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Near-Optimal Rates for Limited-Delay

Universal Lossy Source Coding

András György, Member, IEEE, and Gergely Neu

Abstract

We consider the problem of limited-delay lossy coding of individual sequences. Here the

goal is to design (fixed-rate) compression schemes to minimize the normalized expected distortion

redundancy relative to a reference class of coding schemes, measured as the difference between

the average distortion of the algorithm and that of the best coding scheme in the reference class.

In compressing a sequence of length T , the best schemes available in the literature achieve an

O(T−1/3) normalized distortion redundancy relative to finite reference classes of limited delay

and limited memory, and the same redundancy is achievable, up to logarithmic factors, when the

reference class is the set of scalar quantizers. It has also been shown that the distortion redundancy is

at least of order 1/
√
T in the latter case, and the lower bound can easily be extended to sufficiently

powerful (possibly finite) reference coding schemes. In this paper we narrow the gap between the

upper and lower bounds, and give a compression scheme whose normalized distortion redundancy is

O(
√
ln(T )/T ) relative to any finite class of reference schemes, only a logarithmic factor larger than

the lower bound. The method is based on the recently introduced Shrinking Dartboard prediction

algorithm, a variant of exponentially weighted average prediction. The algorithm is also extended

to the problem of joint source-channel coding over a (known) stochastic noisy channel and to the

case when side information is also available to the decoder (the Wyner-Ziv setting). The same

improvements are obtained for these settings as in the case of a noiseless channel. Our method

is also applied to the problem of zero-delay scalar quantization, where O(ln(T )/
√
T ) normalized

distortion redundancy is achieved relative to the (infinite) class of scalar quantizers of a given rate,

almost achieving the known lower bound of order 1/
√
T . The computationally efficient algorithms

known for scalar quantization and the Wyner-Ziv setting carry over to our (improved) coding schemes

presented in this paper.
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I. INTRODUCTION

In this paper we consider the problem of fixed-rate sequential lossy source coding of

individual sequences with limited delay. Here a source sequence x1, x2, . . . taking values

from the source alphabet X has to be transformed into a sequence y1, y2, . . . of channel

symbols taking values in the finite channel alphabet {1, . . . ,M}, and these channel symbols

are then used to produce the reproduction sequence x̂1, x̂2, . . .. The rate of the scheme is

defined as lnM nats (where ln denotes the natural logarithm), and the scheme is said to

have δ1 encoding and δ2 decoding delay if, for any t = 1, 2, . . ., the channel symbol yt
depends on xt+δ1 = (x1, x2, . . . , xt+δ1) and x̂t depends on yt+δ2 = (y1, . . . , yt+δ2). The goal

of the coding scheme is to minimize the distortion between the source sequence and the

reproduction sequence. In this work we aim to find methods that work uniformly well with

respect to a reference coder class on every individual (deterministic) sequence. Thus, no

probabilistic assumption is made on the source sequence, and the performance of a scheme

is measured by the distortion redundancy defined as the maximal difference, over all source

sequences of a given length, between the normalized distortion of the given coding scheme

and that of the best reference coding scheme matched to the underlying source sequence.

The study of limited-delay (in particular, zero-delay) lossy source coding in the individual

sequence setting was initiated by Linder and Lugosi [1], who showed the existence of

randomized coding schemes that perform, on any bounded source sequence, essentially as

well as the best scalar quantizer matched to the underlying sequence. More precisely, they

show that the normalized squared error distortion of their scheme on any source sequence

xT of length T is at most O(T−1/5 lnT ) larger than the normalized distortion of the best

scalar quantizer matched to the source sequence in hindsight. The method of [1] is based on

the exponentially weighted average (EWA) prediction method [2]–[4]: at each time instant a

coding scheme (a scalar quantizer) is selected based on its “estimated” performance. A major

problem in this approach is that the prediction, and hence the choice of the quantizer at each

time instant, is performed based on the source sequence which is not known exactly at the

decoder. Therefore, in [1] information about the source sequence that is used in the random

choice of the quantizers is also transmitted over the channel, reducing the available capacity

for actually encoding the source symbols.

The coding scheme of [1] was improved and generalized by Weissman and Merhav [5].

They considered the more general case when the reference class F is a finite set of limited-

delay and limited-memory coding schemes. To reduce the communication about the actual

decoder to be used at the receiver, Weissman and Merhav introduced a coding scheme where

the source sequence is split into blocks of equal length, and in each block a fixed encoder-

decoder pair is used, selected at the source, whose identity is conveyed to the receiver at

the beginning of each block. Similarly to [1], the code for each block is chosen using

the EWA prediction method. The resulting scheme achieves an O(T−1/3 ln2/3 |F|) distortion

redundancy, or, in the case of the infinite class of scalar quantizers, the distortion redundancy

becomes O(T−1/3 lnT ).

The results of [5] have been extended in various ways, but all of these works are based

on the block-coding procedure described above. A disadvantage of this method is that the
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EWA prediction algorithm keeps one weight for each code in the reference class, and so

the computational complexity of the method becomes prohibitive even for relatively simple

and small reference classes. Computationally efficient solutions to the case of zero-delay

scalar quantization were given by György, Linder and Lugosi using dynamic programming

[6] and EWA prediction in [7] and based on the “follow-the-perturbed-leader” prediction

method (see [8], [9]) in [10]. Over a channel with alphabet size M , the first method achieves

the O(T−1/3 lnT ) redundancy of Weissman and Merhav with O(MT 4/3) computational and

O(T 2/3) space complexity and a somewhat worse O(T−1/4
√
lnT ) distortion redundancy

with linear O(MT ) time and O(T 1/2) space complexity, while the second method achieves

O(T−1/4 lnT ) distortion redundancy with the same O(MT ) linear time complexity and

O(MT 1/4) space complexity.

Matloub and Weissman [11] extended the problem to allow a discrete stochastic channel

between the encoder and the decoder, while Reani and Merhav [12] extended the model

to the Wyner-Ziv case (i.e., when side information is also available at the decoder). The

performance bound in both cases are based on [5] while low-complexity solutions for the

zero-delay scalar quantization case are provided based on [10] and [7], respectively. Finally,

the case when the reference class is a set of time-varying limited-delay limited-memory coding

scheme was analyzed in [13], and efficient solutions were given for the zero-delay case for

both traditional and network (multiple-description and multi-resolution) scalar quantization.

Since most of the above coding schemes are based on the block-coding scheme of [5], they

cannot achieve better distortion redundancy than O(T−1/3) up to some logarithmic factors. On

the other hand, the distortion redundancy is known to be bounded from below by a constant

multiple of T−1/2 in the zero-delay case [7], leaving a gap between the best known upper and

lower bounds. Furthermore, if the identity of the used coding scheme were communicated

as side information (before the encoded symbol is revealed), that is, no channel bandwidth

were needed to be devoted to communicate the identity of the decoder, the employed EWA

prediction method would guarantee an O(
√
ln |F|/T ) distortion redundancy for any finite

reference coder class F (of limited delay and limited memory), in agreement with the lower

bound.1

Thus, to improve upon the existing coding schemes, the communication overhead (describ-

ing the actually used coding schemes) between the encoder and the decoder has to be reduced,

which is achievable by controlling the number of times the coding scheme changes in a better

way then blockwise coding. This goal can be achieved by the recent Shrinking Dartboard (SD)

algorithm of Geulen, Voecking, and Winkler [14], a modified version of the EWA prediction

method that is designed to control the number of expert switches, while keeping the same

marginal distributions for the predictions as the EWA, and so provides similar performance

guarantees.

In this paper we construct a randomized coding strategy, which uses a slightly modified

version of the SD algorithm as the prediction component, that achieves an O(
√
lnT/T )

1This follows from the fact that if the chosen decoding function is known at the receiver, the problem becomes an instance

of the prediction with expert advice problem. Similarly, the O(
√

ln |F|/T ) bound can be obtained by analyzing the bounds

of the block-coding methods devised based on [5] and setting the term resulting from the communication overhead to zero.
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average distortion redundancy with respect to a finite reference class of limited-delay and

limited-memory source codes. The method can also be applied to compete with the (infinite)

reference class of scalar quantizers, where it achieves an O(lnT/
√
T ) distortion redundancy.

These bounds are only logarithmic factors larger than the corresponding lower bound. Note

that Devroye, Lugosi, and Neu [15] has recently introduced a “follow the perturbed leader”-

type prediction method that also keeps the number of expert switches low. Applying this

algorithm in place of the mSD algorithm in our coding schemes would yield similar results.

In Section II we revisit the SD algorithm of [14] with slight improvements relative to

its original version. Our randomized coding strategy, based on the SD prediction method, is

introduced and analyzed in Section IV. The strategy is applied to the problem of adaptive

(zero-delay) scalar quantization in Section V. Extensions to the noisy channel and the Wyner-

Ziv settings are given in Section VI.

II. THE SHRINKING DARTBOARD ALGORITHM REVISITED

In this section we define the problem of sequential decision making (prediction) with expert

advice, and present the Shrinking Dartboard algorithm of [14]. Suppose we want to perform

a sequence of decisions from a finite set F of size N = |F| without the knowledge of the

future. At each time step t = 1, 2, . . . the decision maker chooses an action it ∈ F and suffers

a loss dt,it . After each time step t the loss dt,i ∈ [0, 1] for all i ∈ F is also revealed to the

decision maker, whose goal is to minimize, for some T > 0, the average regret

RT = max
i∈F

1

T

(
T∑

t=1

dt,it −DT,i

)

with respect to the constant actions i ∈ F , where DT,i =
∑T

t=1 dt,i is the cumulative loss

of action i up to time T . It is assumed that the {dt,i}, the sequence of losses, is fixed in

advance for all i ∈ F and t = 1, 2, . . . , but it is unknown to the decision maker a priori,

who only learns the values dt,i, i ∈ F after it has been selected. It is also assumed that the

decision maker has access to a sequence U1,U2, . . . of independent random variables with

uniform distribution over the interval [0, 1], and its decision it at time step t depends only on

Ut = (U1, . . . ,Ut) and dτ,i, τ = 1, . . . , t− 1, i ∈ F .

A well-known solution to this problem (which is optimal under various conditions) is the

EWA prediction method that, at time step t, chooses action i with probability proportional to

e−ηtDt−1,i for some sequence of positive step size parameters {ηt}Tt=1 [2]–[4].2 It can be shown

(using techniques developed in [17], [18]) that if ηt+1 ≤ ηt for all t then the average expected

regret of this algorithm satisfies E [RT ] ≤
∑T

t=1 ηt/(8T )+lnN/(ηTT ), hence setting the step

sizes ηt = 2
√
lnN/t one obtains E [RT ] ≤

√
lnN/T (here the expectation is taken with

respect to the randomizing sequence UT ).

2EWA is probably the best-known algorithm for the sequential prediction problem considered here, also known as the

problem of prediction with expert advice. It is a special case of both generally used approaches to solve such problems,

the follow the regularized leader and the mirror descent algorithms. In the lossless data compression scenario, when the

predictions and experts define probability distributions for a source sequence, and the loss is measured as the negative

logarithm of the probability of the observed symbol, EWA is just the Bayesian mixture predictor for the models defined by

the experts. For more details, see, e.g., [16].
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Algorithm 1 The modified Shrinking Dartboard algorithm

1) Set ηt > 0 with ηt+1 ≤ ηt for all t = 1, 2, . . ., η0 = η1, and D0,i = 0 for all actions

i ∈ F .

2) for t = 1, . . . , T do

a) Set wt,i =
1
N
e−ηtDt−1,i for all i ∈ F .

b) Set pt,i =
wt,i

∑N
j=1 wt,j

for all i ∈ F .

c) Set ct = e(ηt−ηt−1)(t−2).

d) With probability ct
wt,it−1

wt−1,it−1
, set it = it−1 if t ≥ 2, that is, do not change expert;

otherwise choose it randomly according to the distribution {pt,1, . . . , pt,N}.

e) Observe the losses dt,i and set Dt,i = Dt−1,i + dt,i for all i ∈ F .

end for

While the EWA algorithm may choose a different action in each time step, in certain cases

(e.g., in the coding scenario described in this paper) switching from one action to another has

some extra cost, and so preference should be given to action sequences with fewer switches.

The SD algorithm [14] addresses this problem and provides the same performance guarantee

as EWA while controlling the number of switches between different actions, that is, the

number of time instants when it 6= it−1. A modified version of this prediction method, called

the modified SD (mSD) algorithm, is shown in Algorithm 1. The difference between the SD

and the mSD algorithms is that mSD is horizon independent, which is achieved by introducing

the constant ct in the algorithm (setting ηt ≡ η the mSD algorithm reduces to SD).

To see that the mSD algorithm is well-defined we have to show that ct
wt,i

wt−1,i
≤ 1 for all t

and i. For t = 1, the statement follows from the definitions, since c1 = 1. For t ≥ 2 it follows

since
wt,i

wt−1,i

=exp (ηt−1Dt−2,i − ηtDt−1,i)

= exp ((ηt−1 − ηt)Dt−2,i − ηtdt−1,i)

≤ exp ((ηt−1 − ηt) (t− 2)) = 1/ct.

Note that the only difference between the mSD and the EWA prediction algorithms is the

presence of the first random choice in step 2d of mSD: while the EWA algorithm chooses

a new action in each time step t according to the distribution {pt,1, . . . , pt,N}, the mSD

algorithm sticks with the previously chosen action with some probability. By precise tuning

of this probability, the method guarantees that actions are changed over time only at most

O(
√
T ) times in T time steps, while maintaining the same marginal distributions over the

actions as the EWA algorithm. The latter fact guarantees that the expected regret of the

two algorithms are the same; in particular, the same parameter setting gives the optimal

O(
√

lnN/T ) expected regret.

In the following we formalize the above statements concerning the mSD algorithm. We

state two results crucial for the analysis of the coding scheme that we will propose in the

next section. Since the proofs are obtained by minor modifications of existing results, they

are deferred to the appendix.
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The first lemma shows that the marginal distributions generated by the mSD and the EWA

algorithms are the same. The lemma is obtained by a slight modification of the proof Lemma 1

in [14].

Lemma 1: For all t = 1, 2, . . . and i ∈ F , the mSD algorithm selects action i at time t

with probability pt,i, that is, P [it = i] = pt,i.

As a consequence of this result, the expected regret of mSD matches that of EWA, so the

performance bound of EWA, mentioned in the previous section, holds for the mSD algorithm

as well [14, Lemma 2]). That is, the following result can be obtained by a slight modification

of the proof of [17, Lemma 1] for EWA (the same bound for the specific time-dependent

choice of ηt discussed after the lemma follows directly as a special case of [18, Theorem 2]).

Lemma 2: For any T ≥ 1, the expected average regret of the mSD algorithm can be

bounded as

E [RT ] ≤
T∑

t=1

ηt
8T

+
lnN

TηT
.

Setting ηt =
√

8 lnN/T optimally (as a function of the time horizon T ), the bound becomes√
lnN/(2T ), while setting ηt = 2

√
lnN/t independent of T , we have E [RT ] ≤

√
lnN/T

(here we used
∑T

t=1 1/
√
t ≤ 2

√
T and optimized the constant in setting ηt = const

√
lnN/t).

Let ST = |{t : it 6= it−1, 1 < t ≤ T}| denote the number of times the mSD algorithm

switches between different actions. The next lemma, which is a slightly improved and gen-

eralized version of Lemma 2 from [14] gives an upper bound on ST .

Lemma 3: The expected number of times the mSD algorithm switches between different

actions in T time steps can be bounded as

E [ST ] ≤ min

{
ηTD

∗
T−1 + lnN +

T−1∑

t=2

(ηt − ηT ),
T∑

t=2

(2ηt − ηT )

}
, (1)

where D∗
T−1 = mini∈F DT−1,i.

The second expression in the above minimum is better by a lnN term when all the ηt are

the same and D∗
T−1 is bounded by T − 1, but the first expression is preferable for the typical

time-varying ηt. In particular, for ηt =
√
lnN/T , we have E [ST ] ≤

√
T lnN , while setting

ηt = 2
√
lnN/t, we obtain E [ST ] ≤ 4

√
T lnN + lnN (using again

∑T
t=1 1/

√
t ≤ 2

√
T ).

III. LIMITED-DELAY LIMITED-MEMORY SEQUENTIAL SOURCE CODES

A fixed-rate delay-δ (randomized) sequential source code of rate lnM is defined by an

encoder-decoder pair connected via a discrete noiseless channel of capacity lnM . Here δ is

a nonnegative integer and M ≥ 2 is a positive integer. The input to the encoder is a sequence

x1, x2, . . . taking values in some source alphabet X . At each time instant t = 1, 2, . . ., the

encoder observes xt and a random number Ut, where the randomizing sequence U1,U2, . . .

is assumed to be independent with its elements uniformly distributed over the interval [0, 1].

At each time instant t+ δ, t = 1, 2, . . ., based on the source sequence xt+δ = (x1, . . . , xt+δ)

and the randomizing sequence Ut = (U1, . . . ,Ut) received so far, the encoder produces a

channel symbol yt ∈ {1, 2, . . . ,M} which is then transmitted to the decoder. After receiving
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yt, the decoder outputs the reconstruction value x̂t ∈ X̂ based on the channel symbols

yt = (y1, . . . ,yt) received so far, where X̂ is the reconstruction alphabet.

Formally, a delay-δ (randomized) sequential source code of rate lnM is given by a sequence

of encoder-decoder functions (f, g) = {ft, gt}∞t=1, where

ft : X t+δ × [0, 1]t → {1, 2, . . . ,M}

and

gt : {1, 2, . . . ,M}t → X̂

so that yt = ft(x
t+δ,Ut) and x̂t = gt(y

t), t = 1, 2, . . .. Note that the total delay of the

encoding and decoding process is δ.3 To simplify the notation we will omit the randomizing

sequence from ft(·,Ut) and write ft(·) instead.

We will denote by F δ the collection of all deterministic delay-δ sequential source codes

of rate lnM . Similarly to [5], we will consider decoders of limited memory. A decoder {gt}
is said to be of memory s ≥ 0 if gt(ŷ

t) = gt(ỹ
t) for all t and ŷt, ỹt ∈ {0, . . . ,M}t such that

ŷtt−s = ỹtt−s, where ŷtt−s = (ŷt−s, ŷt−s+1, . . . , ŷt) and ỹtt−s = (ỹt−s, ỹt−s+1, . . . , ỹt). In what

follows, F δ
s will denote the class of codes in F δ whose decoders are of memory s.

Now let F ⊂ F δ be a finite set of reference codes with |F| = N . Note that here

we implicitly made the simplifying assumption that F contains only deterministic coding

schemes. This assumption is only used for notational convenience: all of our results can easily

be extended to randomized reference coding schemes (which use independent randomization)

by conditioning on the randomization used by the reference codes and applying our results

to the resulting deterministic schemes.

The cumulative distortion of a sequential scheme after reproducing the first T symbols is

given by

D̂T (x
T+δ) =

T∑

t=1

d(xt, x̂t),

where d : X×X̂ → [0, 1] is some distortion measure,4 while the minimal cumulative distortion

achievable by codes from F is

D∗
F(x

T+δ) = min
(f,g)∈F

T∑

t=1

d
(
xt, gt(y

t)
)

where the sequence yT is generated sequentially by (f, g), that is, yt = ft
(
xt+δ

)
. Of course,

in general it is impossible to come up with a coding scheme that attains this distortion without

knowing the whole input sequence beforehand. Thus, our goal is to construct a coding scheme

that asymptotically achieves the performance of the above encoder-decoder pair. Formally this

3Although we require the decoder to operate with zero delay, this requirement introduces no loss in generality, as any

finite-delay coding system with δ1 encoding and δ2 decoding delay (described in Section I) can be represented equivalently

in this way with δ1 + δ2 encoding and zero decoding delay [5].
4All results may be extended trivially for arbitrary bounded distortion measures.
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means that we want to obtain a randomized coding scheme that minimizes the worst-case

expected normalized distortion redundancy

R̂T = max
xT+δ∈XT+δ

1

T

{
E

[
D̂T

(
xT+δ

)]
−D∗

F
(
xT+δ

)}
,

where the expectation is taken with respect to the randomizing sequence UT of our coding

scheme.

Weissman and Merhav [5] proved that there exists a randomized coding scheme such that,

for any δ ≥ 0 and s ≥ 0 and for any finite class F ⊂ F δ
s of reference codes, the normalized

distortion redundancy with respect to F is of order T−1/3 ln2/3 |F|. This coding scheme splits

the source sequence into blocks of length O(T 1/3). At the beginning of each block a code

is selected from F using EWA prediction and the identity of the selected reference decoder

function is communicated to the decoder. During these first steps, the decoder emits arbitrary

reproduction symbols, while the chosen code is used in the rest of the block. The formation

of the blocks ensures that only a limited fraction of the available channel capacity is used for

describing codes, while the limited memory property ensures that not transmitting real data

at the beginning of each block has only a limited effect on decoding the rest of the block.

IV. THE ALGORITHM

Next we describe a coding scheme, based on the mSD prediction algorithm, that adaptively

creates blocks of variable length such that on the average O(
√
T ) blocks are created, and so the

overhead used to transmit code descriptions scales with
√
T instead of T 2/3 in [5]. Assuming

a finite, non-empty reference class F ⊆ F δ
s , our coding scheme, given in Algorithm 2, works

as follows.

At each time instant t the mSD algorithm selects one code (f (t),g(t)) from the finite

reference class F , and the loss associated with a code (f, g) ∈ F at this time instant is

defined by

dt,(f,g)(x
t+δ) = d

(
xt, gt

(
yt
))

(2)

where yt is the sequence obtained by using the coding scheme (f, g) to encode xt, that is,

yt = ft(x
t+δ) for all t (note that dt,(f,g) can be computed at the encoder at time t + δ). The

mSD algorithm splits the time into blocks [1, t1], [t1 + 1, t2], [t2 + 1, t3], . . . in a natural way

such that the decoder function of the reference code chosen by the algorithm is constant over

each block, that is, g(ti+1) = g(ti+2) = · · · = g(ti+1) and g(ti) 6= g(ti+1) for all i (here we

used the convention t0 = 0). Since the beginning of a new block can only be noticed at the

encoder, this event has to be communicated to the decoder. In order to do so, we select a

new-block signal v of length A (that is, v ∈ {1, . . . ,M}A), and v is transmitted over the

channel in the first A time steps of each block. In the next B time steps of the block the

identity of the decoder function chosen by the mSD algorithm is communicated, where

B =

⌈
ln |{g : (f, g) ∈ F}|

lnM

⌉
(3)

is the number of channel symbols required to describe uniquely all possible decoder functions.

In the remainder of the block the selected encoder is used to compress the source symbols.
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On the other hand, whenever the decoder observes v in the received channel symbol

sequence yt, it starts a new block. In this block the decoder first receives the index of

the reference decoder to be used in the block, and the received reference decoder is used

in the remainder of the block to generate the reproduction symbols. One slight problem

here is that the new-block signal may be obtained by encoding the input sequence; in this

case, to synchronize with the decoder, a new block is started at the encoder. We can keep

the loss introduced by these unnecessary new blocks low by a careful choice of the new-

block signal. Clearly, if v is selected uniformly at random from {1, 2, . . . ,M}A then for

any fixed string u ∈ {1, 2, . . . ,M}A, P [v = u] = 1/MA. Thus, setting A = O(lnT ) makes

P [v = u] = O(1/T ), and so the expected number of unnecessary new blocks is at most a

constant in T time steps. However, this does not hold if v is not selected independently of u,

for example, if the beginning of u is a postfix of v. As an illustration, consider the case when

v is the all-one vector: then, after its transmission, the probability that the last A symbols

equal v is increased for A− 1 steps. To avoid these situations, we ensure that no new-block

signal is sent too soon after another one has been transmitted; specifically, we wait B+A−1

steps, and so the receiver does not have to check for the new-block signal for B + A − 1

steps after one is received. We use B steps to transmit the decoder function index and A− 1

steps to ensure that when the receiver first checks for a new-block signal, it is completely

independent of the new-block signal (note that since the starting position of the blocks may

depend on v, so do the symbols transmitted in the decoder function index).

In summary, the algorithm works in blocks of variable length as follows: At the beginning

of the block an algorithm is selected using the mSD prediction algorithm and a new-block

signal and the identity of the chosen decoder function is communicated to the receiver. In

the next time steps, as long as the mSD algorithm selects the same decoder function, the

chosen code is used to encode the source symbols at the sender and used for decoding at the

receiver. When the mSD method selects a different decoder function, or a new-block signal

is transmitted by chance, a new block is started both at the encoder and the decoder. Note

that the encoder and the decoder use a slightly different blocking: the blocks of the encoder

start with a new-block signal, while the blocks on the decoder side end with the new-block

signal. The method is shown in Algorithm 2.

The next theorem gives a bound on the performance of our proposed coding scheme.

Theorem 1: Let T ≥ 1 and ηt = η > 0 for all 1 ≤ t ≤ T . Then the expected normalized

distortion redundancy of Algorithm 2 for any finite, non-empty reference class F ⊂ F δ
s can

be bounded as

R̂T ≤ ln |F|
Tη

+ η

(
1

8
+ A+B + s

)
+

(A+B + s)(1 + T−A
MA )

T

where B defined in (3).

Setting the parameters of the algorithm appropriately, we immediately see that the normal-

ized distortion redundancy of the proposed scheme becomes O(
√
ln(T )/T ):

Corollary 1: Let F ⊂ F δ
s be a finite, non-empty reference class of delay-δ memory-s



IEEE TRANSACTIONS ON INFORMATION THEORY, to appear, 2014 10

Algorithm 2 A near-optimal algorithm for adaptive sequential lossy source coding

Encoder:

1) Input: A finite, non-empty reference class F ⊂ F δ
s , positive integer A, and time horizon

T .

2) Initialization

a) Draw a new-block signal v uniformly at random from {1, . . . ,M}A, the set of

channel symbol sequences of length A.

b) Initialize the mSD algorithm for F and set B according to (3).

3) For each block do

a) Observe xt+δ.

b) For all time instants (t+ δ) run the mSD algorithm:

i) Feed the mSD algorithm with losses dt,(f,g)(x
t+δ) for each code (f, g) ∈ F .

ii) Let (f (t),g(t)) denote the choice of the mSD algorithm.

c) In the first A time steps of the block transmit v.

d) After the first A time steps set (f ,g) = (f (t),g(t)), the output of the mSD algorithm

in this time step.

e) In time steps A+ 1, . . . , A+B of the block send the index describing g.

f) If (t + δ) belongs to steps A + B + 1, A + B + 2, . . . , 2A + B − 1 of the block

then

i) if g(t) = g then transmit yt = ft(x
t+δ)

ii) else start a new block with the same time index;

g) If (t + δ) belongs to steps 2A + B, 2A + B + 1, . . . of the block then if

(yt−A+1, . . . ,yt) = v then start a new block and declare the current time instant

as the Ath step of the new block.

Decoder:

1) Input: A finite, non-empty reference class F ⊂ F δ
s , positive integers A, B, time horizon

T .

2) For t = 1, . . . , A

a) Observe yt and output an arbitrary symbol x̂t ∈ X̂ .

b) At time t = A set v = yA and declare a new block.

3) For each block do

a) Observe yt.

b) In the first B time steps of the block receive the index of the decoder to be used

and output an arbitrary symbol x̂t ∈ X̂ . At time step B of the block set the

decoder g according to the symbols received so far.

c) In time steps B + 1, B + 2, . . . of the block output x̂t = g(yt) = g(yt
t−s+1).

d) In time steps A + B,A + B + 1, . . . of the block declare a new block if

(yt−A+1, . . . ,yt) = v.
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codes, and, for time horizon T ≥ 1, set A = ⌈lnT/ lnM⌉ and

ηt = η =

√√√√ ln |F|
T
(

17
8
+ ln(T |F|)

lnM
+ s
) (4)

for all 1 ≤ t ≤ T . Then the expected normalized distortion redundancy of Algorithm 2 can

be bounded as

R̂T ≤ 2

√
ln |F|
T

(
17

8
+

ln(T |F|)
lnM

+ s

)
+O

(
ln(T |F|)

T

)
.

Remark (Unknown time horizon): In the above, the parameters A =
⌈

lnT
lnM

⌉
and η = O(1/

√
T lnT )

have been set as a function of the time horizon T . The proposed algorithm can be modified to

be strongly sequential in the sense that it becomes horizon-independent, that is, its parameters

do not depend on T . The simplest way to achieve this is to use the so-called doubling trick

[16], by running the algorithm from scratch over time intervals of known, exponentially

increasing (doubling) lengths. A more preferable way to achieve strong sequentiality is to

smoothly modify the algorithm over time while avoiding resets. This can be done by setting

ηt to depend on t instead of T , and by introducing a new-block signal whose length increases

over time (independently of the unknown time horizon T ). At time instant t + δ, the length

of the new-block signal is set to At =
⌈

ln t
lnM

⌉
, and its symbols are transmitted at fixed time

instants t+ δ = Mk−1, k = 1, 2, . . .. That is, at time instant Mk−1, the kth symbol vk of the

new-block signal is selected uniformly at random (independently of any other randomization

used beforehand in the coding process) and is transmitted to the decoder as yMk−1 = vk.

The other parts of the coding process skip these time instants, that is, they are not concerned

with encoding and decoding source symbols, nor with the transmission or reception of new-

block signals. When encoding xt time instants Mk−1 < t < Mk, the coding scheme uses the

length-At new-block signal vAt = (v1, . . . ,vAt
) (note that At = k for the selected values of

t). Setting ηt = O(1/
√
t ln t), it can be shown that the modified algorithm has only a constant

time larger regret than the original, horizon-dependent one.

Proof of Theorem 1: Let x̂(f,g),1, . . . , x̂(f,g),T denote the reproduction sequence generated

by the reference code (f, g) ∈ F when applied to the source sequence xT , and let x̃t =

x̂(f (t),g(t)),t. That is, x̃T is the reproduction sequence our coding scheme would generate if it

did not have to transmit the identity of the chosen reference decoder, and the correct past s

symbols were also available at the decoder (in the current setting when the reference decoder

changes we have to wait s channel symbols to have the decoder operating correctly, as it may

require s past symbols due to its memory).

Decomposing the cumulative distortion we get

T∑

t=1

dt(xt, x̂t) =
∑

t:1≤t≤T,x̂t=x̃t

dt(xt, x̃t) +
∑

t:1≤t≤T,x̂t 6=x̃t

dt(xt, x̂t)

≤
T∑

t=1

dt,(f (t),g(t))(x
t+δ) + |{t : x̂t 6= x̃t, 1 ≤ t ≤ T}| .

(5)
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The expectation of the first term can be bounded using Lemma 2 as

E

[
T∑

t=1

dt,(f (t),g(t))(x
t+δ)

]
≤ D∗

F(x
T+δ) +

ln |F|
ηT

+
T∑

t=1

ηt
8

= D∗
F(x

T+δ) +
ln |F|
η

+
ηT

8
.

(6)

It is easy to see that x̂t 6= x̃t may happen only at the first A + B + s steps of each block.

Indeed, if the mSD algorithm does not change the code to be used in the first A + B + s

steps of the block, the receiver becomes completely synchronized and so it decodes x̂t 6= x̃t

from step A + B + s + 1. If mSD decides to change the code before step A + B + s + 1,

the length of the block is at most A+B + s. New blocks are started at the beginning of the

communication, and when either the mSD algorithm decides to start one, or when a new-

block signal is transmitted by chance. It may also happen that when the encoder starts to

transmit a new-block signal, the receiver encounters an unintentional new-block signal whose

last symbols are the first symbols of the just transmitted new-block signal; in this case the

new block is started as planned, only this happens with less overhead communication. We

consider this case as an “intentionally” started block. Letting ST and NT denote the number

of new blocks, up to time T , started “intentionally” by the mSD algorithm (except for the

first block) and, respectively, “unintentionally” by chance (starting a new block in step 3g of

the encoding algorithm), we have

|{t : 1 ≤ t ≤ T, x̃t 6= x′
t}| ≤ (ST + 1 +NT ) (A+B + s). (7)

ST can be bounded by η(T − 1) using Lemma 3. To bound NT , the number of blocks

started unintentionally, consider the sequence ỹt = ft(x
t+δ), that is, the sequence of channel

symbols generated by the “idealized” coding scheme that does not need to transmit the new-

block signals and the identity of the decoder function, nor needs to worry about synchro-

nizing the decoder. Let nt = I{v=(ỹt−A+1,...,ỹt)} denote the indicator function of the event

v = (ỹt−A+1, . . . , ỹt). Then clearly NT ≤∑T
t=A nt, since unintentional new blocks may only

be started based on ỹT . Since v is independent of ỹt−1,

P [v = (ỹt−A+1, . . . , ỹt)] = 1/MA

for any A ≤ t ≤ T , and so

E [NT ] ≤ (T − A)/MA. (8)

Now taking expectations in (7), the second expression in Lemma 3 and (8) yield

E [|{t : 1 ≤ t ≤ T, x̂t 6= x̃t}|]

= (A+B + s)

(
η(T − 1) + 1 +

T − A

MA

)
.

Combining the above with (5) and (6) proves the statement of the theorem.
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V. SEQUENTIAL ZERO-DELAY SCALAR QUANTIZATION

An important and widely studied special case of the source coding problem considered is

the case of on-line scalar quantization, that is, the problem of zero-delay lossy source coding

with memoryless encoders and decoders) [1], [5], [7], [10]. Here we assume for simplicity

X = [0, 1] and d(x, x̂) = (x − x̂)2. An M -level scalar quantizer Q (defined on [0, 1]) is

a measurable mapping [0, 1] → C, where the codebook C is a finite subset of [0, 1] with

cardinality |C| = M . The elements of C are called the code points. The performance of Q

is measured by the squared distortion,5 and the instantaneous distortion of Q for input x is

defined as (x − Q(x))2. Without loss of generality we will only consider nearest neighbor

quantizers Q satisfying (x−Q(x))2 = minx̂∈C(x− x̂)2.

Let Q denote the collection of all M -level nearest neighbor quantizers. In this section our

goal is to design a sequential coding scheme that asymptotically achieves the performance

of the best scalar quantizer (from Q) for all source sequences xT . Note that the expected

normalized distortion redundancy in this special case is defined as

max
xT∈[0,1]T

1

T
E

[
T∑

t=1

(xt−x̂t)
2

]
−min

Q∈Q

1

T

T∑

t=1

(xt −Q(xt))
2.

To be able to apply the results of the previous section, we approximate the infinite class

Q with QK ⊂ Q, the set of M -level nearest neighbor scalar quantizers whose code points

all belong to the set
{

1
2K

, 3
2K

, . . . , 2K−1
2K

}
for some positive integer K. Note that the number

of quantizers in QK is |QK | =
(
K
M

)
. It is shown in [7] that the distortion redundancy of any

sequential coding scheme relative to Q is at least on the order of T−1/2. The next theorem

shows that the slightly larger O(T−1/2 lnT ) normalized distortion redundancy is achievable.

Theorem 2: Relative to the reference class Q, the expected normalized distortion redun-

dancy of Algorithm 2 applied to Q⌊
√
T ⌋ with appropriate parameters satisfies, for any T ≥ 2,

R̂T ≤
√

2M lnT

T

(
17

8
+
(M+2) lnT

2 lnM

)
+

1√
T

+O

(
M lnT

T

)

and the algorithm can be implemented with O(MT 2) time and O(T ) space complexity.

The theorem is obtained as a combination of the EWA-based efficient quantization scheme

of [7] with the mSD-based coding scheme of the previous section. Similar results could be

obtained by combining the “follow the perturbed leader”-based low-complexity quantization

scheme of [10] with a seldom changing version of the “follow the perturbed leader” prediction

method recently introduced in [15].

Proof: The proof is based on results developed in [7]. It is easy to see that for any

quantizer Q ∈ Q there exists a quantizer QK ∈ QK such that

max
x∈[0,1]

|(x−Q(x))2 − (x−QK(x))
2| ≤ 1/K.

5More general distortion measures could be considered in the same way as in [13, Section 5].
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Thus, in this sense, the class Q is well approximated by QK . Therefore, for any sequence

xT ∈ [0, 1]T ,

min
Q∈QK

1

T

T∑

t=1

(xt −Q(xt))
2 −min

Q∈Q

1

T

T∑

t=1

(xt −Q(xt))
2 ≤ 1

K
.

Applying Algorithm 2 to the reference class F = QK we obtain by Corollary 1 that the

normalized distortion redundancy relative to the class QK can be bounded as

max
xT∈[0,1]T

1

T
E

[
T∑

t=1

(xt − x̂t)
2 − min

Q∈QK

T∑

t=1

(xt −Q(xt))
2

]

≤ 2

√√√√ ln
(
K
M

)

T

(
17

8
+

ln
(
T
(
K
M

))

lnM

)
+O

(
ln
(
T
(
K
M

))

T

)
,

where we used that the size of the reference class QK is |QK | =
(
K
M

)
and that scalar

quantization is memoryless, that is, s = 0. Combining the above results and substituting K =

⌊
√
T ⌋ gives the performance bound of the theorem, taking into account that

(⌊√T ⌋
M

)
≤ TM/2

and, for all T > 1, 1/K = 1/⌊
√
T ⌋ < 1/(⌊

√
T ⌋ − 1) = 1/

√
T +O(1/T ).

It is shown in [7] that the random choice of a quantizer according to the EWA prediction

algorithm in one time step can be performed with O(MK2) time and O(K2) space complexity

(in essence, the quantization problem is traced back to the online shortest path problem,

as explained in [13]). Applying the same method in our algorithm we obtain the desired

complexity results (also note that one quantization step requires O(lnK) operations).

Remark (Complexity of the algorithm): One may think that most operations in the im-

plementation of the encoder of Algorithm 2 for the online quantization problem are spent

on choosing the quantizer, and since here we only need to choose O(
√
T ) quantizers on

expectation, the required time complexity may be reduced. However, this is not exactly the

case: in each time step of the algorithm, O(K2) operations are needed to update some weights

corresponding to the cumulative distortion of possible cells of the quantizers belonging to QK

(K = ⌊
√
T ⌋), and O(MK2) operations are used to randomly choose a quantizer according

to EWA. The random choice in mSD whether the previous quantizer Qt−1 should be kept

at time t only requires to determine the distortion of Qt−1 on the last source symbol, since

ctwt,Qt−1/wt−1,Qt−1 = e−ηd(xt−1,Qt−1(xt−1)), which can be computed in constant time since

Qt−1(xt−1) is already known at the beginning of time step t. Thus, since the expected number

of blocks is bounded by η(T − 1) + 2, and using that η = O(
√
lnM/T ) by (4), the overall

expected computational complexity of the scheme is O(TK2+MK2
√
T lnM), which is still

O(T 2). However, we can use another trick from [7] to reduce complexity on the price of

slightly increasing the distortion redundancy. The idea is that the source sequence xT can be

pre-quantized using a uniform K level quantizer, that is xt = Q̂K(xt) where Q̂K is a uniform

K-level quantizer on [0, 1], and xT is encoded using Algorithm 2. This introduces only a

2/K ≤ 2/(
√
T − 1) term in the normalized distortion redundancy, since for any quantizer

Q ∈ Q,

max
x∈[0,1]

∣∣(x−Q(x))2 − (x−Q(x))2
∣∣ ≤ 1

K
.
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The advantage of working with xT instead of xT is that in this case the histogram of xt can be

updated in constant time in every time step t, and the cell weights can be computed from the

histogram in O(MK2) time whenever a new block starts and a new quantizer has to be chosen

by EWA. In this way, since we still need to encode each xt in O(lnK) time, the expected

total computational complexity of the algorithm becomes O(T lnK + MK2
√
T lnM) =

O(T 3/2M
√
lnM).

VI. EXTENSIONS

In the previous sections we assumed that the encoder and the decoder communicate over

a noiseless channel. Following Matloub and Weissman [11], we can extend the results to the

case of stochastic channels with positive error exponents. We assume that the communication

channel has finite memory r for some integer r ≥ 0, and its output also depends on some

stationary noise process . . . , Z−1, Z0, Z1, . . . with known distribution such that if the channel

input up to time t is yt for some t ≥ r, then the output of the channel is a function of ytt−r+1

and Zt. Moreover, it is assumed that for some rate R > 0 there exists a constant σ > 0

such that for any block length b there exists a channel code Cb that can discriminate ⌊ebR⌋
messages with maximum error probability e−σb in b channel uses. These assumptions are not

restrictive and hold for all channels with positive capacity and error exponent.

Formally, denoting the channel input and output alphabet by M = {1, . . . ,M} and M̂,

a delay-δ sequential joint source-channel code is given by a sequence of encoder-decoder

functions (f, g) = {ft, gt}∞t=1 with ft : X t+δ × [0, 1]t → M and gt : Mt → X̂ . Matloub

and Weissman [11] used a channel code Cb (minimizing the maximum error probability) to

communicate the decoder function at the beginning of each block, as well as replaced the

distortion dt,(f,g)(x
t+δ) with its expectation d̄t,(f,g)(x

t+δ) = E
[
dt,(f,g)(x

t+δ)
]
. Note that the

randomness in dt,(f,g)(x
t+δ) is only due to its dependence on Zt; in particular, dt,(f,g)(x

t+δ)

and Ut are independent. Also note that d̄t,(f,g)(x
t+δ) can be computed at the encoder at time

step t+ δ since the distribution of Zt is known. In our case a further modification is needed,

as the new-block signal also has to be communicated using channel coding.

Thus, we need to do the following modifications in Algorithm 2 to make it suitable

for the joint source-channel coding scenario: First, in step 3(b)i of the encoder in Algo-

rithm 2, dt,(f,g)(x
t+δ) has to be replaced with d̄t,(f,g)(x

t+δ). Furthermore, during the whole

communication process, the new-block signal v and the indices of the decoder functions g

are transmitted using channel coding, with codes CA and CB, respectively. These codes are

used at the decoder to identify the beginning of a new block and determining the decoder

function. Accordingly, the new-block signal v is selected uniformly at random from the set

{1, 2, . . . , ⌊eAR⌋}, and ⌊eBR⌋ ≥ |{g : (f, g) ∈ F}|. Note that before each use of the channel

code CA, the encoder uses r symbols to reset the memory of the channel, that is, transmitting

the new-block signal actually takes A + r time steps. For simplicity, assuming r ≤ A, after

the receipt of the new block signal, the last r symbols are both known to the encoder and the

decoder, so the transmission of the index of the decoder function can be started immediately,

using the channel code CB. Furthermore, unlike to the noiseless channel case, the encoder

is not able to determine if the decoder would receive a new-block signal by chance, since it
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depends on the channel noise; therefore, we omit step 3g of the encoding algorithm. While

this modification makes the algorithm simpler, it can also ruin its performance if such an

accident occurs since the scheme has no built-in method to recover from such an error.

However, by a careful selection of the new-block signal, we can guarantee that this disaster

happens only with very small, specifically O(1/T 2) probability. Similarly, we set A and B

large enough so that the probability of incorrectly decoding a single new-block signal or code

index also becomes O(1/T 2). It is straightforward to modify the algorithm so that it can avoid

such complete failures by communicating the identity of the decoding schemes in O(
√
T )

additional deterministically chosen time windows. The analysis of this modified algorithm is

straightforward, and is omitted to preserve clarity.

By analyzing the performance of the above coding scheme with appropriately set pa-

rameters, the next theorem shows that O(
√

ln(T )/T ) normalized distortion redundancy is

achievable in the joint source-channel coding problem:

Theorem 3: Let F be a finite, non-empty class of delay-δ memory-s sequential joint

source-channel codes. Then, for any time horizon T ≥ 1, under our assumptions on the

communication channel with r ≤ ⌈2 lnT/min{σ,R}⌉, the expected normalized distortion

redundancy of the above coding scheme relative to F , with appropriate parameter settings,

satisfies

R̂T ≤
√

1

T

((
4
σ
+ 2

R

)
lnT + ln(|F|+1)

R
+ r + s+ 17

8

)
ln |F|+ 3

2T
.

Remark (Wyner-Ziv setting): Before giving the proof of the theorem, let us discuss the

implication of the above result to the Wyner-Ziv setting considered by Reani and Merhav

[12]. In this problem there is a noiseless communication channel between the encoder and

the decoder, and the decoder also has access to a side information signal that is a noisy

observation of the current source symbol xt through a memoryless channel. This setup can

be treated as a special case of the above joint source channel coding problem with a restricted

set of encoders and a special channel: the channel is composed of a noiseless part and a noisy

side information channel, and each encoder has to transmit the actual source symbol uncoded

over the side information channel. In fact, this setup is simpler, as there is no need to use

error protection for communicating the indices of the decoders and the new-block signals;

however, replacing dt by d̄t is still necessary. Thus, the above O(
√
ln(T )/T ) normalized

distortion redundancy is also achievable in this case. Moreover, Reani and Merhav also gave

an efficient implementation for the zero-delay scalar quantization case based on an efficient

implementation of the EWA algorithm. This efficient algorithm can easily be incorporated in

our method in the same way as the efficient algorithms for scalar quantization (provided by

[7], [13]) were used in Section V.

Proof of Theorem 3: The proof follows very closely the proof of Theorem 1, so we will

emphasize the differences and skip some details. As in the proof of Theorem 1, defining {x̂T}
to be the real reproduction sequence, and x̃t = x̂(f (t),g(t)),t to be the idealized reproduction

sequence, the decomposition (5) of the regret obviously holds in the joint source-channel



IEEE TRANSACTIONS ON INFORMATION THEORY, to appear, 2014 17

coding scenario considered. That is,

T∑

t=1

dt(xt, x̂t) ≤
T∑

t=1

dt,(f (t),g(t))(x
t+δ) + |{t : x̂t 6= x̃t, 1 ≤ t ≤ T}| . (9)

Since
(
f (t),g(t)

)
are obtained using mSD with the losses dt,(f,g)(x

t+δ), Lemma 2 implies

E

[
T∑

t=1

d̄t,(f (t),g(t))(x
t+δ)

]
≤ D

∗
F(x

T+δ) +
ln |F|
η

+
ηT

8
(10)

with

D
∗
F(x

T+δ) = min
(f,g)∈F

T∑

t=1

d̄t,(f,g)(x
t+δ) = min

(f,g)∈F
E

[
T∑

t=1

dt(xt, gt(y
t))

]
,

where yt = ft(x
t+δ) for all t ≥ 1. Combining (9) and (10), we see that to bound the distortion

redundancy, we need to analyze the expectation of the last term in (9). This term is influenced

by the communication overhead for conveying the identity of the decoder function, as well

as by errors in the communication, that is, incorrectly determining the blocks and making an

error in decoding the identity of the decoder function. Let Bt denote the event that a new

block is started at the encoder at time t. Let Et,nb denote the event that the corresponding

new-block signal is decoded incorrectly; and let Et,i denote the event that the decoder function

to be used in the block is determined incorrectly. Note that E1,nb means that the new-block

signal is incorrectly decoded at the beginning of the whole communications process, while,

for t ≥ 2, Et,nb means that a new-block is not noticed at the decoder given that E1,nb does not

hold (i.e., the new-block signal is correctly known at the decoder). By our assumptions on the

channel code, P [Et,nb| Bt] ≤ e−σA and P [Et,i| Bt] ≤ e−σB. The other source of error in the

decoding process is the event that the decoder mistakenly declares a new block by decoding

the last A symbols seen on the channel by CA to v. If the decoder correctly identifies all

blocks before, the last A symbols are independent of v, and so, as in the noiseless case, the

probability of finding a new-block signal when the encoder has not sent one is bounded by

1/⌊eAR⌋. Using the pessimistic bound that x̂t 6= x̃t after any of the above errors occur, and

taking into account that if a block is transmitted correctly, x̂t 6= x̃t happens at most in the

first r + A+B + s steps of the block , we obtain the following bound

E [|{t : x̂t 6= x̃t, 1 ≤ t ≤ T}|]

≤
T∑

t=1

(T − t+ 1)

(
P [Bt] (P [Et,nb| Bt] + P [Et,i| Bt]) +

1

⌊eAR⌋

)

+
T∑

t=1

P [Bt] (r + A+B + s)

≤
T∑

t=1

(T − t+ 1)
(
e−σA + e−σB + 1/(eAR − 1)

)
+ E [ST ] (r + A+B + s)

≤
(
e−σA + e−σB +

1

eAR − 1

)
T (T − 1)

2
+ η(T − 1) (r + A+B + s) (11)
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Now selecting

A =

⌈
2 lnT

min{σ,R}

⌉
and B =

⌈
max

{
2 lnT

σ
,
ln(|F|+ 1)

R

}⌉

ensures that the first term in (11) is bounded by 3/2, and using max{a, b} ≤ a+b for a, b ≥ 0,

we get

E [|{t : x̂t 6= x̃t, 1 ≤ t ≤ T}|] ≤ 3/2 + ηT
((

4
σ
+ 2

R

)
lnT + ln(|F|+ 1)/R + r + s+ 2

)
.

Combining this inequality with (9) and (10) we obtain that the expected normalized distortion

redundancy can be bounded as

R̂T ≤ ln |F|
Tη

+ η

((
4

σ
+

2

R

)
lnT +

ln(|F|+ 1)

R
+ r + s+

17

8

)
+

3

2T
.

Optimizing over η proves the statement of the theorem.

VII. CONCLUSION

We provided a sequential lossy source coding scheme that achieves an O(
√

ln(T )/T )

normalized distortion redundancy relative to any finite reference class of limited-delay limited-

memory codes, improving the earlier O(T−1/3) results. Applied to the case when the refer-

ence class is the (infinite) set of scalar quantizers, we showed that the algorithm achieves

O(ln(T )/
√
T ) normalized distortion redundancy, which is almost optimal in view that the

normalized distortion redundancy is known to be at least of order 1/
√
T . The results were

also extended to joint source-channel coding and coding with side information at the decoder

(the Wyner-Ziv setting).

APPENDIX

A. Proof of Lemma 1

We will use the notation Wt =
∑

i∈F wt,i (note that Wt ≤ 1 for all t ≥ 1 since wt,i ≤ 1/N ).

We prove the lemma by induction on 1 ≤ t ≤ T . For t = 1, the statement follows from the

definition of the algorithm. Now assume that t ≥ 2 and the hypothesis holds for t − 1. We

have

P [it = i] = P [it−1 = i] ct
wt,i

wt−1,i

+ pt,i
∑

j∈F
P [it−1 = j]

(
1− ct

wt,j

wt−1,j

)

= pt−1,ict
wt,i

wt−1,i

+ pt,i
∑

j∈F
pt−1,j

(
1− ct

wt,j

wt−1,j

)

= ct
wt−1,i

Wt−1

wt,i

wt−1,i

+
wt,i

Wt

∑

j∈F

wt−1,j

Wt−1

(
1− ct

wt,j

wt−1,j

)

= ct
wt,i

Wt−1

+
wt,i

Wt

− ct
wt,i

Wt

Wt

Wt−1

=
wt,i

Wt

= pt,i.
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B. Proof of Lemma 2

Introduce the following notation:

w′
t,i =

1

N
e−ηt−1Dt−1,i ,

where Dt−1,i =
∑t−1

s=1 ds,i. Note that the difference between wt,i and w′
t,i is that ηt is replaced

by ηt−1 in the latter. We will also use W ′
t =

∑
i∈F w′

t,i. First, we have

1

ηt
ln

W ′
t+1

Wt

=
1

ηt
ln

∑
i∈F wt,ie

−ηtdt,i

Wt

=
1

ηt
ln
∑

i∈F
pt,ie

−ηtdt,i

≤ −
∑

i∈F
pt,idt,i +

ηt
8

= −E [dt,it ] +
ηt
8

where the next-to-last step follows from Hoeffding’s inequality (see, e.g., [16, Lemma A.1])6

and the fact that dt,i ∈ [0, 1], and the last equality is a consequence of Lemma 1. After

rearranging, we get

E [dt,it ] ≤ − 1

ηt
ln

W ′
t+1

Wt

+
ηt
8
.

Rewriting the first term on the right hand side, we obtain

E [dt,it ] ≤
(
lnWt

ηt
− lnWt+1

ηt+1

)
+

(
lnWt+1

ηt+1

− lnW ′
t+1

ηt

)
+

ηt
8
. (12)

The first term can be telescoped as

T∑

t=1

(
lnWt

ηt
− lnWt+1

ηt+1

)
=

lnW1

η1
− lnWT+1

ηT+1

≤ − lnwT+1,i

ηT+1

= − 1

ηT+1

ln
1

N
e−ηT+1DT,i = DT,i +

lnN

ηT+1

, (13)

for any i ∈ F , where we used that WT+1 ≥ wt+1,i and W1 = 1 since w1,j = 1/N by definition

for all j ∈ F . To deal with the second term, observe that

Wt+1 =
∑

i∈F

1

N
e−ηt+1Dt,i =

∑

i∈F

1

N

(
e−ηtDt,i

) ηt+1
ηt

≤
(∑

i∈F

1

N
e−ηtDt,i

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt ,

where we applied Jensen’s inequality to the concave function x
ηt+1
ηt , x ∈ R (the latter function

is concave since ηt+1 ≤ ηt by our assumptions). Taking logarithms in the above inequality,

we obtain
lnWt+1

ηt+1

− lnW ′
t+1

ηt
≤ 0.

6Hoeffding’s inequality states that if X is a random variable with a ≤ X ≤ b then the inequality lnE
[

esX
]

≤ sE [X] +

s2(b− a)2/8 holds for any real number s (see, e.g., [16, Lemma A.1]). The inequality is applied for a random variable X

with distribution P [X = −dt,i] = pt,i.
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This shows that the second term on the right hand side of (12) is non-positive. Thus, summing

up (12) for all t = 1, 2, . . . , T and using (13) we obtain

T∑

t=1

E [dt,it ] ≤ DT,i +
T∑

t=1

ηt
8
+

lnN

ηT+1

.

Finally, since the losses dt,i, i ∈ F and dt,it do not depend on ηT+1 for t ≤ T , we can choose,

without loss of generality ηT+1 = ηT , and the statement of the lemma follows.

C. Proof of Lemma 3

The probability of switching experts in step t ≥ 2 is

αt
def
= P [it−1 6= it] =

∑

i∈F
P [it−1 = i]

(
1− ct

wt,i

wt−1,i

)
(1− pt,i)

≤
∑

i∈F
P [it−1 = i]

(
1− ct

wt,i

wt−1,i

)
= 1−

∑

i∈F

wt−1,i

Wt−1

ct
wt,i

wt−1,i

= 1− ct
Wt

Wt−1

where the next-to-last equality is due to Lemma 1. Reordering gives Wt ≤ 1−αt

ct
Wt−1 and

thus

WT ≤ W1

T∏

t=2

1− αt

ct
=

T∏

t=2

1− αt

ct
.

On the other hand,

WT ≥ max
j∈F

wT,j = max
j∈F

1

N
e−ηTDT−1,j =

1

N
e−ηTD∗

T−1

where D∗
T−1 = minj∈F DT−1,j . Taking logarithms of both inequalities and putting them

together, we get

− lnN − ηTD
∗
T−1 ≤

T∑

t=2

ln(1− αt)−
T∑

t=2

ln ct.

Now using ln(1− x) ≤ −x for all x ∈ [0, 1), we obtain

E [ST ] =
T∑

t=2

αt ≤ ηTD
∗
T−1 + lnN −

T∑

t=2

ln ct.

Now the statement of the lemma for the first expression in the minimum in (1) follows since

−
T∑

t=2

ln ct =
T∑

t=2

(ηt−1 − ηt)(t− 2) =
T−1∑

t=2

(ηt − ηT ).

To prove that the second expression in (1) is also an upper bound on the expected number

of switches, we start with the following bound:

P [it = it−1] =
∑

i∈F
P [ it = i| it−1 = i]P [it−1 = i] ≥

∑

i∈F
ct

wt,i

wt−1,i

pt−1,i.
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The elements in the sum can be bounded as

ct
wt,i

wt−1,i

=exp

(
ηt−1Dt−2,i − ηtDt−1,i + (ηt − ηt−1) (t− 2)

)

=exp

(
(ηt−1 − ηt)Dt−2,i − ηtdt−1,i + (ηt − ηt−1) (t− 2)

)

≥ exp

(
(ηt − ηt−1) (t− 2)− ηt

)

≥1− ηt + (ηt − ηt−1) (t− 2),

for all i ∈ F , where we used 1 + x ≤ ex. Thus, using that
∑

i∈F pt−1,i = 1, we obtain

P [it 6= it−1] ≤ ηt + (ηt−1 − ηt) (t− 2).

Summing up for t = 2, . . . , T gives

E [ST ] =
T∑

t=2

P [it 6= it−1] ≤
T∑

t=2

ηt +
T∑

t=2

(ηt−1 − ηt) (t− 2)

=
T∑

t=2

ηt +
T−1∑

t=2

(ηt − ηT ) =
T∑

t=2

(2ηt − ηT ),

completing the proof.
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