
HAL Id: hal-01079278
https://hal.science/hal-01079278v1

Submitted on 31 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Syntax and Semantics interacting in a Minimalist theory
Maxime Amblard, Alain Lecomte, Christian Retoré

To cite this version:
Maxime Amblard, Alain Lecomte, Christian Retoré. Syntax and Semantics interacting in a Minimalist
theory. Prospect and advance in the syntax/semantic interface, Jan 2004, Nancy, France. �hal-
01079278�

https://hal.science/hal-01079278v1
https://hal.archives-ouvertes.fr


Syntax and Semantics interacting in a Minimalist theory

Maxime Amblard(a), Alain Lecomte(b), Christian Retoré(a)

Signes, INRIA-Futurs, Bordeaux

http://www.labri.fr/Recherche/LLA/signes

(a): et Université Bordeaux 1 & LaBRI-C.N.R.S.

(b): et Université Grenoble 2 & CLIPS IMAG-C.N.R.S.

1 Introduction

After several proposals of a logical account of minimalism [5, 4, 6, 1], on the basis of the
formalization provided by Edward Stabler [7, 8], we explore more precisely the interface
between syntax and semantics. The main idea is that, according to many observations made
for instance by Ray Jackendoff [3], the logical form is not the mere result of a derivation after
the consumption of formal features. Indeed, there are rather two tasks which are performed
on a par : the syntactic analysis properly speaking and the semantical analysis. Both analyses
are connected by synchronization links in such a way that a parse can crash for (at least) two
reasons : either because of a mismatch of syntactic features, or because of a failure in the
semantic derivation.

2 Rules for syntax

2.1 Rules

We assume the usual elimination rules for / and \, which are the rules of classical categorial
grammars. We consider that syntactic features are also linked together by means of a product
•, the rules of which are the following ones, where π1 and π2 are projections:

Γ ⊢ x : A ∆ ⊢ y : B
[i•]

Γ,∆ ⊢ (x, y) : A • B

Γ ⊢ w : A • B ∆, x : A, y : B,∆′ ⊢ z : C
[e•]

∆,Γ, ∆′ ⊢ let(x, y) = (π1(w), π2(w)) in z : C

Remark: if, like it seems natural, • is the product which gives / and \ as its residuates, then
it is of course non commutative and in the [e •]-rule, the hypotheses x: A and y:B must be in
that order and with no other hypothesis in between them. Let us have a look on the analysis
of the VP see a movie with the lexicon:

see : ⊢ /see/ : (acc\v)/d
a : ⊢ /a/ : (case • d)/n
movie : ⊢ /movie/ : n

1



Assuming that acc is a possible value for case and that therefore a type case • t can discharge
hypotheses acc (or nom or obl) and t, we obtain:

⊢ /a/ : (case • d)/n ⊢ /movie/ : n

⊢ /a movie/ : (case • d)

y : acc ⊢ y : acc

⊢ /see/ : (acc\v)/d x : d ⊢ x : d

x : d ⊢ /see/x : acc\v

y : acc, x : d ⊢ y/see/x : v

⊢ π1(/a movie/)/see/π2(/a movie/) : v

If a convention (playing the role of the distinction between strong and weak features) inter-
venes in order to determine the values of π1, π2 like for instance the fact that the phonetic
value of a dp goes to d when case is accusative and to case when it is nominative, then we
shall get:π1(/a movie/) = ǫ (the empty word) and π2(/a movie/)= /a movie/, from which
follows the deduction of

⊢ /see a movie/) : v

This analysis already shows our deductive interpretation of movement: Move corresponds
to the elimination of the product. Nevertheless, it is clear that if the product is non commu-
tative, then moves cannot cross each other. We are thus led to adopt a commutative product
with its only residuate, using / and \ as mere variants of the same linear logical implication,
only differing on labeling — one can also use the partially commutative calculus of Philippe
de Groote [2]. Let us ignore for a while the overgeneration problems such a solution may
entail (because from now on, any hypothesis of type h1 could be discharged at the same time
as an hypothesis of type h2 by a product type h1 • h2, and thus in any simple sentence, the
object could occupy the position of the subject and vice versa). We set the definition:

Definition 1 merge = [e \] or [e /] and move = [e •] where / and \ are the same residuate of the com-
mutative product •, simply labeled differently from each other with regards to the way they combine
phonetic features.

2.2 Proof normalization and derived rules

Theoretically, the product elimination steps may occur at any time (as soon as the hypotheses
to be discharged have been introduced). The rank of such steps does not matter with regards
to the final result. Practically, we shall assume that such steps occur immediately after the
needed hypotheses have been introduced. This amounts actually to using a derived rule
(with three premises):

Γ ⊢ w : A • B x : A ⊢ x : A y : B,∆ ⊢ z : C
[e•]3

Γ,∆ ⊢ let(x, y) = (π1(w), π2(w)) in z : C

2.3 Conditions on admissible proofs

Of course all the deductions we can draw in that system are not proper sentence derivations.
We previously suggested that with commutativity, the field is open to derivations of non
acceptable sentences, or sentences which have not the intended meanings (for instance Peter
loves Mary as having same meaning as Mary loves Peter!). We solve this problem by filtering
out the syntactic derivations by the semantic ones. This is done by constructing in parallel a
second derivation, based on formal semantic types. The steps of this second derivation must

2



be strictly synchronized with the steps of the first one. For instance, each merge-step in the
syntactic dimension corresponds to an application step in the semantic one.

3 A type-logical system for semantics

3.1 Semantic types and rules

For the time being, we limit ourselves to semantic types à la Montague, i.e. types based
on primitive types e and t by means of only one constructor: →, which corresponds to the
intuitionistic implication.

3.2 Correspondence between syntactic and semantic rules

3.2.1 Move and Cyclic Move

We consider two uses of the rule [e •]3: either the left premise is an extra-logical axiom,
or it is an instance of the identity axiom. In the first case a full syntactic object is inserted
(either a constituent or a lexical item), where as the second case corresponds to cyclic moves
(a hypothesis y replaces a previous one x). These two variants correspond to two semantic
rules, that we call RAISE and NORAISE, for the reason that the first one asumes a raised type
for the moved object while the second one only makes use of the flat (not raised) semantic
type.

∆ ⊢ z : T→U→V Γ ∪ [x : T ] ⊢ γ : U
[RAISE]

∆ ∪ Γ ⊢ z(λx.γ) : V

∆ ⊢ z : T Γ ∪ [x : T ] ⊢ γ : U
[NORAISE]

∆ ∪ Γ ⊢ (λx.γ)(z) : U

3.2.2 Head-Movement

In Chomskyan grammars, head-movement is exemplified by movement from V to I (when
verbs raise to their inflection) or from I to C (when auxiliaries raise to the Comp position in
interrogative sentences). For us, its formulation is:

Γ′ ⊢ α : A\B • τ(B) ∆ ∪ [x′ : A\B] ⊢ x′ : A\B Γ ∪ [x : τ(B)] ⊢ γ : B
[HM ]

Γ′,∆,Γ ⊢ α[ǫ/x]γ : A

Because the verbal semantics does not need to be lifted, we shall also use [NORAISE] as its
semantic counterpart.

3.2.3 Summary

Figure 3.2.2 sum up the correspondence between semantic and syntactic rules, and bewteen
semantic and syntactic types. The translation of syntactic features (like n, a, o) into various
semantic types will be clear in the next section. The label non-var means that an extra-logical
axiom is used to label the syntactic feature, whereas the label var means that the identity
axiom is used instead. This corresponds respectively to the case where the syntactic feature
definitely attracts an item (the movement ends up at this point) and to the case where the
item keeps on moving higher (and leftwards). The distinction between wh (Q) and wh (REL)
will be explained by means of examples.

3



Correspondence Syntax-Semantics

Syntax Semantics

ternary-[• E] (non var) [RAISE]

ternary-[• E] (var) [NORAISE]

[HM] [NORAISE]

[/ E] or [\ E] [→ E]

Correspondence Syntax-Semantics

Syntax Semantics

d e

n (non var) (esubj→t)→t

a (non var) (eobj→t)→t

o (non var) (eindobj→t)→t

wh (Q)(non var) (e→t)→t

wh (REL)(non var) (e→t)→((e→t)→(e→t))

n (var) esubj

a (var) eobj

o (var) eindobj

Figure 1: The Syntax-Semantics correspondence

3.2.4 Grammatical functions

We shall assume that objects enter verbal expressions before subjects, thus leading to give
transitive verbs the type eobj→(esubj→t) 1; thus the first np to combine with a transitive verb
is necessarily an object, and the second one the subject — this can be generalized to ditransitive
verbs.

The correct derivations (syntactic + semantic ones) concerning Peter kisses Mary are given
in figure 2 (applications of the [• E]-rule are indicated by vertical edges). The lexicon used
for this example is :

Peter k • d λP (e,t).P (Peter)

Mary k • d λP (e,t).P (Mary)
kisses (d\(k\vp))/d λueλveK(u, v)
(infl) (k\ip)/vp λU t.U

The position of (eobj→t)→t is due to its correspondence with the accusative case (by fig-
ure 3.2.2), and the position of (esubj→t)→t is due to its correspondence with the nominative
case. To avoid type mismatch, a lambda-abstraction the variable of type eobj is needed be-
fore applying (eobj→t)→t, and similarly a lambda-abstraction the variable of type esubj is
needed before application of (esubj→t)→t.

Thus, the syntactic object only moves to the case position, indexed by ”2”, corresponding
to the accusative place, while the syntactic subject moves to the case position indexed by ”1”
corresponding to the nominative place.

3.3 The Syntax-Semantics interface

Let us call SYN the syntactic calculus with •, / and \, rules [/ E], [\ E], [•E]3 and [HM],
and SEM the semantic calculus with only →, and rules [→E], [RAISE] and [NORAISE]. We
assume the following: each step in SYN has a counterpart in SEM and reciprocally.
The counterpart of any ternary-[• E]-step (Γ′ empty) is a [RAISE]-step and reciprocally. The

1We have here the choice between considering obj and subj individual constants and ∀Xe(X) a polymorphic
type replacing e, or considering eobj and esubj subtypes of e.

4



Figure 2: Syntactic and semantic trees for an elementary sentence

counterpart of any ternary-[• E]-step with Γ′ non empty is a [NORAISE]-step. The counter-
part of any [HM]-step is also a [NORAISE]-step. Both [/E] or [\ E] steps correspond to [→E]
steps. (cf. fig. 3.2.2).

Definition 2 Two proofs, one in SYN and the other in SEM, are said to be synchronized if and
only if:

• every leaf in SEM has a coindexed counterpart in SYN ,

• steps and their counterparts are performed in the same order in the two proofs

This does not say though how semantical items are distributed among the leaves of the
deduction tree in SEM. In fact, semantical items are inserted like phonological features are,
during the process of syntactic derivation. The following labeling thus gives the interface
between syntax and semantics.

Γ ⊢ u : A/B ∆ ⊢ x : B
[e/]

Γ,∆ ⊢ (u x) : A

∆ ⊢ x : B Γ ⊢ u : B\A
[e\]

Γ,∆ ⊢ (u x) : A

⊢ (f, u) : A • B x : A ⊢ x : A y : B,∆ ⊢ z : C
[e•]3

∆ ⊢ let(x, y) = (f, u) in z : C

Γ ⊢ (v, u) : A • B x : A ⊢ x : A y : B,∆ ⊢ z : C
[e•]3

Γ,∆ ⊢ let(x, y) = (v, u) in z : C

Γ′ ⊢ (F,G) : A\B • τ(B) ∆ ∪ [x′ : A\B] ⊢ x′ : A\B Γ ∪ [x : τ(B)] ⊢ γ : B
[HM ]

Γ′,∆,Γ ⊢ let (x′, x) = (F,G) in γ : A

Evaluation by beta-reduction of the formulae obtained by inserting the lambda terms form
the lexicon yields the expected result.

5



4 Conclusion

The precise definition of the correspondence would require to handle lambda-terms with
context rather than plain lambda terms. In this precise setting, movement corresponds to
lambda-abstraction of the variable which is substituted with the moved term, while move-
ment performs type raising on the term which is substituted. [1]

A comparison can be made with the standard correspondence bewteen categorial gram-
mars (say Lambek grammars) and Montague semantics, since this is basically an extension
of this correspondence to a richer syntactic formalism. For instance, what happen when we
deal with quantifiers in this minimalist setting? Firstly there is no need to introduce different
syntactic types for different syntactic position of the quantifier: movement enables a single
syntactic type to apply in various syntactic position, with a perfect correspondence with the
semantics of the quantifier. Secondly, there are readings which are possible in the categorial
settings but not in this setting — e.g. when the leftmost quantifier is in the scope of a quan-
tifier on its right. It is not easy to tell whether this property of our model is welcome, since
some claim that this reading is a topicalisation while others equally accept both readings.

References

[1] Maxime Amblard. Reprsentations smantiques pour les grammaires minimalistes. Mémoire de
D.E.A, Université Bordeaux 1, 2003. http://www.labri.fr/Recherche/LLA/signes

[2] Philippe de Groote. Partially commutative linear logic: sequent calculus and phase semantics. In
Vito Michele Abrusci and Claudia Casadio, editors, Third Roma Workshop: Proofs and Linguistics
Categories – Applications of Logic to the analysis and implementation of Natural Language, pages 199–
208. Bologna:CLUEB, 1996.

[3] Ray Jackendoff. The Architecture of the Language Faculty. Number 28 in Linguistic Inquiry Mono-
graphs. M.I.T. Press, Cambridge, Massachusetts, 1995.

[4] Alain Lecomte. Rebuilding the minimalist program on a logical ground. In C. Retoré and E. Sta-
bler, editors, Special Issue on Resource Logics and Minimalist Grammars, volume 2(1) of Journal of
Research on Language and Computation, pages 27–55. Kluwer, 2004.

[5] Alain Lecomte and Christian Retoré. Extending Lambek grammars: a logical account of min-
imalist grammars. In Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, ACL 2001, pages 354–361, Toulouse, July 2001. ACL.

[6] Christian Retoré. Semantic aspects of minimalist grammars. In F. Spoto, G. Scollo, and A. Nijholt,
editors, Algebraic Methods in Language Processing – AMiLP 2003, volume 21 of TWLT. University of
Twente, 2003.

[7] Edward Stabler. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of Computa-
tional Linguistics, LACL‘96, volume 1328 of LNCS/LNAI, pages 68–95. Springer-Verlag, 1997.

[8] Edward Stabler. Remnant movement and structural complexity. In Gosse Bouma, Erhard Hin-
richs, Geert-Jan M. Kruijff, and Richard Oehrle, editors, Constraints and Resources in Natural Lan-
guage Syntax and Sema ntics, pages 299–326. CSLI, 1999. distributed by Cambridge University
Press.

6


