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Introduction

Major method uses to solve electrical networks is the "modified nodal analysis". But exists the direct method, the nodal analysis and the Kron's method. These methods can be separated in two groups: methods making homogeneous mathematical objects and methods that does not. After a short recall of differential geometry, we show that the second kind of methods cannot lead to interesting form through the differential geometry while for the first kind, the Kron's method leads to a new and efficient representation of networks. This continues Kron's idea: once equations are established, the network graphs are no more useful and doesn't help to understand the current and voltages evolution. Following this approach, we take a look to a more theoretical representation of the networks, using classical differential geometry. The mathematical tools developed here can be used for any applications using networks and graphs. It is for electromagnetic circuits for sure, but also for social, mechanical, thermal, chimical, etc., uses.

Basics in differential geometry

We are interested in parametrized surfaces under the differential geometry formalism (DGF). We consider a surface S, S 2 R 3 . An application φ : Ω ! R 3 makes a relation between the domain Ω 2 R 2 with φ (Ω) ⇢ S and the vectorial space R 3 . We write u 1 ,u 2 the curvilinear coordinates on the parametrized surface S. The parametrization of the surface S can be made by the application φ given by the definition:

φ (u 1 ,u 2 )=(x(u 1 ,u 2 ),y(u 1 ,u 2 ),z(u 1 ,u 2 )) (1)
With φ we can define two vectors b 1 and b 2 as a base of the vectorial tangent plan TpS on the point

p = φ (u 1 ,u 2 ): b 1 = ∂φ ∂u 1 , b 2 = ∂φ ∂u 2 (2) 
The third one, normal to TpS makes a mobile referential. We define:

n =(b 1 ⇥ b 2 ) ||b 1 ⇥ b 2 || -1
From both vectors b 1 and b 2 we can construct the Gram's matrix G of these two vectors which is called the metric tensor of the surface S in the parametrization φ [START_REF] Troyanov | Cours de géométrie[END_REF]. By definition,

G ij = hb i , b j i (3)

Basic circuit

To better explain our approaches we use a simple circuit made of three branches. Whatever the real components of the circuit considered, the graph presented figure 1 stills the same. This single network (R) has two nodes (N ), three branches (B) and the number of meshes (M ) is given by: M = B -N + R [START_REF] Kron | Tensorial Analysis of Networks[END_REF]. In this case, the number of meshes is 2.

Figure 1 4 Direct method of resolution Kirchhoff's currents law (KCL) and Kirchhoff's voltages law (KVL) lead to next equations, A, B and C being impedance and branch currents having same numbering as the branches themselves.

<

:

i 1 = i 2 + i 3 Ai 1 + Bi 2 =0 -Bi 2 + Ci 3 =0 (4) 
These equations can be synthesized under the form P q Z lq i q = E l with E l the source vector. This gives:

Z lq = 2 4 1 -1 -1 1 B 0 0 -BC 3 5 (5) 
In order to make appearing two parameters, we can define E l =0, 8l and take i 1 as source to write:

8 > > > > < > > > > : i 1 = i 2 + i 3 Ai 1 = -Bi 2 0i 1 = -Bi 2 + Ci 3 ) 8 < : (1 + A) i 1 =(1-B) i 2 + i 3 Ai 1 = -2Bi 2 + Ci 3 (6) Then we can define x (i 2 ,i 3 )=( 1 + A) i 1 and y (i 1 ,i 2 )=Ai 1 .
After what we can define z (i 2 ,i 3 )= i 1 . From these definitions is obtained:

8 < : b 1 = ∂φ ∂i2 =(1-B, -2B, 1) b 2 = ∂φ ∂i3 =(1,C,1) (7) 
From these two vectors we obtain the metric G ij = hb i , b j i:

G ij = 2 4 5B 2 -2B +1 2-B(1 + 2C) 2 -B(1 + 2C)2 + C 2 3 5 (8)
To reach this result and obtain such a metric, we have made various operations. But starting from an inhomogeneous system, it was possible to define to parametrized functions using the first relation and mixing it with the two others. This implies that the relation i 1 = i 2 + i 3 must be understood as 1i 1 = 1i 2 +1i 3 where impedances of one ohm are arbitrarly added to the KCL. Now, looking at the result, we see that its dimension is not homogeneous too. It involves ohms, square of ohms, etc.

In conclusion, the direct method is not an adequat one to analyze the circuit variables in a geometrical way.

Nodal analysis

Another way to solve Kirchhoff's equations is called "nodal analysis" [START_REF] Peikari | Fundamentals of network analysis and synthesis[END_REF]. Seeing a Kirchhoff's branch (shown figure 2), we can imagine a network made of many of these elementary circuits. 

AY v = -Ai s ) AY A T v n = -AY v s -Ai s .D e fi n i n g AY A T = Y n , Y n being the admittance matrix in the nodes space. If Y -1
n exists, we obtain finally:

v n = -Y -1 n AY v s -Y -1 n Ai s (9) 
For a circuit where i s = 0, stills v n = -Y -1 n AY v s . Looking to the circuit figure 1, we define the incidence matrix A:

A T = 2 4 1 -1 -11 -11 3 5 (10) 
We obtain for Y n :

Y n =  1 A + 1 B + 1 C -1 A + 1 B + 1 C -1 A + 1 B + 1 C 1 A + 1 B + 1 C (11) 
with:

AY v s =  E A -E A (12)
The system obtained is over dimensioned and we have to fix v 2 = 0. Then

v 1 = E/(αA)w i t h α = A -1 + B -1 + C -1 .
In this case we see that it's impossible to define a parametrized surface. We look to another circuit made of three nodes (figure 3). Figure 3 In this case the incidence matrix is :

A T = 2 6 6 6 6 4 10 -1 -11 0 -11 0 0 -11 0 -11 3 7 7 7 7 5 (13)
If a i is the impedance of edge i and b i =(a i ) -1 ,w e obtain two equations defining the potentials v 1 and v 2 (for one source E on the edge 1):

8 < : v 1 = E a1 (b 3 + b 2 + b 1 )+ E a 2 1 v 2 = -E a1 (b 3 + b 2 ) -E a1 (b 5 + b 4 ) (14) 
Seeing to these equations, no parameters appear clearly to define a parametrized surface. But we can suppose that the parameters may be the sources. In this case, we must define two different sources, for example E 1 on edge 1 and E 2 on edge 2. In this case the system becomes:

8 > > > > < > > > > : v 1 =(b 3 + b 2 + b 1 )(b 1 E 1 -b 2 E 2 ) -... ...-(b 3 + b 2 ) b 2 E 2 +(b 1 ) 2 E 1 v 2 = -(b 3 + b 2 )(b 1 E 1 -b 2 E 2 )+... ...+(b 2 + b 3 + b 4 + b 5 ) b 2 E 2 +(b 4 + b 5 ) b 1 E 1 ( 15 
) Now with this new system we can define a parametrized surface with the two parameters E 1 and E 2 . Taking x (E 1 ,E 2 )=v 1 and y (E 1 ,E 2 )=v 2 ,w e need a definition for z (E 1 ,E 2 ). Anyway, let's take a look to the two first derivatives:

8 < : ∂v1 ∂E1 = b 1 (b 1 + b 2 + b 3 )+b 2 1 ∂v2 ∂E1 = b 1 (b 2 + b 3 + b 4 + b 5 ) (16)
We see as a consequence that the vectors b 1 and b 2 will depend on square of the admittance. It means that the metric will be associated with the fourth power of the admittance. This doesn't lead to any understandable notion.

Once more, the configuration space obtained under a nodal approach does not lead by a simple way to a readable metric.

Kron's method

The Kron's method consists in solving the circuit in the mesh space, using his formalism. Using the circuit described figure 1, we can construct through Kron's formalism [START_REF] Kron | Tensorial Analysis of Networks[END_REF] the impedance matrix in the mesh space given by:

Z =  A + B -B -BB + C (17) 
Staying without current source (no use of the spaning tree) but only with a mesh source on mash one, the circuit is now represented by the system of equations: E k = P q Z kq i q ,k2 {1, 2}. To complete these two equations we can define a transfer function through V 3 = Bi 2 . The parametrized surface can be link with the function φ (E 1 ,E 2 ,V 3 ), each function depending on i 1 ,i 2 . The base vectors can be defined by:

⇢ b 1 =(A + B, -B, 0) b 2 =(-B, B + C, B) (18) 
With this, the metric G ij is given by:

G = 2 4 A 2 +2B 2 +2AB -2B 2 + AB + BC -2B 2 + AB + BC 3B 2 + C 2 +2BC 3 5 (19) 
This time, the metric is given in ohm square. This allows a direct analogy with the canonical expression (now we use the mute index notation) ds 2 = G ij x i x j saying that as G is in Ω 2 , the vector components being currents (flux in general) implies that the coordinates x i are in Ampere. By the fact, ds 2 is in volt square. So the elementary distance is in volt, which seems very physical for electromagnetism. Kron's method leads to an available geometrization of the current space.

7 Deeper in space description with the Kron's mesh one

Having found an adequat description of graphs to project the currents in a geometrical one, we take a look to the conditions that should be set in order to create some curvature in the current space.

In a first discussion we see that current depending impedance are the condition to create curvature. In a second discussion, we consider the minimum graph in a complete space to define a parametrized surface and the conditions to have curvature or the general links between Kron's description and the geometrical one.

Basic principles

The two vectors b 1 and b 2 allow to define a normal vector to the mobile tangential surface TpS.I t ' sd efined by:

8 > < > : n = b1×b2 |b1×b2| n = (-B 2 ,B(A+B),(A+B)(B+C)-B 2 ) B 4 +[B(A+B)] 2 +[(A+B)(B+C)-B 2 ] 2 (20) 
With n we can compute the second fundamental form. First step is to compute the vectors b qk with:

b qk = ∂b q ∂i k (21)
but until b 1 or b 2 depends on i 1 or i 2 , all b qk are equal to zero. It means that only circuits using the Kron's formalism for the mesh space where the currents are involved in the impedance function can create a second fundamental form and as a consequence, a curvature of the space.

Current depending impedance functions

If the impedance depends on the currents, something like z = αi,t h ep r o d u c tzi = αi 2 has for derivative 2αi, and so, the b 11 vector may have for value α which is different from zero. To generalize the approach we start from a simple graph made of one mesh but with two sources: one electromotive force on the mesh and one current source applied on the two nodes of the mesh. By this graph, we study a complete space as KRON consider it [START_REF] Kron | Tensorial Analysis of Networks[END_REF]. Figure 4 shows this circuit and both mesh and nodes pair currents.

Complete space and parametrized surface

The connexion between edges 1 and 2 and the mesh and nodes pair currents Q and J is defined by the direction choosen for the currents. It gives the connection:

C =  11 10 (22)
The direct summation of the edge impedances gives the matrix:

Z =  a 0 0 b (23)
The transformation C T ZC define the complete space impedance matrix U :

U =  a + ba aa ( 24 
)
This allows to define two of the coordinates functions of φ:

8 < : x (Q, J)=e =(a + b) Q + aJ y (Q, J)=V = aQ + aJ (25)
It stills to define z (Q, J). We can define a general function z (Q, J)=f (Q, J).

Metric analysis

Basic vectors are given by:

8 > > < > > : b 1 = ⇣ a + b, a, ∂f ∂Q ⌘ b 2 = ⇣ a, a, ∂f ∂J ⌘ ( 26 
)
The metric is immediately given by:

G = 2 6 6 4 (a + b) 2 + a 2 + ⇣ ∂f ∂Q ⌘ 2 a (a + b)+a 2 + ∂f ∂Q ∂f ∂J a (a + b)+a 2 + ∂f ∂Q ∂f ∂J 2a 2 + ⇣ ∂f ∂J ⌘ 2 3 7 7 5
(27) From its construction, the metric is always symetric. This even if the impedance matrix is not. With the two basic vectors we can define the normal vector n:

8 > < > : α = ⇣ a h ∂f ∂J -∂f ∂Q i , ∂f ∂Q a -(a + b) ∂f ∂J ,b 2 ⌘ n = α ||α|| (28)

Curvature analysis

First step is to study the variation of the basic vectors depending on the parameters. We compute b qk = ∂ k b q . this gives :

8 > > > > > > > > > > > > < > > > > > > > > > > > > : b 11 = ⇣ 0, 0, ∂ 2 f ∂Q 2 ⌘ b 12 = ⇣ 0, 0, ∂ 2 f ∂Q∂J ⌘ b 21 = ⇣ 0, 0, ∂ 2 f ∂Q∂J ⌘ b 22 = ⇣ 0, 0, ∂ 2 f ∂J 2 ⌘ (29)
Due to the b qk components, the second fundamental form h is defined by:

h qk = hb qk , ni = b 2 q hb qk , b qk i (30) 
b qk vectors indicate how basic vectors depends on parameters Q and J.I fb 12 is equal to zero, it means that b 1 does not depends on J. It's the case when b 1 runs on a plan and doesn't change in direction or amplitude whatever J values. When the vector changes it can mean that for example, the surface is turning and the mobile tangential plan TpS has to turn too. But this doesn't imply curvature. b qk vectors indicate the fact that b q ones change when Q or J change. But to control if the angles between the basic vectors are no more 90°, we have to look at the scalar product between the normal vector to the plan and its fundamental base. That's the purpose of the object h. In our case, this is determined by the square of impedance b and the second order partial derivatives of the function f used to define z (Q, J) in the parametrized surface φ.

When we have to compute the variation of any vector A, for example ∂ Q A this involves both variation of vectors which implies basic ones and the variation of space. If A is a natural vector developed on b q :

A = A q b q (31)
When Q changes, the mobile tangential TpS changes too and :

∂A ∂Q = ∂ ∂Q A k b k = b k ∂ ∂Q A k + A k ∂ ∂Q b k (32)
With previous computations, this leads to:

∂A ∂Q = b k ∂ ∂Q A k + A k b kq (33) 
This relation stills difficult to use. It would be easier if only basic vectors appear, making a link to the known TpS surface on any point (Q, J). Fortunately, b qk can be written depending on b q through the Christoffel's symbols [START_REF] Troyanov | Cours de géométrie[END_REF]:

b qk = Γ 1 qk b 1 + Γ 2 qk b 2 + h qk n (34) 
This time, the partial derivative of A is completely defined in the base vectors of TpS at any point. The Christoffel's symbols give the information on the curvature of the parametrized surface directly linked with the impedance dependencies on currents.

Dimensions b k are impedances. It means that A can be voltages and its components A k amperes. We have seen that the distance is fundamentally in volt. To compute the Christoffel's symbols we create a dual base c k for TpS. This base makes basic vectors as admittances and the corresponding covectors in ampere with coordinates in volts. We find the fundamental relation giving b k c q = δ q k and the fact that the invariant is the power.

Use for non linear circuits

One difficulty for calling Kron's impedance matrix a metric comes from non linear circuit where system equations becomes a function vector [START_REF] Maurice | Introduction d'une théorie des jeux dans des topologies dynamiques[END_REF] rather than a classical matrix product. Our second geometrization change the basic vector nature from currents to impedance, giving the metric a new and more robust structure. We want to see here how it may help in defining a metric coming from non linear système of equations.

For a non linear circuit, the equation takes the form given by:

8 > > > > < > > > > : e 1 = g 1 (k 1 ,k 2 ,...,J 1 ,J 2 ,...) e 2 = g 2 (k 1 ,k 2 ,...,J 1 ,J 2 ,...) ... (35) 
where g i are impedance operators, e i electromotive forces (emf), k i meshes currents and J i nodes pair sources. The functions g can be any mathematical function where the currents can appear under various power or anything else. The mesh currents are unknown and nodes pair one are known. As before we limit the creation of a parametrized surface to dimension 2, even if it is possible to create an hypersurface. It is easier to understand the mechanism in dimension 2 and doesn't change anything on the method.

The emf can define the surface function components: φ (e 1 ,e 2 , αf (e 1 ,e 2 )) ! R 3 , α 2 R, f a function. The previous system can be written e i = g i (k j ,J j ) ,i , j2 {1, 2}. So chosing two parameters k 1 ,k 2 depending on time and one transfer function, for example αe 2 (k 1 =1, 8t), we can calculate: (37) with Ξ = ∂αe 2 (k 1 =1, 8t)/∂k 2 . This leads to the fact that, g i being any function, the metric is symetric only if:

8 > > > > < > > > > : b 1 = ∂φ ∂k1 = ⇣ ∂g1 ∂k1 , ∂g2 
[∂ k1 ∂ k2 -∂ k2 ∂ k1 ](g 1 + g 2 ) = 0 (38)
But even for non linear impedance operators involved in transistor, etc., [∂ k1 ∂ k2 -∂ k2 ∂ k1 ]=0i n major cases. Our "second geometrization" gives the metric a more classical meaning than Kron's "fundamental tensor" [START_REF] Kaufman | Cours de calcul tensoriel appliqué[END_REF], avoiding to define new mathematical objects to use geometrical concepts attached to networks even non linear ones.

Conclusion

Many works still to be done in order to use the second geometrization and benefit of its theoretical results in networks analysis. Before all, this proposal has to be validated and enriched to fix the mathematical bases of this new tensorial view of networks behaviors. One of the work to be done concerns the choices of parameters in case of high dimension problems. Is it interesting to work with hypersurfaces ? If not how to identify more adequate currents and transfer functions ? Etc. That's the purpose of future works, including the metric transformations [START_REF] Maurice | Introduction d'une théorie des jeux dans des topologies dynamiques[END_REF] to model complex systems evolution.
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 2 Figure 2 Each node of this network is associated with a potential v n . The voltage differences between nodes v b are linked with the nodes potential through the incidence matrix A: v b = A T v n = v -v s . On another side i = -i s = Yv where Y is the admittance function. Combining these various relations we write: AY v = -Ai s ) AY A T v n = -AY v s -Ai s .D e fi n i n g AY A T = Y n , Y n being the admittance matrix in the nodes space. If Y -1

Once b 1

 1 and b 2 defined, G is defined: