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Online Markov Decision Processes under Bandit Feedback
Gergely Neu, András György, Csaba Szepesvári, András Antos

Abstract—We consider online learning in finite stochastic Markovian

environments where in each time step a new reward function is chosen

by an oblivious adversary. The goal of the learning agent is to compete

with the best stationary policy in hindsight in terms of the total reward

received. Specifically, in each time step the agent observes the current

state and the reward associated with the last transition, however, the

agent does not observe the rewards associated with other state-action

pairs. The agent is assumed to know the transition probabilities. The

state of the art result for this setting is an algorithm with an expected

regret of O(T 2/3 lnT ). In this paper, assuming that stationary policies

mix uniformly fast, we show that after T time steps, the expected regret
of this algorithm (more precisely, a slightly modified version thereof) is

O
(

T 1/2 lnT
)

, giving the first rigorously proven, essentially tight regret

bound for the problem.

I. INTRODUCTION

In this paper we consider online learning in finite stochastic Marko-

vian environments where in each time step a new reward function

may be chosen by an oblivious adversary. The interaction between the

learner and the environment is shown in Figure 1. The environment is

split into two parts: One part has a controlled Markovian dynamics,

while another one has an unrestricted, uncontrolled (autonomous)

dynamics. In each discrete time step t, the learning agent receives the

state of the Markovian environment (xt ∈ X ) and some information

(yt−1 ∈ Y) about the previous state of the autonomous dynamics.

The learner then makes a decision about the next action (at ∈ A),

which is sent to the environment. In response, the environment makes

a transition: the next state xt+1 of the Markovian part is drawn from

a transition probability kernel P (·|xt,at), while the other part makes

a transition in an autonomous fashion. In the meanwhile, the agent

incurs a reward rt = r(xt,at, yt) ∈ [0, 1] that depends on the

complete state of the environment and the chosen action; then the

process continues with the next step. The goal of the learner is to

collect as much reward as possible. The agent knows the transition

probability kernel P and the reward function r, however, he does

not know the sequence yt in advance. We call this problem online

learning in Markov Decision Processes (MDPs).

We take the viewpoint that the uncontrolled dynamics might be

very complex and thus modeling it based on the available limited in-
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Fig. 1. The interaction between the learning agent and the environment. Here
q−1 denotes a unit delay, that is, any information sent through such a box is
received at the beginning of the next time step.

formation might be hopeless. Equivalently, we assume that whatever

can be modeled about the environment is modeled in the Markovian,

controlled part. As a result, when evaluating the performance of

the learner, the total reward of the learner will be compared to

that of the best stochastic stationary policy in hindsight that assigns

actions to the states of the Markovian part in a random manner. This

stationary policy is thus selected as the policy that maximizes the total

reward given the sequence of reward functions rt(·, ·) ≡ r(·, ·, yt),
t = 1, 2, . . ..1 Given a horizon T > 0, any policy π and initial

distribution uniquely determines a distribution over the sequence

space (X × A)T . Noting that the expected total reward of π is

then a linear function of the distribution of π and that the space

of distributions is a convex polytope with vertices corresponding to

distributions of deterministic policies, we see that there will always

exist a deterministic policy that maximizes the total expected reward

in T time steps. Hence, it is enough to consider deterministic policies

only as a reference. To make the objective more precise, for a given

stationary deterministic policy π : X → A let (xπ
t ,a

π
t ) denote the

state-action pair that would have been visited in time step t had one

used policy π from the beginning of time (the initial state being

fixed). Then, the goal can be expressed as keeping the (expected)

regret,

L̂T = max
π

E

[
T∑

t=1

rt(x
π
t ,a

π
t )

]

− E

[
T∑

t=1

rt

]

small, regardless of the sequence of reward functions {rt}Tt=1. In

particular, a sublinear regret-growth, L̂T = o(T ) (T → ∞) means

that the average reward collected by the learning agent approaches

that of the best policy in hindsight. Naturally, a smaller growth-rate

is more desirable.2

The motivation to study this problem is manifold. One viewpoint

1It is worth noting that the problem can be defined without referring to the
uncontrolled, unmodelled dynamics by starting with an arbitrary sequence of
reward functions {rt}. That the two problems are equivalent follows because
there is no restriction on the range of {yt} or its dynamics.

2Following previous works in the area, in this paper we only consider regret
relative to a fixed stationary policy. However, as usual in online learning, our
results and algorithms can also be extended to less restricted sets of reference
policies, such as the class of sequences of stationary policies with a restricted
number of switches. We discuss such extensions in Section IV-D.
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is that a learning agent achieving sublinear regret growth shows

robustness in the face of arbitrarily assigned rewards, thus, the

model provides a useful generalization of learning and acting in

Markov Decision Processes. Some examples where the need for such

robustness arises naturally are discussed below. Another viewpoint

is that this problem is a useful generalization of online learning

problems studied in the machine learning literature (e.g., [5]). In

particular, in this literature, the problems studied are so-called predic-

tion problems that involve an (oblivious) environment that chooses

a sequence of loss functions. The learner’s predictions are elements

in the common domain of these loss functions and the goal is to

keep the regret small as compared with the best fixed prediction in

hindsight. Identifying losses with negative rewards we may notice that

this problem coincides exactly with our model with |X |= 1, that is,

our problem is indeed a generalization of this problem where the

reward functions have memory represented by multiple states subject

to the Markovian control.

Let us now consider some examples that fit the above model.

Generally, since our approach assumes that the hard-to-model, uncon-

trolled part influences the rewards only, the examples concern cases

where the reward is difficult to model. This is the case, for example,

in various production- and resource-allocation problems, where the

major source of difficulty is to model the prices that influence the

rewards. Indeed, the prices in these problems tend to depend on

external, generally unobserved factors and thus dynamics of the

prices might be hard to model. Other examples include problems

coming from computer science, such as the k-server problem, paging

problems, or web-optimization (e.g., ad-allocation problems with

delayed information) [see, e.g., 7, 22].

Previous results that concern online learning in MDPs (with

known transition probability kernels) are summarized in Table I. In

paper algorithm feedback loops regret bound

Even-Dar et al.
MDP-E

full
yes Õ(T 1/2)

[6, 7] information

Yu et al. [22] LAZY-FPL1 full
yes

Õ(T 3/4+ǫ),
information ǫ > 0

Yu et al. [22] Q-FPL2 bandit yes o(T )

Neu et al. [13] bandit no O(T 1/2)

Neu et al. [16] MDP-EXP3 bandit yes Õ(T 2/3)

this paper MDP-EXP3 bandit yes Õ(T 1/2)

TABLE I
SUMMARY OF PREVIOUS RESULTS. PREVIOUS WORKS CONCERNED

PROBLEMS WITH EITHER FULL-INFORMATION OR BANDIT FEEDBACK,
PROBLEMS WHEN THE MDP DYNAMICS MAY OR MAY NOT HAVE LOOPS

(TO BE MORE PRECISE, IN NEU ET AL. [13] WE CONSIDERED EPISODIC

MDPS WITH RESTARTS). FOR EACH PAPER, THE ORDER OF THE

OBTAINED REGRET BOUND IN TERMS OF THE TIME HORIZON T IS GIVEN.

1 The Lazy-FPL algorithm has smaller computational complexity than
MDP-E.
2 The stochastic regret of Q-FPL was shown to be sublinear almost surely
(not only in expectation).

the current paper we study the problem with recurrent Markovian

dynamics while assuming that the only information received about the

uncontrolled part is in the form of the actual reward rt. In particular,

in our model the agent does not receive yt, while in most previous

works it was assumed that yt is observed [6, 7, 22]. Following

the terminology used in the online learning literature [2], when

yt is available (equivalently, the agent receives the reward function

rt : X × A → R in every time step), we say that learning happens

under full information, while in our case we say that learning happens

under bandit feedback (note that Even-Dar et al. [7] suggested as an

open problem to address the bandit situation studied here). In an

earlier version of this paper [16], we provided an algorithm, MDP-

EXP3, for learning in MDPs with recurrent dynamics under bandit

feedback, and showed that it achieves a regret of order Õ(T 2/3).3

In this paper we improve upon the analysis of [16] and prove an

Õ(T 1/2)-regret bound for the same algorithm. As it follows from a

lower bound proven by Auer et al. [2] for bandit problems, apart from

logarithmic and constant terms the rate obtained is unimprovable. The

improvement compared to [16] is achieved by a more elaborate proof

technique that builds on a (perhaps) novel observation that the so-

called exponential weights technique (that our algorithm builds upon)

changes its weights “slowly”. As in previous works where “loopy”

Markovian dynamics were considered, our main assumptions on the

MDP transition probability kernel will be that stationary policies

mix uniformly fast. In addition, we shall assume that the stationary

distributions of these policies are bounded away from zero. These

assumptions will be discussed later.

We also mention here that Yu and Mannor [20, 21] considered

the related problem of online learning in MDPs where the transition

probabilities may also change arbitrarily after each transition. This

problem is significantly more difficult than the case where only the

reward function is allowed to change. Accordingly, the algorithms

proposed in these papers do not achieve sublinear regret. Unfortu-

nately, these papers have also gaps in the proofs, as discussed in

detail in [13].

Finally, we note in passing that the contextual bandit problem

considered by Lazaric and Munos [12] can also be regarded as a

simplified version of our online learning problem where the states

are generated in an i.i.d. fashion (though we do not consider the

problem of competing with the best policy in a restricted subset of

stationary policies). For regret bounds concerning learning in purely

stochastic unknown MDPs, see the work of Jaksch et al. [10] and

the references therein. Learning in adversarial MDPs without loops

was also considered by György et al. [8] for deterministic transitions

under bandit feedback, and under full information but with unknown

transition probability kernels in our recent paper [14].

The rest of the paper is organized as follows: The problem is laid

out in Section II, which is followed by a section that makes our

assumptions precise (Section III). The algorithm and the main result

are given and discussed in Section IV, with the proofs presented in

Section V.

II. NOTATION AND PROBLEM DEFINITION

The purpose of this section is to provide the formal definition of

our problem and to set the goals. We start with some preliminaries, in

particular by reviewing the language we use in connection to Markov

Decision Processes (MDPs). This will be followed by the definition

of the online learning problem. We assume that the reader is familiar

with the concepts necessary to study MDPs, our purpose here is

to introduce the notation only. For more background about MDPs,

consult Puterman [17].

We define a finite Markov Decision Process (MDP) M by a

finite state space X , a finite action set A, a transition probability

kernel P : X × A × X → [0, 1], and a reward function r :
X × A → [0, 1]. At time t ∈ {1, 2, . . .}, based on the sequence

of past states, observed rewards, and actions, (x1,a1, r(x1,a1),x2,
. . . ,xt−1,at−1, r(xt−1,at−1),xt) ∈ (X×A×R)t−1×X , an agent

acting in the MDP M chooses an action at ∈ A to be executed.4

As a result, the process moves to state xt+1 ∈ X with probability

3Here, Õ(g(s)) denotes the class of functions f : N → R
+ satisfying

sups∈N

f(s)
g(s) lnα(g(s))

< ∞ for some α ≥ 0.
4Throughout the paper we will use boldface letters to denote random

variables.
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P (xt+1|xt,at) and the agent incurs the reward r(xt,at). We note

in passing that at the price of increased notational load, but with

essentially no change to the contents, we could consider the case

where the set of actions available at time step t is restricted to a non-

empty subset A(xt) of all actions, where the set-system, (A(x))x∈X ,

is known to the agent. However, for simplicity, in the rest of the paper

we stick to the case A(x) = A. In an MDP the goal of the agent

is to maximize the long-term reward. In particular, in the so-called

average-reward problem, the goal of the agent is to maximize the

long-run average reward. In what follows, the symbols x, x′, . . . will

be reserved to denote a state in X , while a, a′, b will be reserved

to denote an action in A. In expressions involving sums over X , the

domain of x, x′, . . . will be suppressed to avoid clutter. The same

holds for sums involving actions.

Before defining the learning problem, let us introduce some more

notation. We use ‖v‖p to denote the Lp-norm of a function or a

vector. In particular, for p = ∞ the supremum norm of a function v :
S → R is defined as ‖v‖∞ = sups∈S |v(s)|, and for 1 ≤ p < ∞ and

for any vector u = (u1, . . . , ud) ∈ R
d, ‖u‖p =

(∑d
i=1|ui|p

)1/p
.

We use e1, . . . , ed to denote the row vectors of the canonical basis of

the Euclidean space R
d. Since we will identify X with the integers

{1, . . . , |X |}, we will also use the notation ex for x ∈ X . We will

use ln to denote the natural logarithm function.

A. Online learning in MDPs

In this paper we consider a so-called online learning problem when

the reward function is allowed to change arbitrarily in every time step.

That is, instead of a single reward function r, a sequence of reward

functions {rt} is given. This sequence is assumed to be fixed ahead

of time, and, for simplicity, we assume that rt(x, a) ∈ [0, 1] for all

(x, a) ∈ X ×A and t ∈ {1, 2, . . .}. No other assumptions are made

about this sequence.

The learning agent is assumed to know the transition probabilities

P , but is not given the sequence {rt}. The protocol of interaction

with the environment is unchanged: At time step t the agent selects

an action at based on the information available to it, which is sent to

the environment. In response, the reward rt(xt,at) and the next state

xt+1 are communicated to the agent. The initial state x1 is generated

from a fixed distribution P1, which may or may not be known.

Let the expected total reward collected by the agent up to time T
be denoted by

R̂T = E

[
T∑

t=1

rt(xt,at)

]

.

As before, the goal of the agent is to make this sum as large as

possible. In classical approaches to learning one would assume some

kind of regularity of rt and then derive bounds on how much reward

the learning agent loses as compared to the agent that knew about the

regularity of the rewards and who acted optimally from the beginning

of time. The loss or regret, measured in terms of the difference of total

expected rewards of the two agents, quantifies the learner’s efficiency.

In this paper, following the recent trend in the machine learning

literature [5], while keeping the regret criterion, we will avoid making

any assumption on how the reward sequence is generated, and take

a worst-case viewpoint. The potential benefit is that the results will

be more generally applicable and the algorithms will enjoy added

robustness, while, generalizing from results available for supervised

learning [4, 11, 18], the algorithms can also be shown to avoid being

too pessimistic.

The concept of regret in our case is defined as follows: We shall

consider algorithms which are competitive with stochastic stationary

policies. Fix a (stochastic) stationary policy π : X ×A → [0, 1] and

let {(x′
t,a

′
t)} be the trajectory that results from following policy π

from x′
1 ∼ P1 (in particular, a′

t ∼ π(·|x′
t)

def
= π(x′

t, ·)). The expected

total reward of π over the first T time steps is defined as

Rπ
T = E

[
T∑

t=1

rt(x
′
t,a

′
t)

]

.

Now, the (expected) regret (or expected relative loss) of the learning

agent relative to the class of stationary policies is defined as

L̂T = sup
π

Rπ
T − R̂T ,

where the supremum is taken over all stochastic stationary policies

in M . Note that the policy maximizing the total expected reward is

chosen in hindsight, that is, based on the knowledge of the reward

functions r1, . . . , rT . Thus, the regret measures how well the learning

agent is able to generalize from its moment to moment knowledge

of the rewards to the sequence r1, . . . , rT . If the regret of an agent

grows sublinearly with T then it can be said to act as well as the

best (stochastic stationary) policy in the long run (i.e., the average

expected reward of the agent in the limit is equal to that of the best

policy). In this paper our main result will show that there exists an

algorithm such that if that algorithm is followed by the learning agent,

then the learning agent’s regret will be bounded by C
√
T lnT , where

C > 0 is a constant that depends on the transition probability kernel,

but is independent of the sequence of rewards {rt}.

III. ASSUMPTIONS ON THE TRANSITION PROBABILITY KERNEL

Before describing our assumptions, a few more definitions are

needed: First of all, for brevity, in what follows we will call stochastic

stationary policies just policies. Further, without loss of generality,

we shall identify the states with the first |X | integers and assume that

X = {1, 2, . . . , |X |}. Now, take a policy π and define the Markov

kernel Pπ(x′|x) =
∑

a π(a|x)P (x′|x, a). The identification of X
with the first |X | integers makes it possible to view Pπ as a matrix:

(Pπ)x,x′ = Pπ(x′|x). In what follows, we will also take this view

when convenient.

In general, distributions will also be treated as row vectors. Hence,

for a distribution µ over X , µPπ is the distribution over X that results

from using policy π for one step after a state is sampled from µ (i.e.,

the “next-state distribution” under π). Finally, a stationary distribution

of a policy π is a distribution µst that satisfies µstP
π = µst.

In what follows we assume that every (stochastic stationary)

policy π has a well-defined unique stationary distribution µπ
st. This

ensures that the average reward underlying any stationary policy is

a well-defined single real number. It is well-known that in this case

the convergence to the stationary distribution is exponentially fast.

Following Even-Dar et al. [7], we consider the following stronger,

“uniform mixing condition” (which implies the existence of the

unique stationary distributions):

Assumption A1: There exists a number τ ≥ 0 such that for any

policy π and any pair of distributions µ and µ′ over X ,

∥∥(µ− µ′)Pπ
∥∥
1
≤ e−1/τ

∥∥µ− µ′
∥∥
1
. (1)

As Even-Dar et al. [7], we call the smallest τ satisfying this

assumption the mixing time of the transition probability kernel P .

Together with the existence and uniqueness of the stationary policy,

the next assumption ensures that every state is visited eventually no

matter what policy is chosen:

Assumption A2: The stationary distributions are uniformly

bounded away from zero:

inf
π,x

µπ
st(x) ≥ β > 0
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for some β ∈ R.

Note that e−1/τ is the supremum over all policy π
of the Markov-Dobrushin coefficient of ergodicity, defined

as mPπ = supµ6=µ′

‖(µ−µ′)Pπ‖
1

‖µ−µ′‖1
for the transition

probability kernel Pπ , see, e.g., [9]. It is also known that

mPπ = 1−minx,x′∈X

∑
y∈X min{Pπ(y|x), Pπ(y|x′)} [9]. Since

mPπ is a continuous function of π and the set of policies is compact,

there is a policy π′ with mPπ′ = supπ mPπ . These facts imply

that Assumption A1 is satisfied, that is, supπ mPπ < 1, if and

only if for every π, mPπ < 1, that is, Pπ is a scrambling matrix

(Pπ is a scrambling matrix if any two rows of Pπ share some

column in which they both have a positive element). Furthermore,

if Pπ is a scrambling matrix for any deterministic policy π
then it is also a scrambling matrix for any stochastic policy.

Thus, to guarantee Assumption A1 it is enough to verify mixing

for deterministic policies only. The assumptions will be further

discussed in Section IV-D.

IV. LEARNING IN ONLINE MDPS UNDER BANDIT FEEDBACK

In this section we shall first introduce some additional, standard

MDP concepts that we will need. That these concepts are well-defined

follows from our assumptions on P and from standard results to

be found, for example, in the book by Puterman [17]. After the

definitions, we specify our algorithm. The section is finished by

the statement of our main result concerning the performance of the

proposed algorithm.

A. Preliminaries

Fix an arbitrary policy π and t ≥ 1. Let {(x′
s,a

′
s)} be a random

trajectory generated by π and the transition probability kernel P and

an arbitrary everywhere positive initial distribution over the states.

We will use qπt to denote the action-value function underlying π
and the immediate reward rt, while we will use vπt to denote the

corresponding (state) value function.5 That is, for (x, a) ∈ X ×A,

qπt (x, a) = E

[
∞∑

s=1

(
rt(x

′
s,a

′
s)− ρπt

)
∣∣∣∣∣ x

′
1 = x,a′

1 = a

]

,

vπt (x) = E

[
∞∑

s=1

(
rt(x

′
s,a

′
s)− ρπt

)
∣∣∣∣∣ x

′
1 = x

]

,

where ρπt is the average reward per stage corresponding to π:

ρπt = lim
S→∞

1

S

S∑

s=1

E[rt(x
′
s,a

′
s)] .

The average reward per stage can be expressed as

ρπt =
∑

x

µπ
st(x)

∑

a

π(a|x)rt(x, a) ,

where µπ
st is the stationary distribution underlying policy π. Under

our assumptions stated in the previous section, up to a shift by a

constant function, the value functions qπt , v
π
t are the unique solutions

to the Bellman equations

qπt (x, a) = rt(x, a)− ρπt +
∑

x′

P (x′|x, a)vπt (x′) ,

vπt (x) =
∑

a

π(a|x)qπt (x, a) ,
(2)

which hold simultaneously for all (x, a) ∈ X × A (Corollary 8.2.7

of [17]). We will use q∗t to denote the optimal action-value function,

5Most sources would call these functions differential action- and state-value
functions. We omit this adjective for brevity.

that is, the action-value function underlying a policy that maximizes

the average-reward in the MDP specified by (P, rt). We will also

need these concepts for an arbitrary reward function r:X ×A → R.

In such a case, we will use vπ , qπ , and ρπ to denote the respective

value function, action-value function, and average reward of a policy

π.

Now, consider the trajectory {(xt,at)} followed by a learning

agent with x1 ∼ P1. For any t ≥ 1, define

ut = (x1,a1, r1(x1,a1), . . . , xt,at, rt(xt,at) ) (3)

and introduce the policy followed in time step t, πt(a|x) = P[at =
a|ut−1,xt = x], where u0 and, more generally us for all s ≤ 0 is

defined to be the empty sequence. Note that πt is computed based on

past information and is therefore random. We introduce the following

notation:

qt = qπt

t , vt = vπt

t , ρt = ρπt

t .

With this, we see that the following equations hold simultaneously

for all (x, a) ∈ X ×A:

qt(x, a) = rt(x, a)− ρt +
∑

x′

P (x′|x, a)vt(x
′),

vt(x) =
∑

a

πt(a|x)qt(x, a).
(4)

B. The algorithm

Our algorithm, MDP-EXP3, shown as Algorithm 1, is inspired

by that of Even-Dar et al. [7], while also borrowing ideas from the

EXP3 algorithm (exponential weights algorithm for exploration and

exploitation) of Auer et al. [2]. The main idea of the algorithm is to

Algorithm 1 MDP-EXP3: an algorithm for online learning in MDPs

Set N ≥ 1, w1(x, a) = w2(x, a) = · · · = w2N−1(x, a) = 1,

γ ∈ (0, 1), η ∈ (0, γ].
For t = 1, 2, . . . repeat:

1) Set

πt(a|x) = (1− γ)
wt(x, a)∑
b wt(x, b)

+
γ

|A|
for all (x, a) ∈ X ×A.

2) Draw an action at ∼ πt(·|xt).
3) Receive reward rt(xt,at) and observe xt+1.

4) If t ≥ N

a) Compute µN
t for all x ∈ X using (8).

b) Construct estimates r̂t using (6) and compute q̂t using (5).

c) Set wt+N (x, a) = wt+N−1(x, a)e
ηq̂t(x,a) for all (x, a) ∈

X ×A.

construct estimates {q̂t} of the action-value functions {qt}, which

are then used to determine the action-selection probabilities πt(·|x)
in each state x in each time step t. In particular, the probability of

selecting action a in state x at time step t is computed as the mixture

of the uniform distribution (which encourages exploring actions

irrespective of what the algorithm has learned about the action-values)

and a Gibbs distribution, the mixture parameter being γ > 0. Given

a state x, the Gibbs distribution defines the probability of choosing

action a at time step t to be proportional to exp(η
∑t−N

s=N q̂s(x, a)).
6

6In the algorithm the Gibbs action-selection probabilities are computed
in an incremental fashion with the help of the “weights” wt(x, a). Note
that a numerically stable implementation would calculate the action-selection

probabilities based on the relative value differences,
∑t−N

s=N q̂s(x, ·) −

maxa∈A
∑t−N

s=N q̂s(x, a). These relative value differences can also be
updated incrementally. The form shown in Algorithm 1 is preferred for
mathematical clarity.
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Here, η > 0, N > 0 are further parameters of the algorithm. Note

that for the single-state setting with N = 1, MDP-EXP3 is equivalent

to the EXP3 algorithm of Auer et al. [2].

It is interesting to discuss how the Gibbs policy (i.e.,
wt(x,·)∑
b
wt(x,b)

)

is related to what is known as the Boltzmann-exploration policy in

the reinforcement learning literature [e.g., 19]. Remember that given

a state x, the Boltzmann-exploration policy would select action a
at time step t with probability proportional to exp(ηq̂∗

t−1(x, a)) for

some estimate q̂∗
t−1 of the optimal action-value function in the MDP

(P, r̂t−1), where {r̂t} is the sequence of estimated reward functions.

Thus, we can see a couple of differences between the Boltzmann

exploration and our Gibbs policy. The first difference is that the Gibbs

policy in our algorithm uses the cumulated sum of the estimates of

action-values, while the Boltzmann policy uses only the last estimate.

By depending on the sum, the Gibbs policy will rely less on the last

estimate. This reduces how fast the policies can change, making the

learning “smoother”. Another difference is that in our Gibbs policy

the sum of previous action-values runs only up to step t−N instead of

using the sum that runs up to the last step t−1. The reasons for doing

this will be explained below. Finally, the Gibbs policy uses the action-

value function estimates (in the MDPs {(P, r̂s)}) of the policies {πs}
selected by the algorithm, as opposed to using an estimate of the

optimal action-value function. This makes our algorithm closer in

spirit to (modified) policy iteration than to value iteration and is again

expected to reduce the variance of the learning process.

The reason the Gibbs policy does not use the last N estimates is

to allow the construction of a reasonable estimate q̂t of the action-

value function qt. If rt was available, one could compute qt based

on rt (cf. (4)) and the sum could then run up to t − 1, resulting

in the algorithm of Even-Dar et al. [7]. Since in our problem rt is

not available, we estimate it using an importance sampling estimator

r̂t below (from now on, t ≥ N ). Given this r̂t, the estimate

q̂t of the action-value function qt is defined as the action-value

function underlying policy πt in the average-reward MDP given by

the transition probability kernel P and reward function r̂t. Thus, q̂t,

up to a shift by a constant function, can be computed as the solution

to the Bellman equations corresponding to (P, r̂t) (cf. (4)):

q̂t(x, a) = r̂t(x, a)− ρ̂t +
∑

x′

P (x′|x, a)v̂t(x
′) ,

v̂t(x) =
∑

a′

πt(a
′|x)q̂t(x, a

′) ,

ρ̂t =
∑

x′,a′

µπt

st (x
′)πt(a

′|x′)r̂t(x
′, a′) ,

(5)

which hold simultaneously for all (x, a) ∈ X × A. Since πt is

invariant to constant shifts of q̂t, any of the solutions of these

equations leads to the same sequence of policies. Hence, in what

follows, without loss of generality we assume that the algorithm uses

q̂t, i.e., the value function of πt in the average-reward MDP defined

by (P, r̂t).

To define the estimator r̂t define µN
t (x) as the probability of

visiting state x at time step t, conditioned on the history ut−N up to

time step t−N , including xt−N and at−N (cf. (3) for the definition

of {ut}):

µ
N
t (x)

def
= P [xt = x |ut−N ] , x ∈ X .

Then, the estimate of rt is constructed using

r̂t(x, a) =

{
rt(x,a)

πt(a|x)µ
N
t

(x)
, if (x, a) = (xt,at) ;

0, otherwise.
(6)

The importance sampling estimator (6) is well-defined only if for

x = xt,

µ
N
t (x) > 0 (7)

holds almost surely (by construction πt(·|xt) > γ/|A|> 0). To see

the intuitive reason of why (7) holds, it is instructive to look into

how the distribution µN
t can be computed.

When t = N , it should be clear from the definition of µN
t that,

viewing µN
t as a row vector, µN

N = P1(P
π1)N−1. Now let t > N .

Denote by P a the transition probability matrix of the policy that

selects action a in every state and recall that ex denotes the xth unit

row vector of the canonical basis of the |X |-dimensional Euclidean

space. We may write

µ
N
t = ext−N

P at−NPπt−N+1 · · ·Pπt−1 , t > N. (8)

This holds because for any t ≥ N , πt is entirely determined by the

history ut−N , while for t > N the history ut−N also includes (and

thus determines) xt−N ,at−N . Using the notation z ∈ σ(ut−N ) to

denote that the random variable z is measurable with respect to the

sigma-algebra generated by the history ut−N , the above fact can be

stated as

xt−N ,at−N ∈ σ(ut−N ) for t > N,

πt ∈ σ(ut−N ) for t ≥ N.
(9)

Consequently, we also have that πt−1, . . . ,πt−N+1 ∈ σ(ut−N ) and

therefore (8) follows from the law of total probability. Note also that

P [at=a|xt=x,ut−N ] = P [at=a|xt = x,ut−1]=πt(a|x), (10)

where the last equality follows from the definition of πt and at.

The algorithm as presented needs to know P1 to compute µN
t at

step t = N . When P1 is unknown, instead of starting the computation

of the weights at time step t = N , we can start the computation

at time step t = N + 1 (i.e., change t ≥ N of step 4 to t ≥
N + 1). Clearly, in the worst-case, the regret can only increase by a

constant amount (the magnitude of the largest reward) as a result of

this change.

An essential step of the proof of our main result is to show that

inequality (7) indeed holds, that is, µN
t (x) is bounded away from

zero. In fact, we will show that this inequality holds almost surely7

for all x ∈ X provided that N is large enough, which explains why

the sum in the definition of the Gibbs policy runs from time N .

This will be done by first showing that the policies πt (especially,

during the last N − 1 steps) change “sufficiently slowly” (this is

where it becomes useful that the Gibbs policy is defined using

a sum of previous action values). Consequently, πt−N+1,. . . ,πt−1

will all be “quite close” to the policy of the last time step. Then,

the expression on the right-hand side of (8) can be seen to be

close to the N − 1-step state distribution of πt when starting from

(xt−N ,at−N ), which, if N is large enough, will be shown to be

close to the stationary distribution of πt thanks to Assumption A1.

Since by Assumption A2, minx∈X µπt

st (x) ≥ β > 0 then, by

choosing the algorithm’s parameters appropriately, we can show that

µN
t (x) ≥ β/2 > 0 holds for all x ∈ X , that is, inequality (7)

follows. This is shown in Lemma 13.

It remains to be seen that the estimate r̂t is meaningful. In this

regard, we claim that

E [ r̂t(x, a)|ut−N ] = rt(x, a) (11)

7In what follows, for the sake of brevity, unless otherwise stated, we will
omit the modifier “almost surely” from probabilistic statements. It is worth to
mention that the finiteness of X and A allows several statements concerning
conditional expectations to hold always, instead of almost surely.



6

holds for all (x, a) ∈ X ×A. First note that

E [r̂t(x, a)|ut−N ] =
rt(x, a)

πt(a|x)µN
t (x)

E
[
I{(x,a)=(xt,at)}|ut−N

]
,

where we have exploited that πt,µ
N
t ∈ σ(ut−N ). Now,

E
[
I{(x,a)=(xt,at)} |ut−N

]

= P [at = a |xt = x,ut−N ] P [xt = x |ut−N ] .

By definition, P [xt = x |ut−N ] = µN
t (x) and by (10),

P [at = a |xt = x,ut−N ] = πt(a|x). Putting together the equalities

obtained, we get (11).

By linearity of expectation and since πt, µ
πt

st ∈ σ(ut−N ), it then

follows from (5) and (11) that E[ρ̂t|ut−N ] = ρt, and, hence, by the

linearity of the Bellman equations and by our assumption that q̂t is

the value function underlying the MDP (P, r̂t) and policy πt, we

have, for all (x, a) ∈ X ×A,

E[q̂t(x, a)|ut−N ] = qt(x, a),

E[v̂t(x)|ut−N ] = vt(x).
(12)

As a consequence, we also have, for all (x, a) ∈ X ×A, t ≥ N ,

E[ρ̂t] = E [ρt] ,

E[q̂t(x, a)] = E [qt(x, a)] ,

E[v̂t(x)] = E [vt(x)] .

(13)

Let us finally comment on the computational complexity of our

algorithm. Due to the delay in updating the policies based on

the weights, the algorithm needs to store N policies (or weights,

leading to the policies). Thus, the memory requirement of MDP-

EXP3 scales with N |A||X | (in the real-number model). The com-

putational complexity of the algorithm is dominated by the cost

of computing r̂t and, in particular, by the cost of computing µN
t ,

plus the cost of solving the Bellman equations (5). The cost of this

is O
(
|X |2(N + |X |+|A|)

)
in the worst case, for each time step,

however, it can be much smaller for specific practical cases such as

when the number of possible next-states is limited.

C. Main result

Our main result is the following bound concerning the performance

of MDP-EXP3.

Theorem 1 (Regret under bandit feedback): Let the transition

probability kernel P satisfy Assumptions A1 and A2. Let T > 0
and let N = 1 + ⌈τ lnT ⌉, and h(y) = 2y ln y for y > 0. Then

for an appropriate choice of the parameters η and γ (which depend

on |A|, T, β, τ ), for any sequence of reward functions {rt} taking

values in [0, 1], for

T > max




c1

(
|A|τ + τ3

|A|

)
ln|A|

β3
, h



c2

(
|A|
τ

+ τ
|A|

)
ln|A|

β










and τ ≥ 18 the regret of the algorithm MDP-EXP3 can be bounded

as

L̂T ≤ C

√
τ3T |A|ln(|A|) ln(T )

β
+ C′τ2 lnT

for some universal constants c1, c2, C, C
′ > 0.

Note that with the specific choice of parameters the to-

tal cost of the algorithm for a time horizon of T is

O
(
T |X |2(τ ln(T ) + |X |+|A|)

)
.

8The choice of the lower bound on τ is arbitrary, but the constants in the
theorem depend on it. Furthermore, with some extra work, our proof also
gives rise to a bound for the case when τ → 0, but for simplicity we decided
to leave out this analysis.

The proof is presented in the next section. For comparison, we

give now the analogue result for the algorithm of Even-Dar et al. [7]

that was developed for the full-information case when the algorithm

is given rt in each time step. As hinted on before, our algorithm

reduces to this algorithm if we set N = 1, r̂t = rt and γ = 0. We

call this algorithm MDP-E after Even-Dar et al. [7]. The following

regret bound holds for this algorithm:

Theorem 2 (Regret under full-information feedback): Fix T >
0. Let the transition probability kernel P satisfy Assumption A1.

Then, for an appropriate choice of the parameter η (which depends

on |A|, T, τ ), for any sequence of reward functions {rt} taking values

in [0, 1], the regret of the algorithm MDP-E can be bounded as

L̂T ≤ 4(τ + 1) +
√

2T (2τ + 3)(2τ2 + 6τ + 5) ln|A| . (14)

For pedagogical reasons, we shall present the proof in the next

section, too. Note that the constants in this bound are different from

those presented in Theorem 5.1 of Even-Dar et al. [7]. In particular,

the leading term here is 2τ3/2
√

2T ln|A|, while their leading term is

4τ2
√

T ln|A|. The above bound both corrects some small mistakes

in their calculations and improves the result at the same time.9

As Even-Dar et al. [7] note, the regret bound (14) does not depend

directly on the number of states, |X |, but the dependence appears

implicitly through τ only. Even-Dar et al. [7] also note that a tighter

bound, where only the mixing times of the actual policies chosen

appear, can be derived. However, it is unclear whether in the worst-

case this could be used to improve the bound. Similarly to (14), our

bound depends on |X | through other constants. In the bandit case,

these are β and τ . Comparing the theorems it seems that the main

price of not seeing the rewards is the appearance of |A| instead of

ln|A| (a typical difference between the bandit and full observation

cases) and the appearance of a
√

1/β term in the bound.

D. Discussion and future work

In this paper, we have presented an online learning algorithm,

MDP-EXP3 for adversarial MDPs, that is, finite stochastic Markovian

decision environments where the reward function may change after

each transition. This is the first algorithm for this setting that has a

rigorously proved O(
√
T lnT ) bound on its regret. We discuss the

features of the algorithm, along with future research directions below.

a) Extensions: We considered the expected regret relative to

the best fixed policy selected in hindsight. A typical extension is to

prove a high probability bound on the regret, which we think can

be done in a standard way using concentration inequalities. Note,

however, that the extension is more complicated than for the bandit

problems because the mixing property has to be used together with

the martingale reasoning. Another potential extension is to compete

with larger policy classes, such as with sequences of policies with a

bounded number of policy-switches. Similarly to Neu et al. [13, 15],

the MDP-EXP3 algorithm should then be modified by replacing

EXP3 with the EXP3.S algorithm of Auer et al. [2], specifically

designed to compete with switching experts in place of EXP3. Note

that, again, the analysis will be more complicated than in the bandit

case, and requires to bound the maximum regret of EXP3.S relative

to any fixed policy over any time window. When compared to a policy

with C switches, the resulting regret bound is expected to be C times

9One of the mistakes is in the proof of Theorem 4.1 of Even-Dar et al. [7]
where they failed to notice that qπt

t can take on negative values. Thus, their
Assumption 3.1 is not met by {qπt

t } (one needs to extend the upper bound
given in their Lemma 2.2 with a lower bound and change Assumption 3.1).
As a result, Assumption 3.1 cannot be used to show that the inequality in the
proof of Theorem 4.1 holds. This mistake, as well as the others, can easily
be corrected, as we show it here.
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larger than that of Theorem 1, while the algorithm would not need

to know the number of switches C.

b) Tuning and complexity: Setting up and running the algorithm

MDP-EXP3 may actually be computationally demanding. Setting the

parameters of the algorithm (η and γ) requires a known lower bound

β∗ on the visitation probabilities such that β = infπ,x µ
π
st(x) > β∗ >

0 and also the knowledge of an upper bound τ∗ on the mixing time τ .

While these quantities can be determined in principle from the tran-

sition probability kernel P , it is not clear how to compute efficiently

the minimum over all policies. Computational issues also arise during

running the algorithm: as it is discussed in Section IV-B, each step

of the MDP-EXP3 algorithm requires O
(
|X |2(τ lnT + |X |+|A|)

)

computations, which may be too demanding if, e.g., the size of the

state space is large. It is an interesting problem to design a more

efficient method that achieves similar performance guarantees.

c) Assumptions on the Markovian dynamics: We believe that it

should be possible to extend our main result beyond Assumption A1,

requiring only the existence of a unique stationary distribution for

any policy π (we will refer to this latter assumption as the unichain

assumption). Using that the distribution of any unichain Markov chain

converges exponentially fast to its stationary distribution, and that it

is enough to verify Assumption A1 for deterministic policies only,

one can easily show that if P satisfies the unichain assumption, then

there exists an integer K > 0 such that (Pπ)K is a scrambling matrix

for any policy π. Then, we conjecture that the MDP-EXP3 algorithm

will work as it is, except that the regret will be increased. The key

to prove this result is to generalize Lemmas 4 and 5 to this case.

Finally, one may also consider the case when the Markov chains

corresponding to Pπ are periodic. We speculate that this may be dealt

with using occupancy probabilities and Cesaro-averages instead of

the stationary and state distributions, respectively.

V. PROOFS

In this section we present the proofs of Theorem 1 and Theorem 2.

We start with the proof of Theorem 2 as this is a simpler result. The

proof of this result is presented partly for the sake of completeness

and partly so that we can be more specific about the corrections

required to fix the main result (Theorem 5.2) of Even-Dar et al.

[7]. Further, the proof will also serve as a starting point for the

proof of our main result, Theorem 1. Nevertheless, the impatient

reader may skip this next section and jump immediately to the proof

of Theorem 1, which apart from referring to some general lemmas

developed in the next subsection, is entirely self-contained.

A. Proof of Theorem 2

Throughout this section we consider the MDP-E algorithm (given

by Algorithm 1 with N = 1, r̂t = rt and γ = 0), and we suppose

that P satisfies Assumption A1. Let πt denote the policy used in step

t of the algorithm. Note that πt is not random since by assumption

the reward function is available at all states (not just the visited ones).

Hence, the sequence of policies chosen does not depend on the states

visited by the algorithm but is deterministic. Remember that ρt = ρπt

t

denotes the average reward of policy πt measured with respect to the

reward function rt. Following Even-Dar et al. [7], fix some policy π
and consider the decomposition of the regret relative to π:

Rπ
T−R̂T =

(

Rπ
T −

T∑

t=1

ρπt

)

+

(
T∑

t=1

ρπt −
T∑

t=1

ρt

)

+

(
T∑

t=1

ρt − R̂T

)

.

(15)

The first and the last terms measure the difference between the sum

of (asymptotic) average rewards and the actual expected reward. The

mixing assumption (Assumption A1) ensures that these differences

are not large. In particular, in the case of a fixed policy, this difference

is bounded by a constant of order τ :

Lemma 1: For any T ≥ 1 and any policy π, it holds that

Rπ
T −

T∑

t=1

ρπt ≤ 2τ + 2 . (16)

This lemma is also stated in [7]. We give the proof for completeness

also to correct slight inaccuracies of the proof given in [7].

Proof: Let {(xt,at)} be the trajectory when π is followed.

Note that the difference between Rπ
T and

∑T
t=1 ρ

π
t is caused by the

difference between the initial distribution of x1 and the stationary

distribution of π. To quantify the difference, write

Rπ
T −

T∑

t=1

ρπt =

T∑

t=1

∑

x

(νπ
t (x)− µπ

st(x))
∑

a

π(a|x)rt(x, a),

where νπ
t (x) = P[xt = x] is the state distribution at time step t.

Viewing νπ
t as a row vector, we have νπ

t = νπ
t−1P

π . Consider the

tth term of the above difference. Then, using rt(x, a) ∈ [0, 1] and

Assumption A1 we get10

∑

x

(νπ
t (x)− µπ

st(x))
∑

a

π(a|x)rt(x, a)

≤ ‖νπ
t − µπ

st‖1 = ‖νπ
t−1P

π − µπ
stP

π‖1
≤ e−1/τ ‖νπ

t−1 − µπ
st‖1 ≤ . . . ≤ e−(t−1)/τ ‖νπ

1 − µπ
st‖1

≤ 2e−(t−1)/τ .

This, together with the elementary inequality
∑T

t=1 e
−(t−1)/τ ≤ 1+∫∞

0
e−t/τ dt = 1 + τ gives the desired bound.

Consider now the second term of (15) and in particular its tth

term ρπt − ρt = ρπt − ρπt

t . This term is the difference of the average

reward obtained by π and πt. The following lemma shows that

this difference can be rewritten in terms of the state-wise action-

disadvantages underlying πt:

Lemma 2 (Performance difference lemma): Consider an MDP

specified by the transition probability kernel P and reward function r.

Let π, π̂ be two (stochastic stationary) policies in the MDP. Assume

that µπ
st, ρ

π̂ and qπ̂ are well-defined.11 Then,

ρπ − ρπ̂ =
∑

x,a

µπ
st(x)π(a|x)

[
qπ̂(x, a)− vπ̂(x)

]
.

This lemma appeared as Lemma 4.1 in [7], but similar statements

have been known for a while. For example, the book of Cao [3] also

puts performance difference statements in the center of the theory

of MDPs. For the sake of completeness, we include the easy proof.

Note that the statement of the lemma continues to hold even when

qπ̂ and vπ̂ are shifted by the same constant function.

Proof: We have
∑

x,a

µπ
st(x)π(a|x)qπ̂(x, a)

=
∑

x,a

µπ
st(x)π(a|x)

[

r(x, a)−ρπ̂+
∑

x′

P (x′|x, a)vπ̂(x′)

]

= ρπ − ρπ̂ +
∑

x

µπ
st(x)v

π̂(x),

where the second equality holds since∑
x,a µ

π
st(x)π(a|x)P (x′|x, a) = µπ

st(x
′). Reordering the terms

gives the desired result.

10Even-Dar et al. [7] mistakenly uses ‖νπt − µπ
st‖1 ≤ e−t/τ

∥

∥νπ1 − µπ
st

∥

∥

1
in their paper (t = 1 immediately shows that this can be false). See, e.g., the
proofs of their Lemmas 2.2 and 5.2.

11This lemma does not need Assumption A1 and in fact the assumptions
we make could be further relaxed with a slight change to the claim.
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Because of this lemma, ρπt − ρt =∑
x,a µ

π
st(x)π(a|x) (qπt

t (x, a)− vπt

t (x)). Thus, by flipping

the sum that runs over time with the one that runs over

the state-action pairs, we get:
∑T

t=1 ρ
π
t −

∑T
t=1 ρt =∑

x,a µ
π
st(x)π(a|x)

∑T
t=1 (q

πt

t (x, a)− vπt

t (x)). Thus, it suffices to

bound, for a fixed state-action pair (x, a), the sum

T∑

t=1

(qπt

t (x, a)− vπt

t (x)) =

T∑

t=1

(

qπt

t (x, a)−
∑

a′

πt(a
′|x)qπt

t (x, a′)

)

.

By construction, πt(a|x) ∝ exp(η
∑t−1

s=1 q
πs
s (x, a)) (recall that γ =

0 in this version of the algorithm), which means that the sum is the

regret of the so-called exponential weights algorithm (EWA) against

action a when the algorithm is used on the sequence {qπt

t (x, ·)}.

Assume for a moment that K > 0 is such that ‖qπt

t ‖∞ ≤ K holds

for 1 ≤ t ≤ T . Then, since qπt

t takes its values from an interval of

length 2K, Theorem 2.2 in [5] implies that the regret of EWA can

be bounded by
ln|A|
η

+
K2ηT

2
. (17)

Notice that {qπt

t } is a sequence that is sequentially generated from

{rt}. It is Lemma 4.1 of [5] that shows that the bound of Theorem 2.2

of [5] continues to hold for such sequentially generated functions.

Putting the inequalities together, we obtain

T∑

t=1

ρπt −
T∑

t=1

ρt ≤
ln|A|
η

+
K2ηT

2
. (18)

According to the next lemma an appropriate value for K is 2τ + 3.

The lemma is stated in a greater generality than what is needed here

because the more general form will be used later.

Lemma 3: Pick any policy π in an MDP (P, r). Assume that the

mixing time of π is τ in the sense of (1). If |∑a π(a|x)r(x, a)|≤
R ≤ ‖r‖∞ holds for any x ∈ X , then |vπ(x)|≤ 2R(τ+1) holds for

all x ∈ X . Furthermore, for any (x, a) ∈ X×A, |qπ(x, a)|≤ R(2τ+
3)+|r(x, a)| and, if, in addition, r(x, a) ≥ 0 for any (x, a) ∈ X×A,

then |qπ(x, a)|≤ (2τ + 3) ‖r‖∞.

Proof: As it is well known and is easy to see from the definitions,

the (differential) value of policy π at state x can be written as

vπ(x) =

∞∑

s=1

∑

x′

(νπ
s,x(x

′)− µπ
st(x

′))
∑

a

π(a|x′)r(x′, a),

where νπ
s,x = ex(P

π)s−1 is the state distribution when following π
for s−1 steps starting from state x. The triangle inequality and then

the bound on
∑

a π(a|x′)r(x′, a) gives

|vπ(x)| ≤ R
∞∑

s=1

∑

x′

|νπ
s,x(x

′)− µπ
st(x

′)|≤ 2R (τ + 1) ,

where in the second inequality we used
∥∥νπ

s,x − µπ
st

∥∥
1
≤ 2e−(s−1)/τ

and that
∑∞

s=1 e
−(s−1)/τ ≤ τ + 1 (cf. the proof of Lemma 1). This

proves the first inequality. The inequalities on |qπ(x, a)| follow from

the first part and the Bellman equation:

|qπ(x, a)| ≤ |r(x, a)|+|ρπ|+
∑

x′

P (x′|x, a)|vπ(x′)|

≤ R(2τ + 3) + |r(x, a)|,
|qπ(x, a)| ≤ |r(x, a)− ρπ|+

∑

x′

P (x′|x, a)|vπ(x′)|

≤ (2τ + 3)‖r‖∞.

Here, in the first inequality we used that |ρπ|≤∑
x µ

π
st(x)|

∑
a π(a|x)r(x, a)|≤ R, while the second inequality

holds since |r(x, a)− ρπ|, R ∈ [0, ‖r‖∞].

Let us now consider the third term of (15),
∑T

t=1 ρt − R̂T . The

tth term of this difference is the difference between the average

reward of πt and the expected reward obtained in step πt. If νt(x)
is the distribution of states in time step t,

∑T
t=1 ρt − R̂T =∑T

t=1

∑
x(µ

π
st(x)− νt(x))

∑
a π(a|x)rt(x, a). Thus,

T∑

t=1

ρt − R̂T ≤
T∑

t=1

‖µπt

st − νt‖1 (19)

and so remains to bound the ℓ1 distances between the distributions

µπt

st and νt. For this, we will use two general lemmas that will

again come useful later. For f : X × A → R, introduce the mixed

norm ‖f‖1,∞ = maxx

∑
a|f(a|x)|, where f(a|x) is identified with

f(x, a). Clearly,
∥∥νPπ − νP π̂

∥∥
1
≤ ‖π − π̂‖1,∞ holds for any two

policies π, π̂ and any distribution ν (cf. Lemma 5.1 in [7]). The

first lemma shows that the map π 7→ µπ
st as a map from the space

of stationary policies equipped with the mixed norm ‖·‖1,∞ to the

space of distributions equipped with the ℓ1-norm is (τ+1)-Lipschitz:

Lemma 4: Let P be a transition probability kernel over X × A
such that the mixing time of P is τ < ∞. For any two policies, π, π̂,

it holds that
∥∥∥µπ

st − µπ̂
st

∥∥∥
1
≤ (τ + 1) ‖π − π̂‖1,∞ .

Proof: The statement follows from solving
∥∥∥µπ

st − µπ̂
st

∥∥∥
1
≤
∥∥∥µπ

stP
π − µπ̂

stP
π
∥∥∥
1
+
∥∥∥µπ̂

stP
π − µπ̂

stP
π̂
∥∥∥
1

≤ e−1/τ
∥∥∥µπ

st − µπ̂
st

∥∥∥
1
+ ‖π − π̂‖1,∞

for
∥∥µπ

st − µπ̂
st

∥∥
1

and using

1/(1− e−1/τ ) ≤ τ + 1. (20)

The next lemma allows us to compare an n-step distribution under

a policy sequence with the stationary distribution of the sequence’s

last policy:

Lemma 5: Let P be a transition probability kernel over X×A such

that the mixing time of P is τ < ∞. Take any probability distribution

ν1 over X , integer n ≥ 1 and policies π1, . . . , πn. Consider the

distribution νn = ν1P
π1 · · ·Pπn−1 . Then, it holds that

‖νn − µπn

st ‖1 ≤ 2e−(n−1)/τ + (τ + 1)2 max
1≤t≤n

‖πt − πt−1‖1,∞ ,

where, for convenience, we have introduced π0 = π1.

Proof: If n = 1 the result is obtained from ‖ν1 − µπ1
st ‖1 ≤

2. Thus, in what follows we assume n ≥ 2. Let c =
max1≤t≤n ‖πt − πt−1‖1,∞. By the triangle inequality,

‖νn − µπn

st ‖1 ≤
∥∥νn − µ

πn−1

st

∥∥
1
+
∥∥µπn−1

st − µπn

st

∥∥
1

≤ e−1/τ
∥∥νn−1 − µ

πn−1

st

∥∥
1
+ (τ + 1)c ,

where we used that by the previous lemma
∥∥µπn−1

st − µπn

st

∥∥
1
≤ (τ+

1) ‖πn−1 − πn‖1,∞ ≤ (τ + 1)c. Continuing recursively, we get

‖νn − µπn

st ‖1
≤ e−1/τ

(
e−1/τ

∥∥νn−2 − µ
πn−2

st

∥∥
1
+ (τ + 1)c

)
+ (τ + 1)c

...

≤ e−
n−1

τ ‖ν1 − µπ1
st ‖1 + (τ + 1)c

(
1 + e−

1
τ + . . .+ e−

n−2

τ

)

≤ 2e−(n−1)/τ + (τ + 1)2c ,

where we bounded the geometrical series by 1/(1−e−1/τ ) and used

(20).
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Applying this lemma to ‖νt − µπt

st ‖1 we get

‖νt − µπt

st ‖1 ≤ 2e−(t−1)/τ + (τ + 1)2K′,

where K′ is a bound on max2≤t≤n ‖πt − πt−1‖1,∞.12 Therefore,

by (19), we have

T∑

t=1

ρt − R̂T ≤ 2
T∑

t=1

e−t/τ + (τ +1)2K′T ≤ 2τ + (τ +1)2K′T .

Thus, it remains to find an appropriate value for K′. It is a well known

property of EWA that ‖πt(·|x)− πt−1(·|x)‖1 ≤ η
∥∥qπt−1

t−1 (x, ·)
∥∥
∞

.

Indeed, applying Pinsker’s inequality and Hoeffding’s lemma (see

Section A.2 and Lemma A.6 in Cesa-Bianchi and Lugosi 5), we get

for any x ∈ X

‖πt(·|x)− πt−1(·|x)‖1≤
√

2D(πt−1(·|x)‖πt(·|x))

=

√√√√2

[

ln

(
∑

b

πt−1(b|x)eηq
πt−1

t−1
(b,x)

)

−
∑

a

ηπt−1(a|x)qπt−1

t−1 (b, x)

]

≤ η‖qπt−1

t−1 (x, ·)‖∞

where, for two distributions D(v‖v′) =
∑

i vi ln(vi/v
′
i) denotes

the Kullback-Leibler divergence of the distributions v and v′. Thus,

‖πt − πt−1‖1,∞ ≤ η
∥∥qπt−1

t−1

∥∥
∞

. Now, by Lemma 3, ‖qπt

t ‖∞ ≤
2τ + 3, showing that K′ = η(2τ + 3) is suitable. Putting together

the inequalities obtained, we get

T∑

t=1

ρt − R̂T ≤ 2τ + (2τ + 3)(τ + 1)2ηT .

Combining (16), (18) and this last bound, we obtain

Rπ
T − R̂T = 4τ + 2 +

ln|A|
η

+
ηT (2τ + 3)(2τ2 + 6τ + 5)

2
.

Setting

η =

√
2 ln|A|

T (2τ + 3)(2τ2 + 6τ + 5)
,

we get the bound stated in Theorem 2.

B. Proof of Theorem 1

Throughout this section we consider the MDP-EXP3 algorithm

and suppose that both Assumptions A1 and A2 hold for P . We start

from the decomposition (15), which is repeated to emphasize the

difference that some of the terms are random now:

Rπ
T−R̂T =

(

Rπ
T −

T∑

t=1

ρπt

)

+

(
T∑

t=1

ρπt −
T∑

t=1

ρt

)

+

(
T∑

t=1

ρt − R̂T

)

.

(21)

As before, Lemma 1 shows that the first term is bounded by 2(τ+1).
Thus, it remains to bound the expectation of the other two terms. This

is done in the following two propositions whose proofs are deferred

to the next subsections:

12Lemma 5.2 of Even-Dar et al. [7] gives a bound on ‖νt − µπt

st ‖1 with a
slightly different technique. However, there are multiple mistakes in the proof.
Once the mistakes are removed, their bounding technique gives the same
result as ours. One of the mistakes is that Assumption 3.1 states that K′ =
√

ln|A|/T , whereas since the range of the action-value functions scales with
τ , K′ should also scale with τ . Unfortunately, in [16] we committed the same
mistake, which we correct here. We choose to present an alternate proof, as
we find it somewhat cleaner and it also gave us the opportunity to present
Lemma 4.

Proposition 1: Let L = 2
β
(2τ + 3), Vq̂ = 2

β

(
|A|
γ

+ 2τ + 2
)

,

Uv̂ = 4
β
(τ + 1), Uπq̂ = 4

β
(τ + 2), Uq = 2τ + 3, Uq̄ = 2τ + 4,

e′ = e− 1, e′′ = e− 2,

c = η
e(Uv̂ + L+ γVq̂)

1− γ − ηeNVq̂

,

c′ = η
e′(L+ γVq̂) + (e′Uπq̂ + Uv̂)Uq̄|A|

1− γ − ηe(N + 1)Vq̂

,

and assume that γ ∈ (0, 1), c(τ + 1)2 < β/2, N ≥ 1 +⌈
τ ln

(
4

β−2c(τ+1)2

)⌉
, 0 < η < β(1−γ)

2e(N+1)(|A|/γ +2τ+2)
. Then, for

any policy π, we have

T∑

t=1

E [ρπt − ρt] ≤
ln|A|
η

+ (N − 1)(Uq̄ + Uq + 1)

+ (T − 2N + 2)
(
c′(N − 1)(1 + η e′′Vq̂)

+ γ Uq + η e′′|A|Uπq̂ Uq̄

)
.

Proposition 2: Assume that the conditions of Proposition 1 hold.

Then,

T∑

t=1

E [ρt]− R̂T ≤ N − 1 + (T −N + 1) c (τ + 1)2

+ 2(T −N + 1)e−(N−1)/τ .

(22)

Note that setting N ≥ 1+ ⌈τ lnT ⌉, as suggested in Theorem 1, the

last term in the right-hand side of (22) becomes O(1), while for T
sufficiently large all the conditions of the last two propositions will

be satisfied. This leads to the proof of Theorem 1:

Proof of Theorem 1: If |A|= 1 then, due to L̂T = 0, the

statement is trivial, so we assume |A|≥ 2 from now on. Define α =
β
2
e(Uv̂ +L+ γVq̂), α

′ = β
2
{e′(L+ γVq̂) + (e′Uπq̂ + Uv̂)Uq̄|A|}

so that c = 2η α
β(1−γ)−2ηeNV ′

q̂

and c′ = 2η α′

β(1−γ)−2ηe(N+1)V ′

q̂

,

where V ′
q̂ = β

2
Vq̂ = |A|/γ + 2τ + 2. In the following we will use

the notation f ∼ g for two positive-valued functions f, g : D → R
+

defined on the same domain D to denote that they are equivalent up

to a constant factor, that is, supx∈D max{f(x)/g(x), g(x)/f(x)} <
∞. With this notation, on |A|≥ 2, τ ≥ 1 and as long as γ ≤ 1, we

have

α ∼ |A|+τ and α′ ∼ |A|τ2
(23)

independently of the value of β and of the choice of η, γ, N . In

what follows all the equivalences will be stated for the domain |A|≥
2, τ ≥ 1.

We now show how to choose η, γ and N so as to achieve a small

regret bound. In order to do so we will choose these constants so that

the conditions of Propositions 1 and 2 are satisfied. For simplicity,

we add the constraint γ ≤ 1/2 that we will also show to hold. Under

this additional constraint, the inequality

η <
β(1− γ)

2e(N + 1)(|A|/γ + 2τ + 2)
(24)

will be satisfied if we choose γ = 8eη(N+1)(|A|+τ+1)/β. Indeed,

the said inequality holds since it is equivalent to D = β(1 − γ) −
2ηe(N + 1)(|A|/γ + 2τ + 2) > 0 and

D = β(1− γ)− 2ηe(N + 1)(|A|+γ(2τ + 2))

γ

≥ β

2
− 2ηe(N + 1)(|A|+τ + 1)

γ
=

β

4
> 0,

where the first inequality holds because γ ≤ 1/2 and the second

equality holds by the definition of γ. Since c ≤ 2ηα/D and c′ =
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2ηα′/D, this also implies

c ≤ 8ηα/β and c′ ≤ 8ηα′/β. (25)

Due to this upper bound on c, c(τ + 1)2 < β/2 will be satisfied if

η <
β2

16α(τ + 1)2
. (26)

To satisfy γ ≤ 1/2, the inequality

η ≤ β

16e(N + 1)(|A|+τ + 1)
(27)

has to be satisfied, too. Before proving (26) and (27), we derive the

regret bound they imply.

Taking expectation in (21) and using the bounds of Lemma 1 and

Propositions 1 and 2, we get

L̂T ≤ 2τ + 2 +
ln|A|
η

+T
[
c′(N − 1)(1 + η e′′Vq̂) + γ Uq + η e′′|A|Uπq̂ Uq̄ + c(τ + 1)2

]

+(N − 1)(Uq̄ + Uq + 2) + 2Te−(N−1)/τ .

Choosing N = 1 + ⌈τ lnT ⌉, we have 2Te−(N−1)/τ ≤ 2. Fur-

thermore, (24) implies η e′′Vq̂ ≤ e′′

e(N+1)
. This, together with the

definition of the different constants above and the bound (25) on c
and c′ gives

L̂T ≤ 2τ + 2 +
ln|A|
η

+
ηT

β

[

8α′(N − 1)

(
1 +

e′′

e(N + 1)

)

+ 8eβ(N + 1)(|A|+τ + 1)(2τ + 3)

+ 8e′′|A| (τ + 2)2 + 8α(τ + 1)2
]

+ (N − 1)(Uq̄ + Uq + 2) + 2

≤ ln|A|
η

+
ηT

β
B + C1τN,

where we introduced B to denote the expression in the squared

brackets and used the fact that 2τ+4+(N−1)(Uq̄+Uq+2) ≤ C1τN
for some constant C1 > 0. Note that (23) implies that

B ∼ N |A|τ2 + τ3 ∼ |A|τ3 lnT (28)

since N ∼ τ lnT for τ ≥ 1, T ≥ 2. Now, choose η =
√

β ln|A|
TB

.

Then,

L̂T = 2

√
TB ln|A|

β
+ C1τN

≤ C2

√
τ3T |A|ln(|A|) ln(T )

β
+ C3τ

2 lnT

for some appropriate constants C2, C3 > 0.

It remains to show that for T large enough, inequalities (26)

and (27) will hold, and also the lower bound on N in the propositions

will be satisfied. Instead of (26) we will choose a lower bound on T
to guarantee the stronger condition

η ≤ β2

32α(τ + 1)2
, (29)

which, together with (25), also ensures c(τ + 1)2 ≤ β/4. The latter

inequality implies that the lower bound on N in the propositions is

satisfied for T ≥ 8/β. Using the choice of η and the respective

equivalent forms (23) and (28) for α and B, one can see that

condition (29) is satisfied if T lnT ≥ C4
(|A|τ+τ3/|A|) ln|A|

β3 for

some appropriate constant C4 > 0. To keep things simple, notice

that selecting T ≥ C4
(|A|τ+τ3/|A|) ln|A|

β3 implies (29), and also

T ≥ 8/β if C4 ≥ 8.13 Furthermore, one can similarly show that (27)

is satisfied if T
lnT

≥ C5
(|A|/τ+τ/|A|) ln|A|

β
for some appropriate

constant C5 > 0. By Proposition 3 of Antos et al. [1], for any u > 0,

t/ln t > u if t ≥ h(u)
def
= 2u lnu. Thus, the last condition on T is

satisfied if T > h
(
C5

(|A|/τ+τ/|A|) ln|A|
β

)
. This finishes the proof

of the theorem.

C. General tools for the proofs of Propositions 1 and 2

Just like in the previous section, throughout this section we suppose

that both Assumptions A1 and A2 hold for P and the rewards are in

the [0, 1] interval. We proceed with a series of lemmas to bound the

rate of change of the policies generated by MDP-EXP3.

Lemma 6: Let 1 ≤ t ≤ T and assume that µN
t (x) ≥ β/2 holds

for all states x. Then, for any (x, a) ∈ X × A, we have |v̂t(x)| ≤
4τ+4

β
and − 2

β
(2τ + 3) ≤ q̂t(x, a) ≤ 2

β

(
|A|
γ

+ 2τ + 2
)

.

Proof: Since |∑a πt(a|x)r̂t(x, a)|=
πt(at|x)r̂t(x,at)I{x=xt} ≤ 1/µN

t (x) ≤ 2/β by assumption

and v̂t = vπt , the first statement of the lemma follows from

Lemma 3.

To prove the bounds on q̂t, notice that

0 ≤ ρ̂t =
∑

x,a

µπt

st (x)πt(a|x)r̂t(x, a)

=
∑

x

µπt

st (x)
∑

a

πt(a|x)r̂t(x, a) ≤
2

β
.

Applying the above inequalities to the Bellman equations (5), we

obtain q̂t(x, a) = r̂t(x, a) − ρ̂t +
∑

x′ P (x′|x, a)v̂t(x
′) ≥ − 2

β
−

4τ+4
β

= − 2
β
(2τ + 3). Since πt(a|x) ≥ γ/|A|, the assumption on

µN
t and the definition of r̂t imply r̂t(x, a) ≤ 2|A|

γβ
. Thus, we get the

upper bound q̂t(x, a) ≤ 2|A|
γβ

+ 4τ+4
β

= 2
β

(
|A|
γ

+ 2τ + 2
)

.

The previous result can be strengthened if one is interested in a

bound on E [ |v̂t(x)| |ut−N ]:
Lemma 7: Let 1 ≤ t ≤ T and assume that µN

t (x) > 0 holds for

all states x. Then, for any x ∈ X , we have E [ |v̂t(x)| |ut−N ] ≤
2(τ + 1).

Proof: Proceeding as in the proof of Lemma 3 and then taking

expectations, we get

E [ |v̂t(x)| |ut−N ]

≤
∞∑

s=1

∑

x′

|νπt

s,x(x
′)− µπt

st (x
′)| E

[
∑

a

πt(a|x′)r̂t(x
′, a)

∣∣∣∣∣ut−N

]

,

where we have exploited that r̂t is well-defined by our assumption

on µN
t and it takes only nonnegative values. Now, by (9) and (11),

E

[
∑

a

πt(a|x′)r̂t(x
′, a)

∣∣∣∣∣ut−N

]

=
∑

a

πt(a|x′)E
[
r̂t(x

′, a)
∣∣ut−N

]

=
∑

a

πt(a|x′)rt(x
′, a),

which is bounded between 0 and 1. Hence, E [ |v̂t(x)| |ut−N ] ≤∑∞
s=1

∑
x′ |νπ

s,x(x
′)−µπ

st(x
′)|. Finishing as in the proof of Lemma 1

or 3, we get the statement.

Similarly, we will also need a bound on the expected value of

E [ |q̂t(x, a)| |ut−N ]:

13With some extra work one can show that it is sufficient to choose T ≥

h1

(

C4
τ3|A|ln|A|

β3

)

with C4 ≥ 64 and h1(y) = y/(ln y − ln ln y).
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Lemma 8: Let 1 ≤ t ≤ T and assume that µN
t (x) > 0 holds

for all states x. Then, for any (x, a) ∈ X × A, we have that

E [ |q̂t(x, a)| |ut−N ] ≤ 2τ+4 and also E
[∑

a πt(a|x)|q̂t(x, a)|
]
≤

2τ + 4.

Proof: By the Bellman equations (5),

E [ |q̂t(x, a)| |ut−N ] ≤ E [ |r̂t(x, a)| |ut−N ] + E [ |ρ̂t| |ut−N ]

+
∑

x′

P (x′|x, a)E
[
|v̂t(x

′)|
∣∣ut−N

]
.

As before, E [ |r̂t(x, a)| |ut−N ] ≤ 1, and also E [ |ρ̂t| |ut−N ] ≤ 1.

Combining these with the result of the previous lemma, we get the

first part of the statement. To get the second part note that

E

[
∑

a

πt(a|x)|q̂t(x, a)|
]

= E

[

E

[
∑

a

πt(a|x)|q̂t(x, a)|
∣∣∣∣∣ut−N

]]

= E

[
∑

a

πt(a|x)E [ |q̂t(x, a)| |ut−N ]

]

≤ E

[
∑

a

πt(a|x) (2τ + 4)

]

≤ 2τ + 4 .

The quantity πt(x, a)|q̂t(x, a)| also enjoys a bound which is

independent of the exploration rate γ:

Lemma 9: Let 1 ≤ t ≤ T and assume that µN
t (x) ≥ β/2

holds for all states x. Then, for any (x, a) ∈ X × A, it holds that

πt(x, a) |q̂t(x, a)| ≤ 4
β
(τ + 2).

Proof: By our assumption on µN
t and the construction of

r̂t(x, a),

πt(x, a)|r̂t(x, a)|≤
2

β
. (30)

Since r̂t(x, a) = 0 unless a = at, Lemma 3 can be applied with

R = 2/β to obtain |q̂t(x, a)|≤ 2
β
(2τ +3)+ |r̂t(x, a)|. Multiplying

both sides by πt(x, a) and using (30) again finishes the proof.

Now we show that if the policies that we follow up to time step t
change slowly, µN

t is “close” to µπt

st :

Lemma 10: Let 1 ≤ N ≤ t ≤ T and c > 0 be such that

‖πs+1 − πs‖1,∞ ≤ c holds for 1 ≤ s ≤ t − 1. Then we have∥∥µN
t − µπt

st

∥∥
1
≤ c (τ + 1)2 + 2e−(N−1)/τ .

Proof: This follows directly from Lemma 5 since, thanks to

the recursive form of µN
t , µN

t = µ1P
πt−N+1 · · ·Pπt−1 , where

µ1 = ext−N
P at−N for t ≥ N + 1 and µ1 = P1 if t = N .

In the lemma that follows we compute the rate of change of

the policies produced by MDP-EXP3. We will use this lemma for

multiple purposes, including showing that for a large enough value

of N , µN
t can be uniformly bounded from below by β/2.

To simplify the presentation, we recall some short-hand notation

from Proposition 1. In particular, we denote the lower and upper

bounds for q̂t by −L and Vq̂ of Lemma 6, respectively, and the

upper bound on |v̂t| from the same lemma by Uv̂. Thus setting

L =
2

β
(2τ + 3), Vq̂ =

2

β

(
|A|
γ

+ 2τ + 2

)
, Uv̂ =

4

β
(τ + 1)

we have −L ≤ q̂t(x, a) ≤ Vq̂, and |v̂t(x)|≤ Uv̂ for all state-action

pairs (x, a).
Lemma 11: Assume that 0 < η ≤ 1/(Vq̂+L). For (x, a) ∈ X×A,

1 ≤ t ≤ T , i ∈ {0, 1} let

dt,i(x, a) = q̂t(x, a)−
∑

b∈A

πt+N−1+i(b|x)− γ
|A|

1− γ
q̂t(x, b). (31)

Then, for all N ≤ t ≤ T ,

|πt+N−1(a|x)− πt+N (a|x)|
≤ ηπt+N−1(a|x)max {(e− 1)dt,0(x, a),−dt,1(x, a)} .

Proof: Fix some state-action pair (x, a) ∈ X × A and let

Wt(x) =
∑

a wt(x, a) where t = 1, 2, . . . , T . Since wt+N is

computed using the exponential weight update for t ≥ N , we have

|πt+N−1(a|x)− πt+N (a|x)|

= (1− γ)

∣∣∣∣
wt+N−1(x, a)

Wt+N−1(x)
− wt+N (x, a)

Wt+N (x)

∣∣∣∣

= (1− γ)
wt+N−1(x, a)

Wt+N−1(x)

∣∣∣∣1−
wt+N (x, a)

wt+N−1(x, a)

Wt+N−1(x)

Wt+N (x)

∣∣∣∣

= (1− γ)
wt+N−1(x, a)

Wt+N−1(x)

∣∣∣∣1− eηq̂t(x,a)Wt+N−1(x)

Wt+N (x)

∣∣∣∣

≤ πt+N−1(a|x)
∣∣∣∣1− eηq̂t(x,a)Wt+N−1(x)

Wt+N (x)

∣∣∣∣ .

(32)

We examine two separate cases depending on the sign of the

expression in the absolute value on the right-hand side.

Case a) 1−eηq̂t(x,a) Wt+N−1(x)

Wt+N (x)
≤ 0: First notice that the logarithm

of the second term is positive by the condition, that is, ηq̂t(x, a) +

ln
Wt+N−1(x)

Wt+N (x)
≥ 0. Furthermore, it is bounded from above by 1.

Indeed, by Jensen’s inequality,

ln
Wt+N−1(x)

Wt+N (x)
= − ln

∑

b

wt+N−1(x, b)

Wt+N−1(x)
eηq̂t(x,b)

≤ −η
∑

b

wt+N−1(x, b)

Wt+N−1(x)
q̂t(x, b) (33)

and thus

ηq̂t(x, a) + ln
Wt+N−1(x)

Wt+N (x)

≤ ηq̂t(x, a)− η
∑

b

wt+N−1(x, b)

Wt+N−1(x)
q̂t(x, b)

≤ η(Vq̂ + L) ≤ 1 ,

where the second inequality holds by our choice of Vq̂ and L, while

the third one holds by our assumption on η. Thus, using ez − 1 ≤
(e− 1)z, which holds for any 0 ≤ z ≤ 1, we get

∣∣∣∣1− eηq̂t(x,a)Wt+N−1(x)

Wt+N (x)

∣∣∣∣

≤ (e− 1)

(
ηq̂t(x, a) + ln

Wt+N−1(x)

Wt+N (x)

)
.

From this inequality, (32) and (33) and using the definition of

πt+N−1, we get

|πt+N−1(a|x)− πt+N (a|x)|

≤ η(e− 1)πt+N−1(a|x)
(

q̂t(x, a)−
∑

b

πt+N−1(b|x)− γ
|A|

1− γ
q̂t(x, b)

)

.

Case b) 1 − eηq̂t(x,a) Wt+N−1(x)

Wt+N (x)
≥ 0: Using 1 − ez ≤ −z (which

holds for all z ∈ R), we get

∣∣∣∣1− eηq̂t(x,a)Wt+N−1(x)

Wt+N (x)

∣∣∣∣ ≤− ηq̂t(x, a)− ln
Wt+N−1(x)

Wt+N (x)
.

Applying Jensen’s inequality, the second term can be bounded as

ln
Wt+N−1(x)

Wt+N (x)
= ln

∑

b

wt+N (x, b)

Wt+N (x)
e−ηq̂t(x,b)

≥ −η
∑

b

πt+N (b|x)− γ
|A|

1− γ
q̂t(x, b) .
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Combining these inequalities with (32), we get

|πt+N−1(a|x)− πt+N (a|x)|

≤ ηπt+N−1(a|x)
(

−q̂t(x, a) +
∑

b

πt+N (b|x)− γ
|A|

1− γ
q̂t(x, b)

)

.

The two cases together prove the lemma.

By the lemma just proved, the rate of change {πt} is partially

governed by {dt,i}. To further bound the rate of change, we develop

lower and upper bounds on dt,i. To facilitate this, we rewrite dt,i by

grouping the terms with identical signs:

dt,i(x, a) = q̂t(x, a) +
γ

1− γ

1

|A|
∑

b∈A

q̂t(x, b)

− 1

1− γ

∑

b∈A

πt+N−1+i(b|x)q̂t(x, b).
(34)

Then, from −L ≤ q̂t(x, a) ≤ Vq̂, as long as 0 ≤ γ < 1, we have

−L+
∑

b πt+N−1+i(b|x)q̂t(x, b)

1− γ
≤ dt,i(x, a)

≤ q̂t(x, a) +
L+ γVq̂

1− γ
.

(35)

Notice that since Vq̂ scales with 1/γ, we avoided upper bounding

q̂t by Vq̂ except when q̂t is multiplied by γ, and so the bounds will

not “blow up” as γ → 0. In fact, this is one of the main reasons

that in this paper we succeed in proving an Õ(T 1/2) regret bound

as compared to the O(T 2/3) regret bound of [16].

Let us now show that, provided µN
t is uniformly bounded away

from zero, the sequence {πt} changes slowly.

Lemma 12: Assume that 0 ≤ γ < 1, 0 < η <

min
(

1
Vq̂+L

, 1−γ
eNVq̂

)
= β(1−γ)

2eN(|A|/γ +2τ+2)
and that for all N ≤ t ≤ T

and states x, µN
t (x) ≥ β/2 holds true. Set c = η e

Uv̂+L+γVq̂

1−γ−ηeNVq̂

.

Then, for any 1 ≤ t ≤ T ,

‖πt+N−1 − πt+N‖1,∞ ≤ c. (36)

Proof: We prove the statement by induction on t. To show the

bound for time step t assume that ‖πs+N−1 − πs+N‖1,∞ ≤ c
holds for all s = 1, 2, . . . , t − 1. As πs+N−1 = πs+N for all

s = 1, 2, . . . , N − 1, the assumption holds for t = 1, . . . , N − 1
and we are left with proving the induction step for t ≥ N .

Fix x ∈ X . For any a ∈ A, by Lemma 11,

|πt+N−1(a|x)− πt+N (a|x)|
≤ ηπt+N−1(a|x)max {(e− 1)dt,0(x, a),−dt,1(x, a)} .

Our goal is to upper-bound πt+N−1(a|x)dt,0(x, a) and lower-bound

πt+N−1(a|x)dt,1(x, a). As before, we make an effort to avoid terms

that scale with 1/γ, but we allow terms that scale with c/γ as c will

be seen to scale with γ (and η).

Consider first an upper bound on πt+N−1(a|x)dt,0(x, a).
From (35), it remains to bound πt+N−1(a|x)q̂t(x, a). By a simple

telescoping argument, we bound this by

πt+N−1(a|x)q̂t(x, a)

= πt(a|x)q̂t(x, a) +

[
t+N−2∑

s=t

(πs+1(a|x)− πs(a|x))
]

q̂t(x, a)

≤ πt(a|x)q̂t(x, a) + Ft(x, a)Vq̂,

where we have introduced

Ft(x, a) =

t+N−2∑

s=t

|πs+1(a|x)− πs(a|x)| .

Now, using (34),

πt+N−1(a|x)dt,0(x, a)

≤ 1

1− γ

(

πt(a|x)q̂t(x, a) + Ft(x, a)Vq̂ + πt+N−1(a|x)(L+ γVq̂)

)

.

Now, let us consider upper bounding −πt+N−1(a|x)dt,1(x, a).
In this case, we use telescoping for the second term on the left-hand

side of (35):
∑

b

πt+N (b|x)q̂t(x, b)

=
∑

b

πt(b|x)q̂t(x, b) +

t+N−1∑

s=t

∑

b

(
πs+1(b|x)− πs(b|x)

)
q̂t(x, b)

≤ v̂t(x) +NcVq̂ ≤ Uv̂ +NcVq̂ ,

where we used q̂t(x, a) ≤ Vq̂, v̂t(x) ≤ Uv̂ and the induction

hypothesis. Plugging this into the lower bound in (35), we get

−πt+N−1(a|x)dt,1(x, a) ≤
πt+N−1(a|x)

1− γ
(L+ Uv̂ +NcVq̂) .

Combining the two cases, we get

|πt+N−1(a|x)− πt+N (a|x)|

≤ max

(
η(e− 1)

1− γ

(
πt(a|x)q̂t(x, a) + Ft(x, a)Vq̂

+ πt+N−1(a|x)(L+ γVq̂)
)
,

ηπt+N−1(a|x)
1− γ

(Uv̂ +NcVq̂ + L)

)

≤ η

1− γ

(
(e− 1)(πt(a|x)q̂t(x, a) + Ft(x, a)Vq̂)

+ πt+N−1(a|x)(Uv̂ +NcVq̂)

+ (e− 1)πt+N−1(a|x)(L+ γVq̂)
)
.

Summing these inequalities for all a and taking the maximum over

x gives

‖πt+N−1 − πt+N ‖1,∞ ≤ η e

1− γ

(
Uv̂ +NcVq̂ + L+ γVq̂

)
,

where we upper bounded (e−1)(L+γVq̂) by e(L+γVq̂) and used

that the inequality
∑

a Ft(x, a) ≤ (N − 1)c ≤ Nc holds by the

induction hypothesis. Now, the result follows because, thanks to the

definition of c, the right-hand side equals c (in fact, this is how the

definition of c is obtained).

Lemma 13: Let c, η, γ be as in Lemma 12. Assume further that

c(τ + 1)2 < β/2, and let

N ≥ 1 +

⌈
τ ln

(
4

β − 2c(τ + 1)2

)⌉
. (37)

Then, for all N ≤ t ≤ T , x ∈ X , we have µN
t (x) ≥ β/2 and

‖πt+1 − πt‖1,∞ ≤ c.

Proof: We prove the lemma by induction on t. The induction

hypothesis is that for N ≤ t ≤ T , minx µ
N
s (x) ≥ β/2 and

maxx

∑
a|πs+1(a|x)− πs(a|x)|≤ c hold for all N ≤ s ≤ t.

Let us first show that this hypothesis holds when N ≤ t ≤ 2N−2.

By the construction of the policies, we have maxx

∑
a|πt+1(a|x)−

πt(a|x)|= 0 ≤ c for all 1 ≤ t ≤ 2N − 2. Thus, by Lemma 10,

we get that
∥∥µN

t − µπt

st

∥∥
1
≤ c(τ + 1)2 + 2e−(N−1)/τ holds for all

N ≤ t ≤ 2N − 2. By our assumption about N , we have

c(τ + 1)2 + 2e−(N−1)/τ ≤ β/2, (38)
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thus for any N ≤ t ≤ 2N − 2,
∥∥∥µN

t − µπt

st

∥∥∥
∞

≤
∥∥∥µN

t − µπt

st

∥∥∥
1
≤ β/2. (39)

Since, by assumption, µπ
st(x) ≥ β holds for any stationary policy π,

we also have µπt

st (x) ≥ β (x ∈ X ). This, together with (39) gives

that µN
t (x) ≥ β/2 holds for any x ∈ X .

Now, fix a time index 2N − 1 ≤ t ≤ T and assume that

the induction hypothesis holds for time t − 1. Then, thanks to

minx µ
N
t−N+1(x) ≥ β/2, Lemma 12 implies ‖πt+1 − πt‖1,∞ ≤ c.

Now, by Lemma 10, we have
∥∥µN

t − µπt

st

∥∥
1

≤ c(τ + 1)2 +

2e−(N−1)/τ Using the same reasoning as above, we finish the

inductive step and thus the proof.

In our final result we study the weighted sums

∆t,s(x)
def
=
∑

a∈A

|πt+1(a|x)− πt(a|x)| |q̂s(x, a)|

for x ∈ X , t, s ≥ 1. To state this result recall the definitions

Uπq̂ =
4

β
(τ + 2), Uq̄ = 2τ + 4,

from Proposition 1. Note that by Lemma 9, πt(x, a)|q̂t(x, a)|≤ Uπq̂

and by Lemma 8, E [|q̂s(x, a)|] ≤ Uq̄.

Lemma 14: Let e′ = e − 1, C1 = e′(L + γVq̂) + (e′Uπq̂ +
Uv̂)Uq̄|A|, and c′ = ηC1

1−γ−ηe(N+1)Vq̂

. Assume that 0 < γ ≤ 1, 0 ≤
η < min

(
1

Vq̂+L
, 1−γ
e(N+1)Vq̂

)
= β(1−γ)

2e(N+1)(|A|/γ +2τ+2)
and that for

all N ≤ t ≤ T and states x, µN
t (x) ≥ β/2 holds true. Then, for any

1 ≤ t ≤ T , 1 ≤ s ≤ T and x ∈ X , it holds that E [∆t,s(x)] ≤ c′.
An observation that will be needed later is that the conditions of this

lemma on η, γ and N imply those of Lemma 12.

Proof: Fix x ∈ X . We will prove the result by induction. Since

in the algorithm the weights are kept fixed for 1 ≤ t ≤ 2N − 1,

∆t,s = 0 when 1 ≤ t ≤ 2N − 2. This establishes the base case of

the induction. Thus, fix t ≥ N and assume that E [∆t′,s(x)] ≤ c′

holds for all pairs (t′, s) such that 1 ≤ t′ ≤ t+N − 2, 1 ≤ s ≤ T .

By Lemma 11,

∆t+N−1,s(x)

≤ η
∑

a

πt+N−1(a|x)max
{
e′dt,0(x, a),−dt,1(x, a)

}
|q̂s(x, a)|.

(40)

As in the proof of Lemma 12, we upper bound the two terms resulting

from the maximum on the right-hand side of the above expression

separately. Considering the first of these, using the upper bound

from (35), we get

πt+N−1(a|x)dt,0(x, a) ≤ πt+N−1(a|x)
q̂t(x, a) + L+ γVq̂

1− γ
.

We use telescoping to bound the first term in the numerator on the

right-hand side:

πt+N−1(a|x)q̂t(x, a) ≤ πt(a|x)|q̂t(x, a)|

+

t+N−2∑

t′=t

|πt′+1(a|x)− πt′(a|x)| |q̂t(x, a)|.

Hence,

πt+N−1(a|x)dt,0(x, a) ≤
1

1− γ

(

πt+N−1(a|x)(L+ γVq̂) + πt(a|x)|q̂t(x, a)|

+

t+N−1∑

t′=t

|πt′+1(a|x)− πt′(a|x)| |q̂t(x, a)|
)

.

Now, considering the second branch of the maximum, using this time

the lower bound from (35),

− πt+N−1(a|x)dt,1(x, a)

≤ πt+N−1(a|x)
L+

∑
b πt+N (b|x)q̂t(x, b)

1− γ

≤ πt+N−1(a|x)
1− γ

(

L+

∣∣∣∣∣
∑

b

πt(b|x)q̂t(x, b)

∣∣∣∣∣

+
∑

b

t+N−1∑

t′=t

|πt′+1(b|x)− πt′(b|x)| |q̂t(x, b)|
)

.

Combining these two inequalities, introducing Ĉ = e′
L+γVq̂

1−γ
, we get

πt+N−1(a|x)max
{
e′dt,0(x, a),−dt,1(x, a)

}

≤ πt+N−1(a|x)Ĉ +
e′

1− γ
πt(a|x)|q̂t(x, a)|

+
e′

1− γ

t+N−2∑

t′=t

|πt′+1(a|x)− πt′(a|x)| |q̂t(x, a)|

+
πt+N−1(a|x)

1− γ

[∣∣∣
∑

b

πt(b|x)q̂t(x, b)
∣∣∣

+
∑

b

t+N−1∑

t′=t

|πt′+1(b|x)− πt′(b|x)| |q̂t(x, a)|
]

.

Plugging this into (40), we get

∆t+N−1,s(x) ≤ ηĈ

+
ηe′

1− γ

∑

a

πt(a|x)|q̂t(x, a)| |q̂s(x, a)|

+
ηe′

1− γ

t+N−2∑

t′=t

∑

a

|πt′+1(a|x)− πt′(a|x)| |q̂t(x, a)| |q̂s(x, a)|

+ η
∑

a

|q̂s(x, a)|
πt+N−1(a|x)

1− γ

[∣∣∣
∑

b

πt(b|x)q̂t(x, b)
∣∣∣+

t+N−1∑

t′=t

∆t′,t(x)

]

.

Using πt(a|x)|q̂t(x, a)|≤ Uπq̂, |v̂t(x)|≤ Uv̂ and |q̂s(x, a)|≤ Vq̂

(where the last inequality holds thanks to γ ≤ 1), we obtain

∆t+N−1,s(x)

≤ ηĈ +
ηe′Uπq̂

1− γ

∑

a

|q̂s(x, a)|+
ηe′Vq̂

1− γ

t+N−2∑

t′=t

∆t′,t(x)

+ η
∑

a

|q̂s(x, a)|
πt+N−1(a|x)

1− γ

[

Uv̂ +

t+N−1∑

t′=t

∆t′,t(x)

]

≤ ηĈ +
ηe′Uπq̂

1− γ

∑

a

|q̂s(x, a)|+
ηe′Vq̂

1− γ

t+N−2∑

t′=t

∆t′,t(x)

+
ηUv̂

1− γ

∑

a

|q̂s(x, a)|+
ηVq̂

1− γ

t+N−1∑

t′=t

∆t′,t(x)

= ηĈ +
η(e′Uπq̂ + Uv̂)

1− γ

∑

a

|q̂s(x, a)|+
η e Vq̂

1− γ

t+N−1∑

t′=t

∆t′,t(x).

Now, take the expectation of both sides and use that E [|q̂s(x, a)|] ≤
Uq̄. Introducing the constant C1 = Ĉ(1−γ)+(e′Uπq̂+Uv̂)Uq̄|A|=
e′(L+ γVq̂) + (e′Uπq̂ + Uv̂)Uq̄|A|, we get

E [∆t+N−1,s(x)] ≤
η C1

1− γ
+

η e Vq̂

1− γ

t+N−1∑

t′=t

E [∆t′,t(x)] . (41)
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Taking s = t in (41), using 1 − η
e Vq̂

1−γ
> 0 which holds by our

assumption on η and γ, reordering gives

E [∆t+N−1,t(x)]

≤ η(1− γ)

1− γ − η e Vq̂

{
C1

1− γ
+

e Vq̂

1− γ

t+N−2∑

t′=t

E [∆t′,t(x)]

}

≤ η

1− γ − η e Vq̂

{
C1 + e Vq̂ (N − 1)c′

}

≤ η

1− γ − η e Vq̂

{
C1 + e Vq̂ N c′

}
= c′, (42)

where the second inequality follows since, by our induction hypothe-

sis, E [∆t′,t(x)] ≤ c′ holds for any t′ such that 1 ≤ t′ ≤ t+N − 2,

the third follows by our assumptions on N, η and γ, while the last

equality holds by the definition of c′. This shows that the induction

hypothesis holds for the pair (t+N − 1, t).

Let us now consider the pairs (t + N − 1, s), where s 6= t.
We start from (41) again. Note that by our induction hypothesis,

E [∆t′,t(x)] ≤ c′ for t ≤ t′ ≤ t+N − 2. Furthermore, by (42), we

also have E [∆t+N−1,t(x)] ≤ c′. Hence,

E [∆t+N−1,s(x)] ≤
η C1

1− γ
+

η e Vq̂

1− γ
N c′

≤ η C1

1− γ − ηeVq̂

+
η e Vq̂

1− γ − ηeVq̂

N c′ = c′.

D. Proof of Proposition 1

For every x, a define QT (x, a) =
∑T

t=N qt(x, a) and VT (x) =∑T
t=N vt(x). Lemma 2 shows that in order to prove Proposition 1,

it suffices to prove an upper bound on E [QT (x, a)−VT (x)].

Lemma 15: Let c be as in Lemma 12 and c′ be as in

Lemma 14. Assume that γ ∈ (0, 1), c(τ + 1)2 < β/2, N ≥
1 +

⌈
τ ln

(
4

β−2c(τ+1)2

)⌉
, 0 < η < β(1−γ)

2e(N+1)(|A|/γ +2τ+2)
, and

T ≥ N hold. Then, for all (x, a) ∈ X ×A,

E [QT (x, b)−VT (x)] ≤
ln|A|
η

+ (N − 1)(Uq̄ + Uq)

+ (T − 2N + 2)
(
c′(N − 1)(1 + η e′′Vq̂)

+ γ Uq + η e′′|A|Uπq̂ Uq̄

)
.

Proof: Note that if T < 2N , the conclusion of the lemma

trivially holds. Therefore, in what follows we assume that T ≥ 2N .

First, note that the conditions of both Lemmas 13 and 9 are satisfied.

Thus, the conclusions of Lemma 9 and therefore also those of

Lemmas 6–9 hold. In particular, by Lemma 9, πt(a|x)|q̂t(x, a)|≤
Uπq̂ = 4

β
(τ + 2) holds for any t ≥ N + 1. Now, using Lemma 6,

we have q̂t(x, a) ≤ Vq̂ = 2
β
(|A|/γ+2τ +2), thus by the constraint

on η, ηq̂t(x, a) ≤ 1.

We will follow the steps of the proof in Auer et al. [2]. For 1 ≤
t ≤ T , define Wt(x) =

∑
a wt(x, a). Fix a time step t such that

2N − 1 ≤ t ≤ T and a state-action pair (x, a) ∈ X ×A. Recalling

e′′ = e− 2, we have the following inequalities:

Wt+1(x)

Wt(x)
=
∑

a

wt+1(x, a)

Wt(x)
=
∑

a

wt(x, a)

Wt(x)
eηq̂t−N+1(x,a)

=
∑

a

πt(a|x)− γ/|A|
1− γ

eηq̂t−N+1(x,a)

≤
∑

a

πt(a|x)− γ/|A|
1− γ

(
1 + ηq̂t−N+1(x, a) + e′′ (ηq̂t−N+1(x, a))

2
)

(as ηq̂t−N+1(x, a) ≤ 1 and for x ≤ 1, ex ≤ 1 + x+ e′′x2)

≤ 1 +
η

1− γ

∑

a

πt(a|x)q̂t−N+1(x, a)

+
η2e′′

1− γ

∑

a

πt(a|x)(q̂t−N+1(x, a))
2 .

Introduce

q2,t−N+1(x) =
∑

a

πt(a|x)(q̂t−N+1(x, a))
2.

We now show a bound on the expectation of this quantity that will

be useful later. For this, write

q2,t−N+1(x) =
∑

a

πt(a|x)(q̂t−N+1(x, a))
2

=
∑

a

πt−N+1(a|x)(q̂t−N+1(x, a))
2

+
∑

a

(πt(a|x)− πt−N+1(a|x)) (q̂t−N+1(x, a))
2

By Lemma 9, the first term on the right-hand side can be bounded

as follows:
∑

a

πt−N+1(a|x)(q̂t−N+1(x, a))
2 ≤ Uπq̂

∑

a

|q̂t−N+1(x, a)| ,

while, thanks to Lemma 14, the second one is bounded, in expecta-

tion, by

E

[
∑

a

(πt(a|x)− πt−N+1(a|x)) (q̂t−N+1(x, a))
2

]

≤ E



Vq̂

t−1∑

t′=t−N+1

∆t′,t−N+1(x)



 ≤ (N − 1) c′ Vq̂,

where we have used that |q̂t(x, a)|≤ Vq̂ and also that E [∆t′,s(x)] ≤
c′. Combining these inequalities, we get that

E [q2,t−N+1(x)] ≤ |A|Uπq̂ Uq̄ + (N − 1) c′ Vq̂. (43)

Let us now return to developing an upper-bound on
Wt+1(x)

Wt(x)
.

Defining v̂N
t (x) =

∑
a πt(a|x)q̂t−N+1(x, a), we obtain

Wt+1(x)

Wt(x)
≤ 1 +

η

1− γ
v̂
N
t (x) +

η2e′′

1− γ
q2,t−N+1(x) .

Using 1 + x ≤ ex and then taking logarithms gives

ln
Wt+1(x)

Wt(x)
≤ η

1− γ
v̂
N
t (x) +

η2e′′

1− γ
q2,t−N+1(x) .

Summing over t = 2N − 1, 2N, . . . , T , we get

ln
WT+1(x)

W2N−1(x)
≤ η

1− γ
V̂

N
T (x) +

η2e′′

(1− γ)
Q

N
2,T (x), (44)

where V̂N
T (x) =

∑T
t=2N−1 v̂

N
t (x) and QN

2,T (x) =∑T−N+1
t=N q2,t(x).

Now, considering a lower bound on the left-hand side, we have for

any action b,

ln
WT+1(x)

W2N−1(x)
≥ ln

wT+1(x, b)

W2N−1(x)
= η

T−N+1∑

t=N

q̂t(x, b)− ln|A|,

where we used that w2N−1(x, a) = 1 holds for all a ∈ A.

Combining with (44), we get

V̂
N
T (x) ≥ (1− γ)Q̂N

T (x, b)− ln|A|
η

− ηe′′ QN
2,T (x) , (45)

where Q̂N
T (x, b) =

∑T−N+1
t=N q̂t(x, b).
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Let us now bound the difference of V̂N
T (x) and

V̂T (x) =
T∑

t=N

v̂t(x) =
T∑

t=N

∑

a

πt(a|x)q̂t(x, a).

Note that

V̂
N
T (x) =

T−N+1∑

t=N

∑

a

πt+N−1(a|x)q̂t(x, a).

Therefore,

V̂
N
T (x)− V̂T (x)

≤
T−N+1∑

t=N

∑

a

|q̂t(x, a)|
∣∣∣πt+N−1(a|x)− πt(a|x)

∣∣∣

+

T∑

t=T−N+2

∑

a

πt(a|x)|q̂t(x, a)|

=

T−N+1∑

t=N

t+N−2∑

t′=t

∆t′,t(x) +
T∑

t=T−N+2

∑

a

πt(a|x)|q̂t(x, a)| ,

where we used the definition of ∆t′,t(x). Taking the expectation of

both sides, using Lemmas 14 and 8, we get

E

[
V̂

N
T (x)

]
− E

[
V̂T (x)

]
≤ (T − 2N + 2)(N − 1)c′ + (N − 1)Uq̄.

= (N − 1){(T − 2N + 2)c′ + Uq̄}.

This, together with (45) gives

E

[
V̂T (x)

]
+ (N − 1)

{
(T − 2N + 2) c′ + Uq̄

}

≥ (1− γ)E
[
Q̂

N
T (x, b)

]
− ln|A|

η
− ηe′′ E

[
Q

N
2,T (x)

]
.

(46)

By equation (13), we have E

[
V̂T (x)

]
= E [VT (x)] and

with the definition QN
T (x, b) =

∑T−N+1
t=N qt(x, b), we also have

E

[
Q̂N

T (x, b)
]
= E

[
QN

T (x, b)
]
. Thus, using (43) again, we get

E [VT (x)] + (N − 1)
{
(T − 2N + 2) c′ + Uq̄

}

≥ (1− γ)E
[
Q

N
T (x, b)

]
− ln|A|

η

− ηe′′ (T − 2N + 2){|A|Uπq̂ Uq̄ + (N − 1) c′ Vq̂}.

By reordering the terms, this becomes

E

[
Q

N
T (x, b)−VT (x)

]

≤ γE
[
Q

N
T (x, b)

]
+ (N − 1)

{
(T − 2N + 2) c′ + Uq̄

}
+

ln|A|
η

+ ηe′′ (T − 2N + 2){|A|Uπq̂ Uq̄ + (N − 1) c′ Vq̂} .
(47)

We now lower bound QN
T (x, a) by QT (x, a). Since the rewards

rt(x, a) are bounded between 0 and 1, by Lemma 3 we have

qt(x, b) ≤ Uq = 2τ + 3 . (48)

Therefore,

QT (x, a)−Q
N
T (x, a) =

T∑

t=T−N+2

qt(x, a) ≤ Uq(N − 1), (49)

Moreover, (48) also implies that E
[
QN

T (x, b)
]
≤ Uq(T − 2N + 2).

Combining this with (49) and (47), we obtain the desired bound:

E [QT (x, b)−VT (x)] ≤
ln|A|
η

+ (N − 1)(Uq̄ + Uq)

+ (T − 2N + 2)
(
c′(N − 1)(1 + η e′′Vq̂) + γ Uq + η e′′|A|Uπq̂ Uq̄

)
.

The proof of Proposition 1 is now easy:

Proof of Proposition 1: Under the conditions of the proposition,

combining Lemmas 2 and 15, and using that 0 ≤ ρπt ,ρt ≤ 1 yields

T∑

t=1

E [ρπt − ρt] ≤ N − 1 +
∑

x,a

µπ
st(x)π(a|x)E [QT (x, a)−VT (x)]

≤ (N − 1)(Uq̄ + Uq + 1) +
ln|A|
η

+ (T − 2N + 2)
(
c′(N − 1)(1 + η e′′Vq̂) + γ Uq + η e′′|A|Uπq̂ Uq̄

)
.

proving Proposition 1.

E. Proof of Proposition 2

Let t ≥ N . First, since πt is σ(ut−N )-measurable, E [ρt] =
E
[∑

x µ
πt

st (x)E [rt(x,at)|ut−N ]
]
. We also have

E [rt(xt,at)] = E [E [rt(xt,at)|ut−N ]]

= E

[
∑

x

µ
N
t (x)E [rt(x,at)|ut−N ]

]

.

Hence,

E [ρt − rt(xt,at)] = E

[
∑

x

(µπt

st (x)− µ
N
t (x))E [rt(x,at)|ut−N ]

]

≤ E

[
∑

x

∣∣∣µπt

st (x)− µ
N
t (x)

∣∣∣

]

,

where we have used that rt(x, a) ∈ [0, 1].
Thanks to Lemma 13, Lemma 10 is applicable. Hence,∑
x

∣∣µπt

st (x)− µN
t (x)

∣∣ ≤ c(τ + 1)2 + 2e−(N−1)/τ , and thus

E [ρt − rt(xt,at)] ≤ c(τ + 1)2 + 2e−(N−1)/τ . Summing up

these inequalities for t = N, . . . , T , and using the trivial bound

E [ρt − rt(xt,at)] ≤ 1 for the first N − 1 terms, we get the desired

result.
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