 dt < ∞. (1.5)
Then the Cauchy problem (P) with

u 0 = 0 has maximal L p -regularity in H for all p ∈ (1, ∞). If in addition ω satisfies the p-Dini condition τ 0 ω(t) t β+γ 2 p dt < ∞, (1.6 
)

then (P) has maximal L p -regularity for all u 0 ∈ (H, D(A(0))) 1-1 /p,p . Moreover there exists a positive constant C such that u Lp(0,τ ;H) + u ′ Lp(0,τ ;H) + A(•)u(•) Lp(0,τ ;H) ≤ C f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p .
A related result was proved recently by Arendt and Monniaux [START_REF] Arendt | Maximal regularity for non-autonomous Robin boundary conditions[END_REF] who prove maximal L 2 -regularity under the additional assumptions that the Kato square root property V = D(A(0) 1 /2 ) holds, β = γ in (1.4) and an additional growth condition ω(t) ≤ Ct γ 2 . We observe that in our result β does not come into play if u 0 = 0. We expect the theorem to be true with min(β, γ) in place of γ in (1.5). The following two corollaries follow immediately from the theorem.

Corollary 1.4. Suppose that the forms (a(t)) 0≤t≤τ satisfy the hypotheses [H1]-[H3] and α-Hölder continuous in the sense that

|a(t, u, v) -a(s, u, v)| ≤ C|t -s| α u V β v Vγ .
(1.7)

Then the Cauchy problem (P) with

u 0 = 0 has maximal L p -regularity in H for all p ∈ (1, ∞) provided α > γ 2 . If in addition α > β+γ 2 -1 p , then (P) has maximal L p -regularity for all u 0 ∈ (H, D(A(0))) 1-1 /p,p . Moreover there exists a positive constant C such that u Lp(0,τ ;H) + u ′ Lp(0,τ ;H) + A(•)u(•) Lp(0,τ ;H) ≤ C f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p .
Corollary 1.5. Suppose that the forms (a(t)) 0≤t≤τ satisfy the hypotheses [H1]-[H3] and α-Hölder continuous in the sense that

|a(t, u, v) -a(s, u, v)| ≤ C|t -s| α u V β v Vγ , (1.8) 
for some α > γ 2 . Then the Cauchy problem (P) has maximal L 2 -regularity in H for all u 0 ∈ D((δ + A(0)) 1 /2 ). Moreover there exists a positive constant C such that

u Lp(0,τ ;H) + u ′ Lp(0,τ ;H) + A(•)u(•) Lp(0,τ ;H) ≤ C f Lp(0,τ ;H) + (δ + A(0)) 1 /2 u 0 H .
Notation: We shall often use C or C ′ to denote all inessential constants. We use W 1 p (0, τ ; E) as well as H s (Ω) := W s 2 (Ω) for the classical Sobolev spaces. The first one is the Sobolev space of order one of L p -functions on (0, τ ) with values in a Banach space E and the second one is the Sobolev space of order s of L 2 scalar-valued functions acting on a domain Ω.

Proof of the main result

Throughout this section we adopt the notation of the introduction. We shall use the strategy and ideas of proof of Theorem 1.2 in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] with some modifications in order to incorporate the additional assumption (1.4). Recall that the solution u to (P) exists in V ′ by Lions' theorem mentioned in the introduction. The aim is to prove that u(t) ∈ D(A(t)) for almost all t ∈ [0, τ ] and A(.)u(.) ∈ L p (0, τ ; H). From this and the Cauchy problem (P) it follows that u ∈ W 1 p (0, τ ; H). From now on we assume without loss of generality that the forms are coercive, that is [H3] holds with δ = 0. The reason is that by replacing A(t) by A(t)+δ, the solution v of (P) is v(t) = u(t)e -δt and it is clear that u ∈ W 1 p (0, τ ; H) if and only if v ∈ W 1 p (0, τ ; H). First we have the representation formula (see [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] for all what follows)

u(t) = t 0 e -(t-s)A(t) (A(t)-A(s))u(s) ds + t 0 e -(t-s)A(t) f (s) ds + e -t A(t) u 0 . (2.1)
In addition,

A(t)u(t) = (QA(•)u(•))(t) + (Lf )(t) + (Ru 0 )(t), (2.2) 
where

(Qg)(t) := t 0 A(t)e -(t-s)A(t) (A(t) -A(s)) A(s) -1 g(s) ds (Lg)(t) := A(t) t 0
e -(t-s)A(t) g(s) ds and (Ru 0 )(t) := A(t)e -t A(t) u 0 .

The aim is to prove boundedness on L p (0, τ ; H) of the operators L, R and Q and then by a simple scaling argument the norm of Q is less than 1. This allows us to invert (I -Q) on L p (0, τ ; H) and conclude from (2.2) that A(.)u(.) ∈ L p (0, τ ; H). We start with the operator L. The following result is Lemma 2.6 in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF].

Lemma 2.1. Suppose that in addition to the assumptions [H1]-[H3] that (1.4) holds for some

β, γ ∈ [0, 1] and ω : [0, τ ] → [0, ∞) a non-decreasing function such that τ 0 ω(t) 2 t dt < ∞. (2.3)
Then L is a bounded operator on L p (0, τ ; H) for all p ∈ (1, ∞).

Now we deal with the operator R.

Recall first that -A(t) is the generator of a bounded holomorphic semigoup of angle π 2 -arctan( M α0 ) where α 0 and M are as in the assumptions [H2] and [H3]. See [15, Chapter 1] or [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF]. In addition we have Lemma 2.2. Let ω : R → R + be some function and assume that

|a(t; u, v) -a(s; u, v)| ≤ ω(|t-s|) u V β v Vγ for all u, v ∈ V . Then R(z, A(t)) -R(z, A(s)) B(H) ≤ c θ |z| 1-β+γ 2 ω(|t-s|)
for all z / ∈ S θ with any fixed θ > arctan( M /α). The constant c θ is independent of z, t and s.

Proof. Fix θ > arctan( M /α). Note that (see [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF], Proposition 2.1 d))

(z -A(t)) -1 x V ≤ C θ √ |z| x H for all z / ∈ S θ . (2.4) Observe that for u, v ∈ V , [R(z, A(t))u -R(z, A(s))u | v] H = [R(z, A(t))(A(s) -A(t))R(z, A(s))u | v] H = [A(s)R(z, A(s))u | R(z, A(t)) * v] H -[A(t)R(z, A(s))u | R(z, A(t)) * v] H = a(s; R(z, A(s))u, R(z, A(t)) * v) -a(t; R(z, A(s))u, R(z, A(t)) * v) ≤ ω(|t -s|) R(z, A(s))u V β R(z, A(t)) * v Vγ ≤ c θ |z| 2-β+γ 2 ω(|t-s|) u H v H ,
where we used (2.4) and a standard interpolation argument.

Lemma 2.3. Assume (1.6). Then there exists C > 0 such that

Ru 0 Lp(0,τ ;H) ≤ C u 0 (H,D(A(0))) 1-1 /p,p , for all u 0 ∈ (H, D(A(0))) 1-1 /p,p .
Proof. Recall that the operator R is given by (Rg)(t) = A(t)e -t A(t) g for g ∈ H. Let (R 0 g)(t) := A(0)e -t A(0) g.

We estimate the difference (R -R 0 )g. Let v ∈ H and Γ = ∂S θ with θ < π /2 as in (2.4). Then the functional calculus for the sectorial operators A(t) and A(0) gives

A(t)e -t A(t) g -A(0)e -t A(0) g | v H = 1 2πi Γ ze -tz R(z, A(t)) -R(z, A(0)) g | v H dz = 1 2πi Γ ze -tz R(z, A(t)) A(0) -A(t) R(z, A(0))g | v H dz = 1 2πi Γ ze -tz A(0) -A(t) R(z, A(0))g | R(z, A(t)) * v H dz = 1 2πi Γ ze -tz a(0; R(z, A(0))g, R(z, A(t)) * v)- a(t; R(z, A(0))g, R(z, A(t)) * v) dz.
It follows from (1.4) and Lemma 2.2 that

|[(Rg -R 0 g)(t) | v] H | ≤ 1 2π Γ ω(t)|z|e -t Re(z) R(z, A(0))g V β R(z, A(t)) * v Vγ |dz| ≤ Cω(t) g H v H Γ |z| β+γ 2 -1 e -t Rez |dz| ≤ C ′ ω(t) t β+γ 2 g H v H .
Since this true for all v ∈ H we conclude that

(Ru 0 )(t) -(R 0 u 0 )(t) H ≤ C ′ ω(t) t β+γ 2 u 0 H . (2.5)
From the hypothesis (1.6) it follows that Ru 0 -R 0 u 0 ∈ L p (0, τ ; H). On the other hand, since A(0) is invertible, it is well-known that A(0)e -t A(0) u 0 ∈ L p (0, τ ; H) if and only if u 0 ∈ (H, D(A(0))) 1-1 /p,p (see Triebel [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]Theorem 1.14]). Therefore, Ru 0 ∈ L p (0, τ ; H) and the lemma is proved.

Proof of Theorem 1.3. As we already mentioned before, the arguments are essentially the same as in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] in which we use the additional assumption (1.4) to weaken the required regularity on the forms. We start with the case u 0 = 0 and let f ∈ C ∞ c (0, τ ; H). From (2.2) we have

(I -Q)A(•)u(•) = Lf (•). (2.6)
Recall that L is bounded on L p (0, τ ; H) by Lemma 2.1. We shall now prove that Q is bounded on L p (0, τ ; H). Let g ∈ L 2 (0, τ ; H) and v ∈ H. We have

| [Qg(t) | v] H | = t 0 a(t; A(s) -1 g(s), A(t) * e -(t-s)A(t) * ) v)- (2.7) a(s; A(s) -1 g(s), A(t) * e -(t-s)A(t) * ) v) ds ≤ t 0 ω(|t -s|) A(s) -1 g(s) V β A(t) * e -(t-s)A(t) * ) v Vγ ds. (2.8)
By coercivity assumption one has easily

A(t)e -sA(t) v V ≤ C s 3 2 v H
(see Proposition 2.1 c) in [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF]). Hence by interpolation

A(t)e -sA(t) v Vγ ≤ C s 1+ γ 2 v H . (2.9)
The constant C is independent of t, s and v. The adjoint operators A(t) * satisfy the same estimates. Now we estimate A(s) -1 g(s) V β . By coercivity

A(s) -1 g(s) 2 V β ≤ C A(s) -1 g(s) 2 V ≤ C α0 Rea(s; A(s) -1 g(s), A(s) -1 g(s)) = C α0 Re A(s)A(s) -1 g(s), A(s) -1 g(s) = C α0 Re g(s) | A(s) -1 g(s) H ≤ C α0 g(s) 2 H A(s) -1 B(H) .
Inserting this and (2.9) (for the adjoint operators) in (2.8) we obtain

(Qg)(t) H ≤ t 0 C ′ (t-s) 1+ γ /2 ω(t-s) A(s) -1 1 /2 B(H) g(s) H ds. (2.10) 
Now, once we replace A(s) by A(s)+µ, (2.9) is valid with a constant independent of µ ≥ 0 and using the estimate

(A(s) + µ) -1 B(H) ≤ 1 µ , in (2.10) for A(s)+µ we see that (Qg)(t) H ≤ C ′ √ µ t 0 ω(t-s) (t-s) 1+ γ /2 g(s) H ds.
The operator S defined by

Sh(t) := t 0 ω(t-s) (t-s) 1+ γ /2 h(s) ds is bounded on L p (0, τ ; R)
since it has a kernel ω(t-s)(t-s) 1+ γ /2 which integrable with respect to each variable uniformly with respect to the other variable by (1.5). It follows that Q is bounded on L p (0, τ ; H) with norm of at most C ′′ √ µ for some constant C ′′ . Taking then µ large enough makes Q strictly contractive such that (I -Q) -1 is bounded on L p (0, τ ; H). Then, for f ∈ C ∞ c (0, τ ; H), (2.6) can be rewritten as

A(•)u(•) = (I -Q) -1 Lf (•).
This shows that u(t) ∈ D(A(t)) for almost t and A(•)u(•) ∈ L p (0, τ ; H).

For general u 0 ∈ (H, D(A(0))) 1-1 /p,p we suppose in addition to (1.5) that (1.6) holds. Lemma 2.3 shows that Ru 0 ∈ L p (0, τ ; H). As previously we conclude that

A(•)u(•) = (I -Q) -1 (Lf + Ru 0 ), whenever f ∈ C ∞ c (0, τ ; H). Thus taking the L p norm yields A(•)u(•) Lp(0,τ ;H) ≤ C (Lf + Ru 0 ) Lp(0,τ ;H) .
We use again the previous estimates on L and R to obtain

A(•)u(•) Lp(0,τ ;H) ≤ C ′ f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p .
Using the equation (P) we obtain a similar estimate for u ′ and so

u ′ (•) Lp(0,τ ;H) + A(•)u(•) Lp(0,τ ;H) ≤ C ′′ f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p .
We write u(t) = A(t) -1 A(t)u(t) and use one again the fact that the norms of A(t) -1 on H are uniformly bounded we obtain

u(t) Lp(0,τ ;H) ≤ C 1 A(•)u(•) Lp(0,τ ;H) ≤ C 2 f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p .
We conclude therefore that the following a priori estimate holds

u Lp(0,τ ;H) + u ′ Lp(0,τ ;H) + A(•)u(•) Lp(0,τ ;H) ≤ C f Lp(0,τ ;H) + u 0 (H,D(A(0))) 1-1 /p,p , (2.11) 
where the constant C does not depend on f ∈ C ∞ c (0, τ ; H). The latter estimate extends by density to all f ∈ L p (0, τ ; H) (see [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF]). This proves the desired maximal L p -regularity property.

Examples

Schrödinger operators with time dependent potentials.

We consider on H = L 2 (R d ) Schrödinger operators A(t) = -∆ + m(t, .) with time dependent potentials m(t, x). We make the following assumptions: -There exists a non-negative function m 0 ∈ L 1,loc and two positive constants c 1 , c 2 such that

c 1 m 0 (x) ≤ m(t, x) ≤ c 2 m 0 (x), x ∈ R d , t ∈ [0, τ ]. ( 3.1) 
-There exists a function p 0 ∈ L 1,loc such that

|m(t, x) -m(s, x)| ≤ |t -s| α p 0 (x), x ∈ R d , t, s ∈ [0, τ ]. ( 3 

.2)

-There exists C > 0 and s ∈ [0, 1] such that

R d p 0 (x)|u(x)| 2 dx ≤ C u H s (R d ) , u ∈ C ∞ c . (3.3) 
Note that assumption (3.3) is satisfied for several weights p 0 . For example, this is the case for p 0 = 1 |x| 2 and s = 1 by Hardy's inequality. On the other hand, by Hölder's inequality and classical Sobolev embeddings for H s one finds r s such that (3.3) holds for p 0 ∈ L rs . Obviously, (3.3) holds with s = 0 if p 0 ∈ L ∞ . The operator A(t) = -∆ + m(t, x) is defined as the operator associated with the form

a(t; u, v) = R d ∇u.∇v dx + R d m(t, .)uv dx defined on V = {u ∈ H 1 (R d ), R d m 0 |u| 2 dx < ∞}.
The forms a(t; •, •) satisfy the standard assumptions [H1]-[H3]. Using the additional assumption (3.3) we can estimate the difference a(t; u, v)a(s; u, v) as follows

|a(t; u, v) -a(s; u, v)| = | R d [m(t, .) -m(s, .)]uv dx| ≤ |t -s| α R d p 0 (x)|uv| dx ≤ |t -s| α ( R d p 0 (x)|u| 2 dx) 1/2 ( R d p 0 (x)|v| 2 dx) 1/2 ≤ C|t -s| α u H s (R d ) v H s (R d ) .
Therefore, we can apply Theorem 1.3 to obtain maximal L p -regularity for the evolution equation associated with A(t) = -∆ + m(t, .) under the condition α > s/2 where α and s are as in (3.2) and (3.3). For p = 2, the initial data u 0 can be taken in V = D(A(0) 1 /2 ). For p = 2 we assume u 0 ∈ (H, D(A(0))) 1-1 /p,p and α > max(s/2, s -1/p) by condition (1.6).

Elliptic operators with Robin boundary conditions.

Let Ω be a bounded domain of R d with Lipschitz boundary ∂Ω. We denote by Tr the classical trace operator. Let β :

[0, τ ] × ∂Ω → [0, ∞) and a k : [0, τ ] × Ω → R be bounded measurable functions for k = 1, • • • , d such that |β(t, x) -β(s, x)| ≤ C|t -s| α , t, s ∈ [0, τ ], x ∈ ∂Ω and |a k (t, x) -a k (s, x)| ≤ C|t -s| α , t, s ∈ [0, τ ], x ∈ Ω.
We define the form

a(t; u, v) := Ω ∇u.∇v dx + d k=1 Ω a k (t, x)∂ k u.v dx + ∂Ω β(t, .)Tr(u)Tr(v) dσ,
for all u, v ∈ H 1 (Ω). The associated operator A(t) is formally given by

A(t) = -∆ + d k=1 a k (t, x)∂ k u
and subject to the time dependent Robin boundary condition: ∂u ∂n + β(t, .)u = 0 on ∂Ω. Here ∂u ∂n denotes the normal derivative. Now we check (1.4). We have for u, v ∈ H 1 (Ω),

|a(t; u, v) -a(s; u, v)| = | d k=1 Ω [a k (t, .) -a k (s, .)]∂ k u.v dx + ∂Ω [β(t, .) -β(s, .)]Tr(u)Tr(v) dσ| ≤ C|t -s| α u H 1 (Ω) + u H 1 /2 (Ω) v H 1 /2 (Ω) ,
where we used the fat that the trace operator is bounded from H 1 /2 (Ω) into L 2 (∂Ω). Hence |a(t; u, v)a(s; u, v)| ≤ C|t -s| α u H 1 (Ω) v H 1 /2 (Ω) .

We apply Theorem 1.3 or the subsequent corollaries to obtain maximal L 2 -regularity for the corresponding evolution equation under the condition α > 1/4 for initial data u(0) ∈ H 1 (Ω) = D(A(0) 1 /2 ). We also have maximal L p -regularity for 1 < p < ∞ if α > max( 14 , 3 4 -1 p ) and u(0) ∈ (H, D(A(0))) 1-1 /p,p . In the case p = 2 and a k = 0, this result was proved in [START_REF] Arendt | Maximal regularity for non-autonomous Robin boundary conditions[END_REF].

Elliptic operators with Wentzell boundary conditions.

We wish to consider the heat equation with time dependent Wentzell boundary conditions: In order to consider the Laplacian with Wentzell boundary conditions it is convenient to work on H := L 2 (Ω) ⊕ L 2 (∂Ω) (see [START_REF] Arendt | The Laplacian with Wentzell-Robin Boundary Conditions on Spaces of Continuous Functions[END_REF] or [START_REF] Favini | The heat equation with generalized Wentzell boundary condition[END_REF]). Set We apply again Theorem 1.3 and obtain maximal L p -regularity on L 2 (Ω)⊕L 2 (∂Ω) for all p ∈ (1, ∞) and u(0) ∈ H 1 (Ω) under the sole condition that α > 0.

4 )

 4 As in the previous example, we assume that Ω is a bounded Lipschitz domain and β :[0, τ ]×∂Ω → [0, ∞) is a bounded measurable function such that |β(t, x) -β(s, x)| ≤ C|t -s| α , t, s ∈ [0, τ ], x ∈ ∂Ω.

V

  = {(u, Tr(u)), u ∈ H 1 (Ω)} and define the form a(t; (u, Tr(u)), (v, Tr(v)) = Ω ∇u.∇v dx + ∂Ω β(t, .)Tr(u)Tr(v) dσ, for u, v ∈ H 1 (Ω). The forms a(t) are well defined on V and satisfy the assumptions [H1]-[H3]. In addition, |a(t; (u, Tr(u)), (v, Tr(v))a(s; (u, Tr(u)), (v, Tr(v))| ≤ ∂Ω |β(t, .) -β(s, .)||Tr(u)Tr(v)| dσ ≤ C|t -s| α Tr(u) L2(∂Ω) Tr(v) L2(∂Ω) ≤ C|t -s| α (u, Tr(u)) H (v, Tr(v)) H .
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