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Abstract

The method of derivative based global sensitivity measures (DGSM) has recently be-
come popular among practitioners. It has a link with the Morris screening method and
Sobol’ sensitivity indices. DGSM are very easy to implement and evaluate numerically.
The computational time required for numerical evaluation of DGSM is generally much
lower than that for estimation of Sobol’ sensitivity indices. We present a survey of
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recent advances in DGSM concerning lower and upper bounds on the values of Sobol’
total sensitivity indices Stot

i . Using these bounds it is possible in most cases to get a
good practical estimation of the values of Stot

i . Several examples are used to illustrate
an application of DGSM.

Introduction

Global sensitivity analysis (SA) offers a comprehensive approach to the model analysis.
Unlike local SA, global SA methods evaluate the effect of a factor while all other factors
are varied as well and thus they account for interactions between variables and do not
depend on the choice of a nominal point. Reviews of different global SA methods can
be found in Saltelli et al [21] and Sobol and Kucherenko [27]. The method of global
sensitivity indices suggested by Sobol [23, 24], and then further developed by Homma
and Saltelli [7] is one of the most efficient and popular global SA techniques. It belongs
to the class of variance-based methods. These methods provide information on the
importance of different subsets of input variables to the output variance. There are
two types of Sobol’ sensitivity indices: the main effect indices, which estimate the
individual contribution of each input parameter to the output variance, and the total
sensitivity indices, which measure the total contribution of a single input factor or
a group of inputs. The total sensitivity indices are used to identify non-important
variables which can then be fixed at their nominal values to reduce model complexity.
This approach is known as “factors’ fixing setting” [21]. For high-dimensional models
the direct application of variance-based global SA measures can be extremely time-
consuming and impractical.

A number of alternative SA techniques have been proposed. One of them is the
screening method by Morris [16]. It can be regarded as global as the final measure is
obtained by averaging local measures (the elementary effects). This method is consid-
erably cheaper than the variance based methods in terms of computational time. The
Morris method can be used for identifying unimportant variables. However, the Morris
method has two main drawbacks. Firstly, it uses random sampling of points from the
fixed grid (levels) for averaging elementary effects which are calculated as finite dif-
ferences with the increment delta comparable with the range of uncertainty. For this
reason it can not correctly account for the effects with characteristic dimensions much
less than delta. Secondly, it lacks the ability of the Sobol’ method to provide infor-
mation about main effects (contribution of individual variables to uncertainty) and it
can’t distinguish between low and high order interactions.

In this paper we present a survey of derivative based global sensitivity measures
(DGSM) and their link with Sobol’ sensitivity indices. DGSM are based on averaging
local derivatives using Monte Carlo or Quasi Monte Carlo sampling methods. This
technique is much more accurate than the Morris method as the elementary effects are
evaluated as strict local derivatives with small increments compared to the variable
uncertainty ranges. Local derivatives are evaluated at randomly or quasi randomly
selected points in the whole range of uncertainty and not at the points from a fixed
grid.

The so-called alternative global sensitivity estimator defined as a normalized
integral of partial derivatives was firstly introduced by Sobol and Gershman [26].
Kucherenko et al [13] introduced some other derivative-based global sensitivity mea-
sures (DGSM) and coined the acronym DGSM. They showed that DGSM can be seen
as the generalization of the Morris method [16]. Kucherenko et al [13] also established
empirically the link between DGSM and Sobol’ sensitivity indices. They showed that
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the computational cost of numerical evaluation of DGSM can be much lower than that
for estimation of Sobol’ sensitivity indices.

Sobol and Kucherenko [28] proved theoretically that, in the cases of uniformly
and normally distributed input variables, there is a link between DGSM and the Sobol’
total sensitivity index Stot

i for the same input. They showed that DGSM can be used
as an upper bound on total sensitivity index Stot

i . Small values of DGSM imply small
Stot
i , and hence unessential factors xi. However, ranking influential factors using DGSM

can be similar to that based on Stot
i only for the case of linear and quasi-linear models.

For highly non-linear models two rankings can be very different. They also introduced
modified DGSM which can be used for both a single input and groups of inputs [29].
Such measures can be applied for problems with a high number of input variables
to reduce the computational time. From DGSM, Kucherenko and Song [12] have also
derived lower bounds on total sensitivity index. Lamboni et al [14] extended results of
Sobol’ and Kucherenko for models with input variables belonging to the general class of
continuous probability distributions. In the same framework, Roustant et al [20] have
defined crossed-DGSM, based on second-order derivatives of model output, in order to
bound the total Sobol’ indices of an interaction between two inputs.

The numerical efficiency of the DGSM method can be improved by using the
automatic differentiation algorithm for calculation DGSM as was shown in Kiparissides
et al [11]. However, the number of required function evaluations still remains to be
proportional to the number of inputs. This dependence can be greatly reduced using
an approach based on algorithmic differentiation in the adjoint or reverse mode [5]. It
allows estimating all derivatives at a cost at most 4-6 times of that for evaluating the
original function [9].

This paper is organised as follows: the Morris method and Sobol’ global sensi-
tivity indices are firstly described in the two following sections. DGSM and lower and
uppers bounds on total Sobol’ sensitivity indices for uniformly and normally distributed
random variables are then presented, followed by DGSM for groups of variables and
their link with total Sobol’ sensitivity indices. The next section presents the upper
bounds results in the general case of variables with continuous probability distribu-
tions. Then, test cases illustrate an application of DGSM and their links with total
Sobol’ sensitivity indices. Finally, conclusions are presented in the last section.

The Morris method

Consider a differentiable function G (x), where x = (xi)i=1...d is a vector of input
variables defined in the unit hypercube Hd (0 ≤ xi ≤ 1 , i = 1, . . . , d). Local sensitivity
measures are based on partial derivatives

Ei(x
∗) =

∂G(x∗)

∂xi

. (1)

The local sensitivity measure Ei(x
∗) depends on a nominal point x∗ and it changes

with a change of x∗. This deficiency can be overcome by averaging Ei(x
∗) over the

parameter space Hd.
The Morris method is traditionally used as a screening method for problems with

a high number of variables for which function evaluations can be CPU-time consuming.
It is composed of individually randomized ’one-factor-at-a-time’ experiments. Each
input factor may assume a discrete number of values, called levels, which are chosen
within the factor range of variation.
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The sensitivity measures proposed in the original work of Morris [16] are based
on what is called an elementary effect. It is defined as follows. The range of each input
variable is divided into p levels. Then the elementary effect (incremental ratio) of the
i-th input factor is defined as

EEi (x
∗) =

[

G
(

x∗
1, . . . , x

∗
i−1, x

∗
i +∆, x∗

i+1, . . . , x
∗
d

)

−G (x∗)
]

∆
, (2)

where ∆ is a predetermined multiple of 1/(p-1) and point x∗ ∈ Hd is such that
x∗
i +∆ ≤ 1. One can see that the elementary effect are finite difference approximations

of local sensitivity measures (1) with large ∆.
The distribution of elementary effects EEi is obtained by randomly sampling N

points from Hd. Two sensitivity measures are evaluated for each factor: µi an estimate
of the mean of the distribution EEi, and σi an estimate of the standard deviation of
EEi. A high value of µi indicates an input variable with an important overall influence
on the output. A high value of σi indicates a factor involved in interaction with other
factors or whose effect is nonlinear. The computational cost of the Morris method is NF

= N (d+1 ). The revised version of the EEi (x
∗) measure and a more effective sampling

strategy, which allows a better exploration of the space of the uncertain input factors
was proposed by Campolongo et al [2]. To avoid the canceling effect which appears in
non-monotonic functions Campolongo et al [2] introduced another sensitivity measure
µ∗
i based on the absolute value of EEi(x

∗): |EEi(x
∗)|. It was also noticed that µ∗

i has
similarities with the total sensitivity index Stot

i in that it can give a ranking of the
variables similar to that based on the Stot

i but no formal proof of the link between µ∗
i

and Stot
i was given [2].

Sobol’ global sensitivity indices

Definitions

The method of global sensitivity indices developed by Sobol’ is based on ANOVA
decomposition [6]. Consider a square integrable function G(x) defined in the unit hy-
percube Hd. It can be expanded in the following form

G(x) = g0 +
∑

i

gi(xi) +
∑

i<j

gij(xi, xj) + ...+ g12...d(x1, x2, ..., xd). (3)

This decomposition is unique if conditions

∫ 1

0

gi1...isdxik = 0 for 1 ≤ k ≤ s, are

satisfied. Here 1 = i1 <. . .< i s = d.

The variances of the terms in the ANOVA decomposition add up to the total
variance of the function

V =
d

∑

s=1

d
∑

i1<···<is

Vi1...is ,

where Vi1...is =

∫ 1

0

g2i1...is(xi1 , ..., xis)dxi1 , ..., xis are called partial variances.

Sobol’ defined the global sensitivity indices as the ratios

Si1...is = Vi1...is/V.

All Si1...is are non negative and add up to one:
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d
∑

i=1

Si +
∑

i

∑

j

Sij +
∑

i

∑

j

∑

k

Sijk...+ S1,2,...,d = 1.

Sobol’ also defined sensitivity indices for subsets of variables. Consider two comple-
mentary subsets of variables y and z:

x = (y, z).

Let y = (xi1 , ..., xim), 1 ≤ i1 < ... < im ≤ d,K = (i1, ..., im). The variance correspond-
ing to a set y = y is defined as

Vy =
m
∑

s=1

∑

(i1<···<is)∈K

Vi1...is .

Vy includes all partial variances Vi1 , Vi2 ,. . . , Vi1...is such that their subsets of indices
(i1, ..., is) ∈ K.

The total sensitivity indices were introduced by Homma and Saltelli [7]. The
total variance V tot

y is defined as

V tot
y = V − Vz.

V tot
y consists of all Vi1...is such that at least one index ip ∈ K while the remaining indices

can belong to the complimentary to K set K̄. The corresponding global sensitivity
indices are defined as

Sy = Vy/V,
Stot
y = V tot

y /V.
(4)

The important indices in practice are Si and Stot
i , i = 1, ..., d:

Si = Vi/V,
Stot
i = V tot

i /V.
(5)

Their values in most cases provide sufficient information to determine the sensitivity of
the analyzed function to individual input variables. Variance-based methods generally
require a large number of function evaluations to achieve reasonable convergence and
can become impractical for large engineering problems.

Link between total Sobol’ sensitivity indices and partial derivatives

Consider continuously differentiable function G(x) defined in the unit hypercube
Hd=[0, 1]d. In this section we present a theorem that establishes links between the
index Stot

i and the limiting values of |∂G/∂xi|.
We note that in the case when y = (xi), Sobol’-Jansen formula [10][25][22] for

Dtot
i can be rewritten as

Dtot
i =

1

2

∫

Hd

∫ 1

0

[

G (x)−G
(

◦
x
)]2

dxdx′
i, (6)

where
o

x = (x1, ..., xi−1, x
′
i, xi+1, ..., xn).

Theorem 1. Assume that c ≤
∣

∣

∣

∣

∂G

∂xi

∣

∣

∣

∣

≤ C, then

c2

12V
≤ Stot

i ≤ C2

12V
. (7)
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Proof: Consider the increment of G (x) in (6):

G (x)−G
(

◦
x
)

=
∂G (x̂)

∂xi

(xi − x′
i) , (8)

where x̂ is a point between x and
◦
x. Substituting (8) into (6) we obtain

V tot
i =

1

2

∫

Hd

∫ 1

0

(

∂G (x̂)

∂xi

)2

(xi − x′
i)
2
dxdx′

i. (9)

In (9) c2 ≤ (∂G/∂xi)
2 ≤ C2 while the remaining integral is

∫ 1

0

∫ 1

0

(x′
i − xi)

2
dx′

idxi =
1

6
.

Thus we obtain inequalities that are equivalent to (7). Consider the function G =
g0 + c(xi − 1/2). In this case C = c, V = 1/12 and Stot

i = 1 and the inequalities in (7)
become equalities.

DGSM for uniformly and normally distributed variables

Uniformly distributed variables

Assume that ∂G/∂xi ∈ L2. We define three different DGSM measures:

νi =

∫

Hd

(

∂G(x)

∂xi

)2

dx, (10)

w
(m)
i =

∫

Hd

xm
i

∂G(x)

∂xi

dx, (11)

where m > 0 is a constant, and

ςi =
1

2

∫

Hd

xi(1− xi)

(

∂G(x)

∂xi

)2

dx. (12)

We note that νi is in fact the mean value of (∂G/∂xi)
2.

Lower bounds on S
tot
i

To present further results we make the following notations
and present some useful relationships. Denote ui(x) the sum of all terms in ANOVA
(3) that depend on xi:

ui(x) = gi(xi) +
d

∑

j=1,j 6=i

gij(xi, xj) + · · ·+ g12···d(x1, · · · , xd). (13)

From the definition of ANOVA decomposition it follows that
∫

Hd

ui(x)dx = 0. (14)

It is obvious that
∂G

∂xi

=
∂u

∂xi

. (15)
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Denote z = (x1, ..., xi−1, xi+1, ..., xd) the vector of all variables but xi, then x ≡ (xi, z)
and G(x) ≡ G(xi, z). The ANOVA decomposition of G(x) (3) can be presented in the
following form

G(x) = ui(xi, z) + v(z),
where v(z) is the sum of terms independent of xi. Because of (14) it is easy to show

that v(z) =

∫

Hd

G(x)dxi. Hence

ui(xi, z) = G(x)−
∫

Hd

G(x)dxi. (16)

The total partial variance V tot
i can be computed as

V tot
i =

∫

Hd

u2
i (x)dx =

∫

Hd

u2
i (xi, z)dxidz.

Then the total sensitivity index Stot
i (5) is equal to

Stot
i =

∫

Hd u
2
i (x)dx

V
. (17)

Theorem 2. There exists the following lower bound between DGSM (10) and the
Sobol’ total sensitivity index:

(∫

Hd [G (1, z)−G (0, z)] [G (1, z) +G (0, z)− 2G (x)] dx
)2

4νiV
< Stot

i (18)

The proof of this Theorem is given in Kucherenko and Song [12] and is based

on a Cauchy-Schwartz inequality applied on

∫

Hd

ui(x)
∂ui(x)

∂xi

dx.

We call
(∫

Hd [G (1, z)−G (0, z)] [G (1, z) +G (0, z)− 2G (x)] dx
)2

4νiV

the lower bound number one (LB1).
Theorem 3. There exists the following lower bound, denoted γ(m), between DGSM
(11) and the Sobol’ total sensitivity index:

γ(m) =
(2m+ 1)

[

∫

Hd (G(1, z)−G(x)) dx− w
(m+1)
i

]2

(m+ 1)2V
< Stot

i . (19)

The proof of this Theorem in given in Kucherenko and Song [12] and is based

on a Cauchy-Schwartz inequality applied on

∫

Hd

xm
i ui(x)dx.

In fact, Theorem 3 gives a set of lower bounds depending on parameter m. We
are interested in the value of m at which γ(m) attains its maximum. Further we use
star to denote such a value m: m∗ = argmax(γ(m)) and call

γ(m∗) =
(2m∗ + 1)

[

∫

Hd (G(1, z)−G(x)) dx− w
(m∗+1)
i

]2

(m∗ + 1)2V
(20)

the lower bound number two (LB2).
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We define the maximum lower bound LB* as

LB* = max(LB1,LB2). (21)

We note that both lower and upper bounds can be estimated by a set of derivative
based measures:

Υi = {νi, w(m)
i , ζi}, m > 0. (22)

Upper bounds on S
tot
i

Theorem 4. There exists the following upper bound between DGSM (10) and the
Sobol’ total sensitivity index:

Stot
i ≤ νi

π2V
. (23)

The proof of this Theorem in given in Sobol and Kucherenko [28]. It is based
on inequality:

∫ 1

0

u2 (x) dx ≤ 1

π2

∫ 1

0

(

∂u

∂x

)2

dx

and relationships (15) and (17).
Consider the set of values ν1, ..., νn, 1 ≤ i ≤ n. One can expect that smaller νi

correspond to less influential variables xi. This importance criterion is similar to the
modified Morris importance measure µ∗, whose limiting values are

µ∗
i =

∫

Hn

∣

∣

∣

∣

∂G(x)

∂xi

∣

∣

∣

∣

dx.

From a practical point of view the criteria µi and νi are equivalent: they are
evaluated by the same numerical algorithm and are linked by relations νi ≤ Cµi and
µi ≤

√
νi.
We further call (23) the upper bound number one (UB1).

Theorem 5. There exists the following upper bound between DGSM (12) and the
Sobol’ total sensitivity index:

Stot
i ≤ ςi

V
. (24)

Proof: We use the following inequality [6]:

0 ≤
∫ 1

0

u2dx−
(
∫ 1

0

udx

)2

≤ 1

2

∫ 1

0

x(1− x)u′2dx. (25)

The inequality is reduced to an equality only if u is constant. Assume that u is given
by (13), then

∫ 1

0
udx = 0, and from (25) we obtain (24).

Further we call ςi/D the upper bound number two (UB2). We note that 1
2
xi(1−

xi) for 0 ≤ xi ≤ 1 is bounded: 0 ≤ 1
2
xi(1− xi) ≤ 1/8. Therefore, 0 ≤ ςi ≤ νi/8.

Computational costs All DGSM can be computed using the same set of partial

derivatives
∂G(x)

∂xi

, i = 1, ..., d. Evaluation of
∂G(x)

∂xi

can be done analytically for ex-

plicitly given easily-differentiable functions or numerically:

∂G(x∗)

∂xi

=

[

G
(

x∗
1, . . . , x

∗
i−1, x

∗
i + δ, x∗

i+1, . . . , x
∗
n

)

−G (x∗)
]

δ
. (26)

Here δ is a small increment (we note a similarity with the elementary effect formula
(2) which is however computed with large ∆).
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In the case of straightforward numerical estimations of all partial derivatives
(26) and computation of integrals using MC or QMC methods, the number of required
function evaluations for a set of all input variables is equal to N(d + 1), where N is
a number of sampled points. Computing LB1 also requires values of G (0, z) , G (1, z),
while computing LB2 requires only values of G (1, z). In total, numerical computation
of LB* for all input variables would require NLB*

G = N(d + 1) + 2Nd = N(3d + 1)
function evaluations. Computation of all upper bounds requireNUB

G = N(d+1) function
evaluations. We recall that the number of function evaluations required for computation
of Stot

i is NS
G = N(d + 1) [22]. The number of sampled points N needed to achieve

numerical convergence can be different for DGSM and Stot
i . It is generally lower for

the case of DGSM. Moreover, the numerical efficiency of the DGSM method can be
significantly increased by using algorithmic differentiation in the adjoint (reverse) mode
[5]. This approach allows estimating all derivatives at a cost independent of d, at most
4-6 times of that for evaluating the original function G(x) [9].

Randomly distributed variables

Consider a function G (X1, ..., Xd), where X1, ..., Xd are independent random vari-
ables, defined in the Euclidian space Rd, with cumulative density functions (cdfs)
F1 (x1) , ..., Fd (xd). The following DGSM was introduced in Sobol and Kucherenko [28]:

νi =

∫

Rd

(

∂G(x)

∂xi

)2

dF (x). (27)

We introduce a new measure

wi =

∫

Rd

∂G(x)

∂xi

dF (x). (28)

The lower bound on S
tot
i

Theorem 6. If Xi is normally distributed with a finite
variance σ2

i , there exists the following lower bound between DGSM (28) and the Sobol’
total sensitivity index:

σ2
iw

2
i

V
≤ Stot

i . (29)

The proof of this Theorem in given in Kucherenko and Song [12] and is based

on a Cauchy-Schwartz inequality applied on

∫

Rd

xiui(x)dF (x).

The upper bounds on S
tot
i

The following Theorem 7 is a generalization of Theorem
1.

Theorem 7. If Xi has a finite variance σ2
i and c ≤

∣

∣

∣

∣

∂G

∂xi

∣

∣

∣

∣

≤ C, then

σ2
i c

2

V
≤ Stot

i ≤ σ2
iC

2

V
. (30)

The constant factor σ2
i cannot be improved.

Theorem 8. If Xi is normally distributed with a finite variance σ2
i , there exists the

following upper bound between DGSM (27) and the Sobol’ total sensitivity index:

Stot
i ≤ σ2

i

V
νi. (31)

The constant factor σ2
i cannot be reduced.

Proofs are presented in Sobol and Kucherenko [28].
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Derivative based importance measure for groups of

variables

Let x = (x1, ..., xd) be a point in the d−dimensional unit hypercube with Lebesgue
measure dx = dx1 ···dxd. Consider an arbitrary subset of the variables y = (xi1 , ..., xis),
1 ≤ s < d, and the set of remaining complementary variables z, so that x = (y, z),
dx = dydz. In the following, we write y instead of y. Further all the integrals are
written without integration limits. We assume that each integration variable varies
independently from 0 to 1.

Consider the following DGSM τy:

τy =
s

∑

p=1

∫
(

∂G (x)

∂xip

)2 1− 3xip + 3x2
ip

6
dx. (32)

Theorem 9. If G (x) is linear with respect to xi1 , ..., xis , then V tot
y = τy, or in other

words Stot
y =

τy
V
.

Theorem 10. A general inequality holds: V tot
y ≤

(

24
/

π2
)

τy or in other words Stot
y ≤

24

π2

τy
V
.

The proofs of these Theorems are given in Sobol and Kucherenko [29]. The
second theorem shows that small values of τy imply small values of Stot

y and this allows
identification of a set of unessential factors y (usually defined by a condition of the
type Stot

y < ǫ, where ǫ is small).

Importance criterion τi

Consider the one dimensional case when the subset y consists of only one variable
y = (xi), then measure τy = τi has the form

τi =

∫
(

∂G (x)

∂xi

)2
1− 3xi + 3x2

i

6
dx. (33)

It is easy to show that νi/24 ≤ τi ≤ νi/6. From UB1 it follows that

Stot
i ≤ 24

π2

τi
V
. (34)

Thus small values of τi imply small values of Stot
i , that are characteristic for non

important variables xi. At the same time from Theorem 9 we obtain a corollary: if
G (x) depends linearly on xi, then Stot

i = τi/V . Thus τi is closer to V tot
i than νi.

Note that the constant factor 1/π2 in (23) is the best possible. But in the general
inequality for τi (34) the best possible constant factor is unknown.

There is a general link between importance measures τi, ςi and νi:

τi = −ςi +
1

6
νi,

then

ςi =
1

6
νi − τi.
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Normally distributed random variables

Consider independent normal random variables X1, ..., Xd with parameters (µi; σi).
Define τi as

τi =
1

2
E

[

(

∂G (x)

∂xi

)2

(x′
i − xi)

2

]

.

The expectation over x′
i can be computed analytically. Then

τi =
1

2
E

[

(

∂G (x)

∂xi

)2
(xi − µi)

2 + σ2
i

2

]

.

Theorem 11. If X1, ..., Xd are independent normal random variables, then for an
arbitrary subset y of these variables, we have

Stot
y ≤ 2τy

V
.

The proof is given in Sobol and Kucherenko [29].

DGSM upper bounds in the general case

As previously, we consider the function G (X1, ..., Xd), whereX1, ..., Xd are independent
random variables with cdfs F1 (x1) , ..., Fd (xd). We further assume that each Xi admits
a probability density function (pdf), denoted by fi(xi). The developments in this section
are based on the classical L2-Poincaré inequality:

∫

G(x)2dF (x) ≤ C(F )

∫

‖∇G(x)‖2dF (x) (35)

which is valid for all functions G in L2(F ) such that
∫

G(x)dF (x) = 0 and ‖∇f‖ ∈
L2(F ). The constant C(F ) in Eq. (35) is called a Poincaré constant of F and the
optimal Poincaré constant Copt(F ) is the best possible constant. In measure theory,
the Poincaré constants are expressed as a function of so-called Cheeger constants [1]
which are used in Lamboni et al [14] (see Roustant et al [20] for more details).

A connection between total indices and DGSM has been established by Lamboni
et al [14] for variables with continuous distributions (called Boltzmann probability
measures in their paper).
Theorem 12. Let Fi and fi be respectively the cdf and the pdf of Xi, we have

V tot
i ≤ C(Fi)νi, (36)

with νi the DGSM defined in Eq. (27) and

C(Fi) = 4

[

sup
x∈R

min (Fi(x), 1− Fi(x))

fi(x)

]2

. (37)

This result comes from the direct application of the L2-Poincaré inequality (35)
on ui(x) (see Eq. (13)).

In Lamboni et al [14] and Roustant et al [20], the particular case of log-concave
probability distribution has been developed. It includes classical distributions as for
instance the normal, exponential, Beta, Gamma and Gumbel distributions. In this
case, the constant writes
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C(Fi) =
1

fi(m̃i)2
(38)

with m̃i the median of the distribution Fi. This allows to obtain analytical expressions
for C(Fi) in several cases [14]. In the case of a log-concave truncated distribution on
[a, b], the constant writes [20]

(Fi(b)− Fi(a))
2 /fi

(

qi

(

Fi(a) + Fi(b)

2

))2

(39)

with qi(·) the quantile function of Xi.
For studying second-order interactions, Roustant et al [20] have derived a similar

to (36) inequality based on the squared crossed derivatives of the function. Assuming
that second-order derivatives of G are in L2(F ), it uses the so-called crossed-DGSM

νi,j =

∫
(

∂2G(x)

∂xi∂xj

)2

dF (x), (40)

introduced by Friedman and Popescu [3]. An inequality link is made with an extension
of the total Sobol’ sensitivity indices to general sets of variables (called superset im-
portance or total interaction index) proposed by Liu and Owen [15]. In the case of a
pair of variables {Xi, Xj}, the superset importance is defined as

V super
i,j =

∑

I⊇{i,j}

VI . (41)

The estimation methods of this total interaction index have also been studied by Fruth
et al [4].
Theorem 13. For all pairs {i, j} (1 ≤ i, j ≤ d),

Vi,j ≤ V super
i,j ≤ C(Fi)C(Fj)νi,j. (42)

Roustant et al [20] have shown on several examples how to apply this result in
order to detect pairs of inputs that do not interact together [17], [4].

Test cases

In this section we consider two test cases which illustrate application of DGSM and
their links with Stot

i .
Example 1. Consider a linear with respect to xi function:

G(x) = a(z)xi + b(z).

For this function Si = Stot
i , V tot

i =
1

12

∫

Hd−1

a2(z)dz, νi =

∫

Hd−1

a2(z)dz, LB1 =
(∫

Hd (a
2(z)− 2a2(z)xi) dzdxi

)2

4V
∫

Hd−1 a2(z)dz
= 0 and γ(m) =

(2m+ 1)m2
(∫

Hd−1 a(z)dz
)2

4(m+ 2)2(m+ 1)2V
. A maxi-

mum value of γ(m) is attained atm∗=3.745, while γ∗(m∗) =
0.0401

V

(
∫

a(z)dz

)2

. The

lower and upper bounds are LB* ≈ 0.48Stot
i , UB1 ≈ 1.22Stot

i . UB2 =
1

12V

∫ 1

0

a(z)2dz =

Stot
i .
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For this test function UB2 < UB1.
Example 2. Consider the so-called g-function which is often used in global SA for
illustration purposes:

G(x) =
d
∏

i=1

vi,

where vi =
|4xi − 2|+ ai

1 + ai
, ai(i = 1, ..., d) are constants. It is easy to see that for this

function gi(xi) = (vi− 1), ui(x) = (vi− 1)
∏d

j=1,j 6=i vj and as a result LB1=0. The total

variance is V = −1 +
d
∏

j=1

(

1 +
1/3

(1 + aj)2

)

. The analytical values of Si, S
tot
i and LB2

are given in Table 1.

Table 1. The analytical expressions for Si, S
tot
i and LB2 for g-function.

Si Stot
i γ(m)

1/3

(1 + ai)2V

1/3
(1+ai)2

∏d
j=1,j 6=i

(

1 + 1/3
(1+aj)2

)

V

(2m+ 1)

[

1− 4(1−(1/2)m+1)
m+2

]2

(1 + ai)2(m+ 1)2V

By solving equation
dγ(m)

dm
= 0, we find that m∗=9.64, γ(m∗) =

0.0772

(1 + ai)2V
.

It is interesting to note that m∗ does not depend on ai, i = 1, 2, ..., d and d. In the

extreme cases: if ai → ∞ for all i,
γ(m∗)

Stot
i

→ 0.257,
Si

Stot
i

→ 1, while if ai → 0 for all

i,
γ(m∗)

Stot
i

→ 0.257

(4/3)d−1
,

Si

Stot
i

→ 1

(4/3)d−1
. The analytical expression for Stot

i , UB1 and

UB2 are given in Table 2.

Table 2. The analytical expressions for Stot
i , UB1 and UB2 for g-function.

Stot
i UB1 UB2

1/3
(1+ai)2

∏d
j=1,j 6=i

(

1 + 1/3
(1+aj)2

)

V

16
∏d

j=1,j 6=i

(

1 + 1/3
(1+aj)2

)

(1 + ai)2π2V

4
∏d

j=1,j 6=i

(

1 + 1/3
(1+aj)2

)

3(1 + ai)2V

For this test function
Stot
i

UB1
=

π2

48
,
Stot
i

UB2
=

1

4
, hence

UB2

UB1
=

π2

12
< 1.

Values of Si, S
tot
i , UB1, UB2 and LB2 for the case of a=[0,1,4.5,9,99,99,99,99],

d=8 are given in Table 3 and shown in Fig. 1. One can see that the knowledge of LB2
and UB1 allows to rank correctly all the variables in the order of their importance.

Table 3. Values of LB*, Si, S
tot
i , UB1 and UB1. Example 2, a=[0,1,4.5,9,99,99,99,99], d=8.

x1 x2 x3 x4 x5...x8

LB* 0.166 0.0416 0.00549 0.00166 0.000017
Si 0.716 0.179 0.0237 0.00720 0.0000716

Stot
i 0.788 0.242 0.0343 0.0105 0.000105

UB1 3.828 1.178 0.167 0.0509 0.00051
UB2 3.149 0.969 0.137 0.0418 0.00042
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Fig. 1. Values of Si, Stot
i , LB2 and UB1 for all input variables. Example 2 with a =

[0, 1, 4.5, 9, 99, 99, 99, 99], d = 8.

Conclusions

We can conclude that using lower and upper bounds based on DGSM it is possible
in most cases to get a good practical estimation of the values of Stot

i at a fraction of
the CPU cost for estimating Stot

i . Upper and lower bounds can be estimated using
MC/QMC integration methods using the same set of partial derivative values. Most
of the applications show that DGSM can be used for fixing unimportant variables
and subsequent model reduction because small values of DGSM imply small values
of Stot

i . In a general case variable ranking can be different for DGSM and variance
based methods but for linear function and product function, DGSM can give the same
variable ranking as Stot

i .
Applications of DGSM can be found for instance in Kiparissides et al [11] and

Rodriguez-Fernandez et al [19] for biological systems modeling, Patelli et al [18] for
structural mechanics, Iooss et al [8] for an aquatic prey-predator model and Roustant
et al [20] for a simple river flood model. One of the main prospect in practical situations
is to use algorithmic differentiation in the reverse (adjoint) mode on the numerical
model, allowing to estimate efficiency all partial derivatives of this model. In this case,
the cost of DGSM estimations would be independent of the number of input variables.
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