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The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S tot i . Using these bounds it is possible in most cases to get a good practical estimation of the values of S tot i . Several examples are used to illustrate an application of DGSM.

Introduction

Global sensitivity analysis (SA) offers a comprehensive approach to the model analysis.

Unlike local SA, global SA methods evaluate the effect of a factor while all other factors are varied as well and thus they account for interactions between variables and do not depend on the choice of a nominal point. Reviews of different global SA methods can be found in Saltelli et al [START_REF] Saltelli | Global sensitivity analysis -The primer[END_REF] and Sobol and Kucherenko [START_REF] Sobol | Global sensitivity indices for non linear mathematical models. Review[END_REF]. The method of global sensitivity indices suggested by Sobol [START_REF] Sobol | Sensitivity estimates for non linear mathematical models (in Russian)[END_REF][START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF], and then further developed by Homma and Saltelli [START_REF] Homma | Importance measures in global sensitivity analysis of non linear models[END_REF] is one of the most efficient and popular global SA techniques.

It belongs to the class of variance-based methods. These methods provide information on the importance of different subsets of input variables to the output variance. There are two types of Sobol' sensitivity indices: the main effect indices, which estimate the individual contribution of each input parameter to the output variance, and the total sensitivity indices, which measure the total contribution of a single input factor or a group of inputs. The total sensitivity indices are used to identify non-important variables which can then be fixed at their nominal values to reduce model complexity. This approach is known as "factors' fixing setting" [START_REF] Saltelli | Global sensitivity analysis -The primer[END_REF]. For high-dimensional models the direct application of variance-based global SA measures can be extremely timeconsuming and impractical.

A number of alternative SA techniques have been proposed. One of them is the screening method by Morris [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF]. It can be regarded as global as the final measure is obtained by averaging local measures (the elementary effects). This method is considerably cheaper than the variance based methods in terms of computational time. The Morris method can be used for identifying unimportant variables. However, the Morris method has two main drawbacks. Firstly, it uses random sampling of points from the fixed grid (levels) for averaging elementary effects which are calculated as finite differences with the increment delta comparable with the range of uncertainty. For this reason it can not correctly account for the effects with characteristic dimensions much less than delta. Secondly, it lacks the ability of the Sobol' method to provide information about main effects (contribution of individual variables to uncertainty) and it can't distinguish between low and high order interactions.

This paper presents a survey of derivative based global sensitivity measures (DGSM) and their link with Sobol' sensitivity indices. DGSM are based on averaging local derivatives using Monte Carlo or Quasi Monte Carlo sampling methods. This technique is much more accurate than the Morris method as the elementary effects are evaluated as strict local derivatives with small increments compared to the variable uncertainty ranges. Local derivatives are evaluated at randomly or quasi randomly selected points in the whole range of uncertainty and not at the points from a fixed grid.

The so-called alternative global sensitivity estimator defined as a normalized integral of partial derivatives was firstly introduced by Sobol and Gershman [START_REF] Sobol | On an alternative global sensitivity estimators[END_REF]. [START_REF] Kucherenko | Monte carlo evaluation of derivative-based global sensitivity measures[END_REF] introduced some other DGSM and coined the acronym DGSM.

Kucherenko et al

They showed that DGSM can be seen as the generalization of the Morris method [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF].

Kucherenko et al [START_REF] Kucherenko | Monte carlo evaluation of derivative-based global sensitivity measures[END_REF] also established empirically the link between DGSM and Sobol' sensitivity indices. They showed that the computational cost of numerical evaluation of DGSM can be much lower than that for estimation of Sobol' sensitivity indices. [START_REF] Sobol | Derivative based global sensitivity measures and their links with global sensitivity indices[END_REF] proved theoretically that, in the cases of uniformly and normally distributed input variables, there is a link between DGSM and the Sobol' total sensitivity index S tot i for the same input. They showed that DGSM can be used as an upper bound on total sensitivity index S tot i . Small values of DGSM imply small S tot i , and hence unessential factors x i . However, ranking influential factors using DGSM can be similar to that based on S tot i only for the case of linear and quasi-linear models.

Sobol and Kucherenko

For highly non-linear models two rankings can be very different. They also introduced modified DGSM which can be used for both a single input and groups of inputs [START_REF] Sobol | A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices[END_REF].

From DGSM, Kucherenko and Song [START_REF] Kucherenko | Derivative-based global sensitivity measures and their link with Sobol' sensitivity indices[END_REF] have also derived lower bounds on total sensitivity index. Lamboni et al [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF] extended results of Sobol' and Kucherenko for models with input variables belonging to the general class of continuous probability distributions. In the same framework, Roustant et al [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF] have defined crossed-DGSM, based on second-order derivatives of model output, in order to bound the total Sobol' indices of an interaction between two inputs.

All these DGSM measures can be applied for problems with a high number of input variables to reduce the computational time. Indeed, the numerical efficiency of the DGSM method can be improved by using the automatic differentiation algorithm for calculation DGSM as was shown in Kiparissides et al [START_REF] Kiparissides | Global sensitivity analysis challenges in biological systems modeling[END_REF]. However, the number of required function evaluations still remains to be proportional to the number of inputs. This dependence can be greatly reduced using an approach based on algorithmic differentiation in the adjoint or reverse mode [START_REF] Griewank | Evaluating derivatives: Principles and techniques of automatic differentiation[END_REF] ( Variational Methods). It allows estimating all derivatives at a cost at most 4-6 times of that for evaluating the original function [START_REF] Jansen | A first look of quasi-Monte Carlo for lattice field theory problems[END_REF].

This paper is organised as follows: the Morris method and DGSM are firstly described in the following section. Sobol' global sensitivity indices and useful relationships are then introduced. Therefore, DGSM-based lower and uppers bounds on total Sobol' sensitivity indices for uniformly and normally distributed random variables are presented, followed by DGSM for groups of variables and their link with total Sobol' sensitivity indices. Another section presents the upper bounds results in the general case of variables with continuous probability distributions. Then, computational costs are considered, followed by some test cases which illustrate an application of DGSM and their links with total Sobol' sensitivity indices. Finally, conclusions are presented in the last section.

From Morris method to DGSM

Basics of the Morris method

The Morris method is traditionally used as a screening method for problems with a high number of variables for which function evaluations can be CPU-time consuming (see Design of Experiments for Screening). It is composed of individually randomized 'one-factor-at-a-time' (OAT) experiments. Each input factor may assume a discrete number of values, called levels, which are chosen within the factor range of variation.

The sensitivity measures proposed in the original work of Morris [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] are based on what is called an elementary effect. It is defined as follows. The range of each input variable is divided into p levels. Then the elementary effect (incremental ratio) of the i-th input factor is defined as

EE i (x * ) = G x * 1 , . . . , x * i-1 , x * i + ∆, x * i+1 , . . . , x * d -G (x * ) ∆ , (1) 
where ∆ is a predetermined multiple of 1/(p-1) and point

x * = (x * 1 , . . . , x * d ) ∈ H d is such that x * i + ∆ ≤ 1.
One can see that the elementary effect are finite difference approximations of the model derivative with respect to x i and using a large perturbation step ∆.

The distribution of elementary effects EE i is obtained by randomly sampling R points from H d . Two sensitivity measures are evaluated for each factor: µ i an estimate of the mean of the distribution EE i , and σ i an estimate of the standard deviation of EE i . A high value of µ i indicates an input variable with an important overall influence on the output. A high value of σ i indicates a factor involved in interaction with other factors or whose effect is nonlinear. The computational cost of the Morris method is

N F = R (d+1 ).
The revised version of the EE i (x * ) measure and a more effective sampling strategy, which allows a better exploration of the space of the uncertain input factors was proposed by Campolongo et al [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]. To avoid the canceling effect which appears in non-monotonic functions Campolongo et al [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF] 

The local sensitivity measure

Consider a differentiable function G (x), where x = (x 1 , . . . , x d ) is a vector of input variables defined in the unit hypercube

H d (0 ≤ x i ≤ 1 , i = 1, . . . , d).
Local sensitivity measures are based on partial derivatives

E i (x * ) = ∂G(x * ) ∂x i . (2) 
This measure E i is the limit version of the elementary effect EE i defined in (2) when ∆ tends to zero. It is its generalization in this sense. In SA, using the partial derivative ∂G /∂x i is well known as a local method (see Variational Methods). In this paper, the goal is to take advantage of this information in global SA.

The local sensitivity measure E i (x * ) depends on a nominal point x * and it changes with a change of x * . This deficiency can be overcome by averaging E i (x * ) over the parameter space H d . This is done just below, allowing to define new sensitivity measures, called DGSM for Derivative-based Global Sensitivity Measures.

DGSM for uniformly distributed variables

Assume that ∂G/∂x i ∈ L 2 . Three different DGSM measures are defined:

ν i = H d ∂G(x) ∂x i 2 dx, (3) 
w (m) i = H d x m i ∂G(x) ∂x i dx, (4) 
where m > 0 is a constant, and

ς i = 1 2 H d x i (1 -x i ) ∂G(x) ∂x i 2 dx. (5) 

DGSM for randomly distributed variables

Consider a function G (X 1 , ..., X d ), where X 1 , ..., X d are independent random variables, defined in the Euclidian space R d , with cumulative density functions (cdfs)

F 1 (x 1 ) , ..., F d (x d ).
The following DGSM was introduced in Sobol and Kucherenko [START_REF] Sobol | Derivative based global sensitivity measures and their links with global sensitivity indices[END_REF]:

ν i = R d ∂G(x) ∂x i 2 dF (x) = E ∂G(x) ∂x i 2 , (6) 
with F the joint cdf. A new measure is also introduced:

w i = R d ∂G(x) ∂x i dF (x) = E ∂G(x) ∂x i . (7) 
In ( 3) and ( 6), ν i is in fact the mean value of (∂G/∂x i ) 2 . In the following and in practice, it will be the most useful DGSM.

Sobol' global sensitivity indices Definitions

The method of global sensitivity indices developed by Sobol' (see Variance-based Sensitivity Analysis: Theory and Estimation Algorithms) is based on ANOVA decom-position [START_REF] Hardy | Inequalities[END_REF]. Consider a square integrable function G(x) defined in the unit hypercube

H d . It can be expanded in the following form G(x) = g 0 + i g i (x i ) + i<j g ij (x i , x j ) + ... + g 12...d (x 1 , x 2 , ..., x d ). ( 8 
)
This decomposition is unique if conditions

1 0 g i 1 ...is dx i k = 0 for 1 ≤ k ≤ s, are satisfied. Here 1 ≤ i 1 < • • • < i s ≤ d.
The variances of the terms in the ANOVA decomposition add up to the total variance of the function

V = d s=1 d i 1 <•••<is V i 1 ...is , where V i 1 ...is = 1 0 g 2 i 1 ...is (x i 1 , ..., x is )dx i 1 , ..., x is are called partial variances.
Sobol' defined the global sensitivity indices as the ratios

S i 1 ...is = V i 1 ...is /V.
All S i 1 ...is are non negative and add up to one:

d i=1 S i + i j S ij + i j k S ijk ... + S 1,2,...,d = 1.
Sobol' also defined sensitivity indices for subsets of variables. Consider two complementary subsets of variables y and z:

x = (y, z).

Let y = (x i 1 , ..., x im ), 1 ≤ i 1 < ... < i m ≤ d, K = (i 1 , ..., i m ).
The variance corresponding to the set y is defined as

V y = m s=1 (i 1 <•••<is)∈K V i 1 ...is . V y includes all partial variances V i 1 , V i 2 ,. . . , V i 1 .
..is such that their subsets of indices (i 1 , ..., i s ) ∈ K.

The total sensitivity indices were introduced by Homma and Saltelli [START_REF] Homma | Importance measures in global sensitivity analysis of non linear models[END_REF]. The total variance V tot y is defined as

V tot y = V -V z .
V tot y consists of all V i 1 ...is such that at least one index i p ∈ K while the remaining indices can belong to the complimentary to K set K. The corresponding global sensitivity indices are defined as

S y = V y /V, S tot y = V tot y /V. (9) 
The important indices in practice are S i and S tot i , i = 1, ..., d: 

S i = V i /V, S tot i = V tot i /V. (10) 

Useful relationships

To present further results on lower and upper bounds of S tot i , new notations and useful relationships have to be firstly presented. Denote u i (x) the sum of all terms in the ANOVA decomposition (8) that depend on x i :

u i (x) = g i (x i ) + d j=1,j =i g ij (x i , x j ) + • • • + g 12•••d (x 1 , • • • , x d ). ( 11 
)
From the definition of ANOVA decomposition it follows that

H d u i (x)dx = 0. ( 12 
)
It is obvious that

∂G ∂x i = ∂u i ∂x i . (13) 
Denote z = (x 1 , ..., x i-1 , x i+1 , ..., x d ) the vector of all variables but x i , then x ≡ (x i , z)

and G(x) ≡ G(x i , z). The ANOVA decomposition of G(x) (8) can be presented in the following form

G(x) = u i (x i , z) + v(z),
where v(z) is the sum of terms independent of x i . Because of [START_REF] Iooss | Some new insights in derivative-based global sensitivity measures[END_REF] it is easy to show

that v(z) = 1 0 G(x)dx i . Hence u i (x i , z) = G(x) - 1 0 G(x)dx i . (14) 
This equation can be found in Lamboni [START_REF] Lamboni | New way of estimating total sensitivity indices[END_REF]. The total partial variance V tot i can be computed as

V tot i = H d u 2 i (x)dx = H d u 2 i (x i , z)dx i dz.
Then the total sensitivity index S tot i (10) is equal to

S tot i = 1 V H d u 2 i (x)dx. ( 15 
)
A first direct link between total Sobol' sensitivity indices and partial derivatives

Consider continuously differentiable function G(x) defined in the unit hypercube

H d =[0, 1] d .
This section presents a theorem that establishes links between the index

S tot i
and the limiting values of |∂G/∂x i |.

In the case when y = (x i ), Sobol'-Jansen formula [14][35][31] for D tot i can be rewritten as

D tot i = 1 2 H d 1 0 G (x) -G • x 2 dxdx i , (16) 
where

o x = (x 1 , ..., x i-1 , x i , x i+1 , ..., x n ). Theorem 1. Assume that c ≤ ∂G ∂x i ≤ C, then c 2 12V ≤ S tot i ≤ C 2 12V . ( 17 
)
Proof: Consider the increment of G (x) in [START_REF] Kucherenko | Derivative-based global sensitivity measures and their link with Sobol' sensitivity indices[END_REF]:

G (x) -G • x = ∂G (x) ∂x i (x i -x i ) , (18) 
where x is a point between x and

•

x. Substituting ( 18) into (16) leads to

V tot i = 1 2 H d 1 0 ∂G (x) ∂x i 2 (x i -x i ) 2 dxdx i . (19) 
In ( 19) c 2 ≤ (∂G/∂x i ) 2 ≤ C 2 while the remaining integral is

1 0 1 0 (x i -x i ) 2 dx i dx i = 1 6 .
Thus obtained inequalities are equivalent to [START_REF] Kucherenko | Monte carlo evaluation of derivative-based global sensitivity measures[END_REF]. Consider the function G = g 0 +c(x i -1/2). In this case C = c, V = 1/12 and S tot i = 1 and the inequalities in (17) become equalities.

DGSM-based bounds for uniformly and normally distributed variables

In this section, several theorems are listed in order to define useful lower and upper bounds of the total Sobol' indices. The proofs of these theorems come from previous works and papers and are not recalled here. Two cases are considered: variables x following uniform distributions and variables x following Gaussian distributions. The general case will be seen in a subsequent section.

Uniformly distributed variables

Lower bounds on S tot i Theorem 2. There exists the following lower bound between DGSM (3) and the Sobol' total sensitivity index:

H d [G (1, z) -G (0, z)] [G (1, z) + G (0, z) -2G (x)] dx 2 4ν i V < S tot i ( 20 
)
Proof: The proof of this Theorem is given in Kucherenko and Song [START_REF] Kucherenko | Derivative-based global sensitivity measures and their link with Sobol' sensitivity indices[END_REF] and is based on equation ( 15) and a Cauchy-Schwartz inequality applied on

H d u i (x) ∂u i (x) ∂x i dx.
The lower bound number number one (LB1) is defined as

H d [G (1, z) -G (0, z)] [G (1, z) + G (0, z) -2G (x)] dx 2 4ν i V .
Theorem 3. There exists the following lower bound, denoted γ(m), between DGSM (4) and the Sobol' total sensitivity index:

γ(m) = (2m + 1) H d (G(1, z) -G(x)) dx -w (m+1) i 2 (m + 1) 2 V < S tot i . (21) 
Proof: The proof of this Theorem in given in Kucherenko and Song [START_REF] Kucherenko | Derivative-based global sensitivity measures and their link with Sobol' sensitivity indices[END_REF] and is based on equation ( 15) and a Cauchy-Schwartz inequality applied on

H d x m i u i (x)dx.
In 

γ(m * ) = (2m * + 1) H d (G(1, z) -G(x)) dx -w (m * +1) i 2 (m * + 1) 2 V (22) 
The maximum lower bound LB* is defined as

LB* = max(LB1,LB2). ( 23 
)
Both lower and upper bounds can be estimated by a set of derivative based measures:

Υ i = {ν i , w (m) i , ζ i }, m > 0. ( 24 
)
Upper bounds on S tot i Theorem 4. There exists the following upper bound between DGSM (3) and the Sobol' total sensitivity index:

S tot i ≤ ν i π 2 V . ( 25 
)
Proof: The proof of this Theorem in given in Sobol and Kucherenko [START_REF] Sobol | Derivative based global sensitivity measures and their links with global sensitivity indices[END_REF]. It is based on inequality:

1 0 u 2 (x) dx ≤ 1 π 2 1 0 ∂u ∂x 2 dx
and relationships ( 13) and [START_REF] Kiparissides | Global sensitivity analysis challenges in biological systems modeling[END_REF].

Consider the set of values ν 1 , ..., ν d , 1 ≤ i ≤ d. One can expect that smaller ν i correspond to less influential variables x i . This importance criterion is similar to the modified Morris importance measure µ * , whose limiting values are

µ * i = H d ∂G(x) ∂x i dx.
From a practical point of view the criteria µ i and ν i are equivalent: they are evaluated by the same numerical algorithm and are linked by relations ν i ≤ Cµ i and

µ i ≤ √ ν i .
The right term in ( 25) is further called the upper bound number one (UB1).

Theorem 5. There exists the following upper bound between DGSM (5) and the Sobol' total sensitivity index:

S tot i ≤ ς i V . ( 26 
)
Proof: The following inequality [START_REF] Hardy | Inequalities[END_REF] is used:

0 ≤ 1 0 u 2 dx - 1 0 udx 2 ≤ 1 2 1 0 x(1 -x)u 2 dx. ( 27 
)
The inequality is reduced to an equality only if u is constant. Assume that u is given by ( 11), then 

x i (1-x i ) for 0 ≤ x i ≤ 1 is bounded: 0 ≤ 1 2 x i (1 -x i ) ≤ 1/8. Therefore, 0 ≤ ς i ≤ ν i /8.

Normally distributed variables

Lower bound on S tot i Theorem 6. If X i is normally distributed with a mean µ i and a finite variance σ 2 i , there exists the following lower bound between DGSM (7) and the Sobol' total sensitivity index:

σ 4 i (µ 2 i + σ 2 i )V w 2 i ≤ S tot i . (28) 
Proof: Using the equation ( 15) and Cauchy-Schwartz inequality applied on

R d x i u i (x)dF (x)
(with F the joint cdf), Kucherenko and Song [START_REF] Kucherenko | Derivative-based global sensitivity measures and their link with Sobol' sensitivity indices[END_REF] give the proof of this inequality when µ i = 0 (omitting to mention this condition). The general proof, obtained by Petit [START_REF] Petit | Analyse de sensibilité globale du module MASCARET par l'utilisation de la différentiation automatique[END_REF],

is given below.

Consider a univariate function g(X), with X a normally distributed variable with mean µ, finite variance σ 2 and cdf F . With adequate conditions on g, the following equality is obtained by integrating by parts:

E[g (X)] = ∞ -∞ g (x)dF (x) = 1 σ √ 2π ∞ -∞ g (x) exp - (x -µ) 2 2σ 2 dx = 1 σ √ 2π g(x) exp - (x -µ) 2 2σ 2 +∞ -∞ + 1 σ √ 2π ∞ -∞ g(x) x -µ σ 2 exp - (x -µ) 2 2σ 2 dx = 1 σ 2 ∞ -∞ xg(x)dF (x) -µ ∞ -∞ g(x)dF (x).
In this equation, replacing g(x) by u i (x) with x i normally distributed, the w i DGSM writes

w i = R d ∂G(x) ∂x i dF (x) = R d ∂u i (x) ∂x i dF (x) = 1 σ 2 i R d x i u i (x)dF (x),
because R d u i (x)dF (x) = 0 (due to the ANOVA decomposition condition). Moreover, the Cauchy-Schwartz inequality applied on R d x i u i (x)dF (x) gives

R d x i u i (x)dF (x) 2 ≤ R d x 2 i dF (x) R d [u i (x)] 2 dF (x).
Combining the two latter equations leads to the expression

w 2 i ≤ 1 σ 4 i (µ 2 i + σ 2 i )V S tot i ,
which is equivalent to Eq. ( 28).

Upper bounds on S tot i

The following Theorem 7 is a generalization of Theorem 1.

Theorem 7. If X i has a finite variance σ 2 i and c ≤ ∂G ∂x i ≤ C, then σ 2 i c 2 V ≤ S tot i ≤ σ 2 i C 2 V . ( 29 
)
The constant factor σ 2 i cannot be improved.

Theorem 8. If X i is normally distributed with a finite variance σ 2 i , there exists the following upper bound between DGSM (6) and the Sobol' total sensitivity index:

S tot i ≤ σ 2 i V ν i . ( 30 
)
The constant factor σ 2 i cannot be reduced.

Proof: The proofs of these Theorems are presented in Sobol and Kucherenko [START_REF] Sobol | Derivative based global sensitivity measures and their links with global sensitivity indices[END_REF].

DGSM-based bounds for groups of variables

Let x = (x 1 , ..., x d ) be a point in the d-dimensional unit hypercube with Lebesgue

measure dx = dx 1 •••dx d .
Consider an arbitrary subset of the variables y = (x i 1 , ..., x is ),

1 ≤ i 1 ≤ . . . ≤ i s ≤ d,
and the set of remaining complementary variables z, so that x = (y, z), dx = dy dz. Further all the integrals are written without integration limits, by assuming that each integration variable varies independently from 0 to 1.

Consider the following DGSM τ y : Proof: The proofs of these Theorems are given in Sobol and Kucherenko [START_REF] Sobol | A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices[END_REF]. The second theorem shows that small values of τ y imply small values of S tot y and this allows identification of a set of unessential factors y (usually defined by a condition of the type S tot y < , where is small).

τ y = s p=1 ∂G (x) ∂x ip 2 1 -3x ip + 3x

Importance criterion τ i

Consider the one dimensional case when the subset y consists of only one variable y = (x i ), then measure τ y = τ i has the form

τ i = ∂G (x) ∂x i 2 1 -3x i + 3x 2 i 6 dx. (32) 
It is easy to show that ν i /24 ≤ τ i ≤ ν i /6. From UB1 it follows that

S tot i ≤ 24 π 2 V τ i . ( 33 
)
Thus small values of τ i imply small values of S tot i , that are characteristic for non important variables x i . At the same time, the following corollary is obtained from Theorem 9: if G (x) depends linearly on x i , then

S tot i = τ i /V . Thus τ i is closer to V tot i than ν i .
Note that the constant factor 1/π 2 in ( 25) is the best possible. But in the general inequality for τ i (33) the best possible constant factor is unknown.

There is a general link between importance measures τ i , ς i and ν i :

τ i = -ς i + 1 6 ν i , then ς i = 1 6 ν i -τ i .

Normally distributed random variables

Consider independent normal random variables X 1 , ..., X d with parameters (µ i , σ i ) i=1...d .

Define τ i as

τ i = 1 2 E ∂G (x) ∂x i 2 (x i -x i ) 2 .
The expectation over x i can be computed analytically. Then

τ i = 1 2 E ∂G (x) ∂x i 2 (x i -µ i ) 2 + σ 2 i 2 .
Theorem 11. If X 1 , ..., X d are independent normal random variables, then for an arbitrary subset y of these variables, the following inequality is obtained:

S tot y ≤ 2 V τ y .
Proof: The proof is given in Sobol and Kucherenko [START_REF] Sobol | A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices[END_REF].

DGSM-based upper bounds in the general case

As previously, consider the function G (X 1 , ..., X d ), where X 1 , ..., X d are independent random variables, defined in the Euclidian space R d , with cdfs F 1 (x 1 ) , ..., F d (x d ). Assume further that each X i admits a probability density function (pdf), denoted by

f i (x i ).
In the following, all the integrals are written without integration limits.

The developments in this section are based on the classical L 2 -Poincaré inequality:

G(x) 2 dF (x) ≤ C(F ) ∇G(x) 2 dF (x) ( 34 
)
where F is the joint cdf of (X 1 , ..., X d ). ( 34) is valid for all functions G in L 2 (F ) such that G(x)dF (x) = 0 and ∇f ∈ L 2 (F ). The constant C(F ) in Eq. ( 34) is called a Poincaré constant of F . In some cases, it exists and optimal Poincaré constant C opt (F ) which is the best possible constant. In measure theory, the Poincaré constants are expressed as a function of so-called Cheeger constants [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF] which are used for SA in Lamboni et al [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF] (see Roustant et al [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF] for more details).

A connection between total indices and DGSM has been established by Lamboni et al [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF] for variables with continuous distributions (called Boltzmann probability measures in their paper).

Theorem 12. Let F i and f i be respectively the cdf and the pdf of X i , the following inequality is obtained:

S tot i ≤ C(F i ) V ν i , (35) 
with ν i the DGSM defined in Eq. ( 6) and

C(F i ) = 4 sup x∈R min (F i (x), 1 -F i (x)) f i (x) 2 . (36) 
Proof: This result comes from the direct application of the L 2 -Poincaré inequality [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF] on u i (x) (see Eq. ( 11)).

In Lamboni et al [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF] and Roustant et al [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF], the particular case of log-concave probability distribution has been developed. It includes classical distributions as for instance the normal, exponential, Beta, Gamma and Gumbel distributions. In this case, the constant writes

C(F i ) = 1 f i ( mi ) 2 (37) 
with mi the median of the distribution F i . This allows to obtain analytical expressions for C(F i ) in several cases [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF]. In the case of a log-concave truncated distribution on [a, b], the constant writes [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF] (

F i (b) -F i (a)) 2 /f i q i F i (a) + F i (b) 2 2 (38) 
with q i (•) the quantile function of X i . Table 1 gives some examples of Poincaré constants for several well-known and often used probability distributions in practice.

Distribution Poincaré constant Optimal constant Uniform U[a b] (b -a) 2 /π 2 yes Normal N (µ, σ 2 ) σ 2 yes Exponential E(λ), λ > 0 4 λ 2 yes Gumbel G(µ, β), scale β > 0 2β log 2 2 no Weibull W(k, λ), shape k ≥ 1, scale λ > 0 2λ(log 2) (1-k)/k k 2 no
Table 1. Poincaré constants for a few probability distributions.

For studying second-order interactions, Roustant et al [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF] have derived a similar to [START_REF] Sobol | Global sensitivity indices for non linear mathematical models and their Monte Carlo estimates[END_REF] inequality based on the squared crossed derivatives of the function. Assuming that second-order derivatives of G are in L 2 (F ), it uses the so-called crossed-DGSM

ν ij = ∂ 2 G(x) ∂x i ∂x j 2 dF (x), (39) 
introduced by Friedman and Popescu [START_REF] Friedman | Predictive Learning via Rule Ensembles[END_REF]. An inequality link is made with an extension of the total Sobol' sensitivity indices to general sets of variables (called superset importance or total interaction index) proposed by Liu and Owen [START_REF] Liu | Estimating mean dimensionality of analysis of variance decompositions[END_REF]. In the case of a pair of variables {X i , X j }, the superset importance is defined as

V super ij = I⊇{i,j} V I . (40) 
The estimation methods of this total interaction index have also been studied by Fruth et al [START_REF] Fruth | Total interaction index: A variance-based sensitivity index for second-order interaction screening[END_REF].

Theorem 13. For all pairs {i, j} (1

≤ i < j ≤ d), V ij ≤ V super ij ≤ C(F i )C(F j )ν ij . (41) 
These inequalities with the corresponding Sobol' indices write

S ij ≤ S super ij ≤ C(F i )C(F j ) V ν ij . (42) 
Roustant et al [START_REF] Roustant | Crossed-derivative-based sensitivity measures for interaction screening[END_REF] have shown on several examples how to apply this result in order to detect pairs of inputs that do not interact together (see also Muehlenstaedt et al [START_REF] Muehlenstaedt | Data-driven Kriging models based on FANOVA-decomposition[END_REF] and Fruth et al [START_REF] Fruth | Total interaction index: A variance-based sensitivity index for second-order interaction screening[END_REF] which use Sobol' indices).

Computational costs

All DGSM can be computed using the same set of partial derivatives ∂G(x) ∂x i , i = 1, ..., d. Evaluation of ∂G(x) ∂x i can be done analytically for explicitly given easilydifferentiable functions or numerically:

∂G(x * ) ∂x i = G x * 1 , . . . , x * i-1 , x * i + δ, x * i+1 , . . . , x * n -G (x * ) δ . (43) 
This is called a finite-difference scheme (see Variational Methods) with δ which is a small increment. There is a similarity with the elementary effect formula (2) of the Morris method which is however computed with large ∆.

In the case of straightforward numerical estimations of all partial derivatives However, the number of sampled points N needed to achieve numerical convergence can be different for DGSM and S tot i . It is generally lower for the case of DGSM. Moreover, the numerical efficiency of the DGSM method can be significantly increased by using algorithmic differentiation in the adjoint (reverse) mode [START_REF] Griewank | Evaluating derivatives: Principles and techniques of automatic differentiation[END_REF] (see also Variational Methods). This approach allows estimating all derivatives at a cost independent of d, at most 4-6 times of that for evaluating the original function G(x) [START_REF] Jansen | A first look of quasi-Monte Carlo for lattice field theory problems[END_REF].

Test cases

In this section, three test cases are considered, in order to illustrate application of DGSM and their links with S tot i .

Example 1. Consider a linear with respect to x i function:

G(x) = a(z)x i + b(z).
For this function 

S i = S tot i , V tot i = 1 12 H d-1 a 2 (z)dz, ν i = H d-1 a 2 (z)dz, LB1 = H d (a 2 (z) -2a 2 (z)x i ) dzdx i 2 4V H d-
≈ 0.48S tot i , UB1 ≈ 1.22S tot i . UB2 = 1 12V 1 0 a(z) 2 dz = S tot i .
For this test function UB2 < UB1.

Example 2. Consider the so-called g-function which is often used in global SA for illustration purposes: 

G(x) = d i=1 v i , where v i = |4x i -2| + a i 1 + a i , a i (i = 1, ..., d) are constants. It is easy to see that for this function g i (x i ) = (v i -1), u i (x) = (v i -1)
S i S tot i γ(m) 1/3 (1 + a i ) 2 V 1/3 (1+ai) 2 d j=1,j =i 1 + 1/3 (1+aj ) 2 V (2m + 1) 1 - 4(1-(1/2) m+1 ) m+2 2 (1 + a i ) 2 (m + 1) 2 V
By solving equation dγ(m) dm = 0, m * =9.64 and γ(m * ) = 0.0772

(1 + a i ) 2 V
. It is interesting to note that m * does not depend on a i , i = 1, 2, ..., d and d. In the extreme

cases: if a i → ∞ for all i, γ(m * ) S tot i → 0.257, S i S tot i → 1, while if a i → 0 for all i, γ(m * ) S tot i → 0.257 (4/3) d-1 , S i S tot i → 1 (4/3) d-1 .
The analytical expression for S tot i , UB1 and UB2 are given in Table 3.

Table 3. The analytical expressions for S tot i , UB1 and UB2 for g-function.

S tot i UB1 UB2 1/3 (1+ai) 2 d j=1,j =i 1 + 1/3 (1+aj ) 2 V 16 d j=1,j =i 1 + 1/3 (1+aj ) 2 (1 + a i ) 2 π 2 V 4 d j=1,j =i 1 + 1/3 (1+aj ) 2 3(1 + a i ) 2 V
For this test function

S tot i UB1 = π 2 48 , S tot i UB2 = 1 4 , hence UB2 UB1 = π 2 12 < 1.
Values of S i , S tot i , UB1, UB2 and LB2 for the case of a=[0,1,4.5,9,99,99,99,99],

d =8 are given in Table 4 and shown in Fig. 1. One can see that the knowledge of LB2 and UB1 allows to rank correctly all the variables in the order of their importance. Sobol' indices are computed via the Monte-carlo scheme of Saltelli [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF] (using two initial matrices of size 10 5 ), while DGSM are computed with Monte-Carlo sampling of size n (using derivatives computing by finite differences (43) with δ = 10 -5 ), with n ranging from 20 to 500, Figure 2 shows that DGSM bounds UB1 i are greater than the total Sobol' indices S T i (for i = 1, 2, 3, 4) as expected, except for n < 30 which is a too small sample size. For small S T i , UB1 i is close to the S T i value. It confirms that DGSM bounds are first useful for screening exercises. Other numerical tests involving non-uniform and non-normal distributions for the inputs can be found in Lamboni et al [START_REF] Lamboni | Derivative-based global sensitivity measures: general links with sobol' indices and numerical tests[END_REF] and Fruth et al [START_REF] Fruth | Total interaction index: A variance-based sensitivity index for second-order interaction screening[END_REF]. 

Conclusions

This paper has shown that using lower and upper bounds based on DGSM is possible in most cases to get a good practical estimation of the values of S tot i at a fraction of the CPU cost for estimating S tot i . Upper and lower bounds can be estimated using MC/QMC integration methods using the same set of partial derivative values. Most of the applications show that DGSM can be used for fixing unimportant variables and subsequent model reduction because small values of DGSM imply small values of S tot i . In a general case variable ranking can be different for DGSM and variance based methods but for linear function and product function, DGSM can give the same variable ranking as S tot i .

  Their values in most cases provide sufficient information to determine the sensitivity of the analyzed function to individual input variables. Variance-based methods generally require a large number of function evaluations (see Variance-based Methods: Theory and Algorithms) to achieve reasonable convergence and can become impractical for large engineering problems.

  fact, Theorem 3 gives a set of lower bounds depending on parameter m. The value of m at which γ(m) attains its maximum is of particular interest. Further, star ( * ) is used to denote such a value m: m * = arg max(γ(m)). γ(m * ) is called the lower bound number two (LB2):

(

  43) and computation of integrals using MC or QMC methods, the number of required function evaluations for a set of all input variables is equal to N (d + 1), where N is a number of sampled points. Computing LB1 also requires values of G (0, z) , G (1, z), while computing LB2 requires only values of G (1, z). In total, numerical computation of LB* for all input variables would require N LB* G = N (d + 1) + 2N d = N (3d + 1) function evaluations. Computation of all upper bounds require N UB G = N (d+1) function evaluations. This is the same number that the number of function evaluations required for computation of S tot i which is N S G = N (d + 1) [31].

1 a 2 2 4

 22 (z)dz = 0 and γ(m) = (2m + 1)m 2 H d-1 a(z)dz (m + 2) 2 (m + 1) 2 V . A maximum value of γ(m) is attained at m * =3.745, while γ * (m * bounds are LB*

Fig. 1 . 4 i=1 b i x i + 4 i≤j b ij x i x j + 4 i≤j≤kb.

 1444 Fig. 1. Values of S i , S tot i , LB2 and UB1 for all input variables. Example 2 with a = [0, 1, 4.5, 9, 99, 99, 99, 99], d = 8.

Fig. 2 .

 2 Fig. 2. For the 4 input variables of the reduced Morris' test function: Convergence of the DGSM bound estimates (solid lines) in function of the sample size and comparison to theoretical values of total Sobol' indices S Ti (dashed lines).

  Theorem 9. If G (x) is linear with respect to x i 1 , ..., x is , then V tot
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	Theorem 10. The following general inequality holds: V tot y	≤ 24 π 2 τ y , or in other
	words S tot y ≤	24 π 2 V	τ y .

Table 2 .

 2 a j )2 . The analytical values of S i , S tot
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d j=1,j =i v j and as a result LB1=0. The total variance is V = -1 +
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 2 The analytical expressions for S i , S tot i and LB2 for g-function.

Table 4 .

 4 Values of LB*, S i , S tot i , UB1 and UB1. Example 2, a=[0,1,4.5,9,99,99,99,99], d =8.

		x 1	x 2	x 3	x 4	x 5 ...x 8
	LB* 0.166 0.0416 0.00549 0.00166 0.000017
	S i 0.716 0.179 0.0237 0.00720 0.0000716
	S tot i	0.788 0.242 0.0343 0.0105 0.000105
	UB1 3.828 1.178 0.167 0.0509 0.00051
	UB2 3.149 0.969 0.137 0.0418 0.00042

Example 3. Consider the reduced Morris' test function with four inputs

[START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]

:

Engineering applications of DGSM can be found for instance in Kiparissides et al [START_REF] Kiparissides | Global sensitivity analysis challenges in biological systems modeling[END_REF] and Rodriguez-Fernandez et al [START_REF] Rodriguez-Fernandez | Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models[END_REF] for biological systems modeling, Patelli et al [START_REF] Patelli | Global sensitivity of structural variability by random sampling[END_REF] for structural mechanics, Iooss et al [START_REF] Iooss | Some new insights in derivative-based global sensitivity measures[END_REF] for an aquatic prey-predator model, Petit [START_REF] Petit | Analyse de sensibilité globale du module MASCARET par l'utilisation de la différentiation automatique[END_REF] for a river flood model and Touzany and Busby [START_REF] Touzany | Screening method using the derivative-based global sensitivity indices with application to reservoir simulator[END_REF] for an hydrogeological simulator of the oil industry. One of the main prospect in practical situations is to use algorithmic differentiation in the reverse (adjoint) mode on the numerical model, allowing to estimate efficiency all partial derivatives of this model (see Variational Methods). In this case, the cost of DGSM estimations would be independent of the number of input variables. Obtaining global sensitivity information in a reasonable cpu time cost is therefore possible even for large-dimensional model (several tens and spatially distributed inputs in the recent and pioneering attempt of Petit [START_REF] Petit | Analyse de sensibilité globale du module MASCARET par l'utilisation de la différentiation automatique[END_REF]). When the adjoint model is not available, the DGSM estimation remains a problem in high dimension and novel ideas have to be explored [START_REF] Patelli | Monte Carlo gradient estimation in high dimensions[END_REF]