
Counting dependencies and Minimalist Grammars. ∗

Maxime AMBLARD

SIGNES team,

LaBRI,

université de Bordeaux 1- INRIA - CNRS

april 2005

Minimalist Grammars (MG) are a formalism which

allows a flexible syntactic analysis of natural languages.

It was introduced by Stabler in [St 97]. Its generative

capacity has been studies in [Ha 01].

This article describes the existence of a MG genera-

ting the counting dependencies Lm = {1n2n · · ·mn,n ∈
IN}, and an algorithm of construction of the lexicon

Lexm producing this language. It is a generalization of

the Stabler presentation with n = 5 [St 97].

This class of languages belongs to the context-

sensitive languages in the hierarchy of Chomsky. In a

linguistic way, we could find example of this structure

in sentence like : "Peter, Mary and Charles had respec-

tively 14, 12 and 6 in math, history and sport".

1 Stabler’s MG

Stabler’s Minimalist Grammars are lexicalised

grammars. Therefore the generated language is the

transitive closure of the lexicon under the generating

functions. Each lexical entry is a list of features. The

features are of two different natures and take part in the

release of two distinct operations.

Different types of feature :

The set of base features is noted BF . The following

features are also defined :

— select : {= d | d ∈ BF}.

The set of move features is noted MF . The follo-

wing features are defined :

— licensors : {+k | k ∈ MF}.

— licensees : {−k | k ∈ MF}.

Generating functions :

— Merge : unification of a base feature with the cor-

responding selector. The result is the concatena-

tion of the other feautures.

— Move : unification of a licensor with a licensee.

It corresponds to the move of the features to the

∗LACL 2005 - poster for the student session

components carrying the licensees in front of the

structure.

We use the following notation : e stand for a feature

of an arbitrary type and E for a sequence of features.

A lexical entry is made of a list of features and the

associated phonological form, noted between oblique

bars : e1. . ./z1/. The word generated is recognized by a

left-right-hand side reading of the phonological forms

in the analysis.

The phonological form will be called "terminal" and

the other elements of the list of features "non-terminal".

Traditionally, the analyses are finite, binary and

ordered trees with projections - which preserve the

position of the head of the component. This order is

marked on the nodes of the tree by ’< ’ or ’> ’ -

for the direction of the head. In this article, we will

use list ordered from left to right. A component will

be delimited by an under-brace and the head of this

last will be marked in bold. To simplify the graphical

representation, the group containing only one element

and those containing only a phonological form will not

be marked by a under-brace and the head will take back

a normal font.

Here an example of translation of an analysis in tree

form to a linear representation :

>

�
�
�

H
H

H

e1 · · ·/ζ1/ <

�
�
�

H
H

H

e2 · · ·/ζ2/ <

�
�
�

H
H

H

e3 · · ·/ζ3/ e4 · · ·/ζ4/⇓
e1 · · ·/ζ1/,e2 · · ·/ζ2/, e3 · · ·/ζ3/,e4 · · ·/ζ4/

The linear representation contains less information

than the tree form but this information is sufficient to

describe the mechanisms of our paper.

1



Graphical representation of rules :

— Merge results in an addition of a component into

first position in the list during the derivation. In-

deed it occurs between two entities such as in first

position in the list of the features of the head one

finds a basic feature in one and a selector in an

other element (often a lexical entry).
d E1/ζ1/ =d E2/ζ2/

E2/ζ2/, E1/ζ1/

The element carrying the selector will be the new

head.

When a merge occurs between two lexical

entries, the head will be placed on the left, in the

other cases, it is the new lexical item which will

be placed on the left.

— Move corresponds to placing the list for the com-

ponent whose the licensee is the head in first po-

sition.
S,W, -k E2/ζ2/, X , T

U, +k E1 /ζ1/, V,
... Y

S, T

W, E2/ζ2/, X , U, E1 /ζ1/, V,
... , Y

Only the internal order of the elements and the

head of the moved element are modified if : W =
ε et X = ε .

2 Example of counting dependen-

cies : 1n2n

To build the word 1n2n,n ∈ IN, we use these lexical

entries - a proof will be explain in the next section.

type : 1 2 -2 /2/ type : 4 =1 +2 2 -2 /2/

type : 2 =2 1 -1 /1/ type : 5 c

type : 3 =2 +1 1 -1 /1/ type : 6 =1 +2 +1 c

Sketch of derivation :

The entries of type 1 et 2 start the derivation. They

add one of each terminal respectively.

Those of type 3 et 4 form the iterative part by adding a

non-terminal and moving the group of this non-terminal

to form a new entity.

The entry of type 5 allows the analysis for n = 0.

The last (6) finishes the derivation while putting the

groups of terminals in the right order.

Example derivation :

1. Lexical entry of type 1 :

2 -2 /2/

and one of type 2 :

=2 1 -1 /1/

2. Merge :

1 -1 /1/, -2 /2/

3. At this time, there are as many elements /1/ as

/2/ elements. We could either finish the derivation

with an entry of type 6 and obtain /1/,/2/, or take

on iterative phase to build 1222. Let us continue

the derivation with a lexical entry of type 4 :

=1 +2 2 -2 /2/

and merge with the previous element :

+2 2 -2 /2/, -1 /1/, -2 /2/

4. Move :

/2/, 2 -2 /2/, -1 /1/

5. There have one /2/ too many, it is necessary to

add one /1/, which is done by a lexical entry of

type 3 :

=2 +1 1 -1 /1/

– second part of the iteration – and a merge :

+1 1 -1 /1/, /2/, -2 /2/, -1 /1/,

6. Move :

/1/, 1 -1 /1/, /2/, -2 /2/

7. Now, we have the same structure as in stage 2,

with one /1/ and one /2/ more. The same choice is

proposed : reiterate or conclude. Let us reiterate

once more : lexical entry of type 4 :

=1 +2 2 -2 /2/

and merge :

+2 2 -2 /2/, /1/, -1 /1/, /2/, -2 /2/,

8. Move :

/2/, /2/, 2 -2 /2/, /1/, -1 /1/

9. Lexical entry of type 3 :

=2 +1 1 -1 /1/

and merge :

+1 1 -1 /1/, /2/, /2/, -2 /2/, /1/, -1 /1/

2



10. Move :

/1/, /1/, 1 -1 /1/, /2/, /2/, -2 /2/

11. After this new iteration, there are three /1/ and

three /2/. Let us finish derivation. Lexical entry

of type 6 :

=1 +2 +1 c

and merge :

+2 +1 c, /1/, /1/, -1 /1/, /2/, /2/, -2 /2/

12. Move :

/2/, /2/, /2/, +1 c, /1/, /1/, -1 /1/

13. Move :

/1/, /1/, /1/, /2/, /2/, /2/, c

14. 〈 conclusion 〉 : acceptance.

3 Generalization

This section presents a general algorithm to construct

a lexicon generating a language of an N counting de-

pendencies : 1n2n · · ·Nn, and outlines the proof of the

language generated by the grammar with this lexicon.

Algorithm Construction of the lexicon.

It will suppose S1 < S2 < · · ·< SN−1 < SN where :

— /Si/ are the terminals of the derivation, ordered

according to appearance in the word

— Sacc is the accepting symbol of the grammar.

1. type 1 : 〈SN -SN /SN/〉

2. type 2 : for i from 1 to (N-1)

〈=Si+1 Si -Si /Si/〉

3. type 3 : from j from 1 to (N-1)

〈=S j+1 +S j S j -S j /S j/〉

4. type 4 : 〈=S1 +SN SN -SN /SN/〉

5. type 5 : 〈Sacc〉

6. type 6 : 〈=S1 +SN +SN−1 . . . +S1 Sacc〉

Theorem Minimalist Grammars generate all counter

languages.

Proof The previous part presents how to obtain 2

counting dependencies. Let us see how to extend it to

N terminals with the algorithm above.

The synopsis of the analysis is done according to

three phases : start-iteration-conclusion. We will take

a type of lexical entry according to the different phases :

The first type of lexical entry will combine with the

last entry of type 2 (Si+1 = SN pour i = N − 1) using

merge. Thereafter this structure will combine with the

preceding one of the type 2 and so on, until the start

phase is finished, i.e. until we have accumulated a ter-

minal of each letter. This is made possible by the struc-

ture of the elements of the type 2 because following the

selector we find a basic feature with an index decreased

by 1 (from where merge with the precedent). Once this

phase is finish, a basic feature S1 is in first position :

S1 −S1 /S1/, · · · ,−SN/SN/

The choice is thus either to pass directly to the

conclusion phase, or to pursue with an iteration.

Iteration phase : it starts with a merge of a lexical

entry of type 4 designed for this purpose. This new head

immediately moves all the elements /SN/ to the front .

Then we find the same structure as in the start phase,

which enables us to continue the iteration.

The action, in this phase, is, in addition to accu-

mulating a phonological form, to move all elements

carrying the same phonological form in first posi-

tion : +SN SN −SN/SN/, · · · , /SN/, · · · , −SN/SN/ becomes :

/SN/, · · · , /SN/, SN −SN/SN/, · · ·

At the end of the this phase, the derivation reaches

again in the same configuration as at the end of the

start phase. We could either start an iteration again, or

conclude.

To conclude, the derivation is merged

with an entry of the type 6, which orders

all group of the same phonological form.

+SN . . . +Sinit Sacc, · · · , /S1/, · · · ,−S1 S1, · · · ,/SN/, · · · ,−SN /SN/

Thus, successive moves reorder the derivation ac-

cording to each terminal by using the last licensee

remaining with phonological forms. As we always

added a series of terminal on each iteration phase, they

all occur the same number of times.

This grammar generates exactly the counter lan-

guages with N terminals : 1k · · ·Nk because only the

analyses following the synopsis above can succeed.

Any variation with in this synopsis will not return an

accepting analysis because this kind of derivations are

deterministic except at points that we will discuss :

Starting the iteration phase without completing

the start phase.

We can start a derivation by merge between an entry

of type 1 and one of type 2, by an entry of the type 1

and one of type 3. Into this second case, we introduce

a feature ’+k ’ into derivation. There is no element in

derivation carrying the equivalent licensee. Therefore,

3



the derivation fails.

+SN−1 SN−1 −SN−1 /SN−1/, −SN /SN/

If that occurs later in the start phase, the problem

will be the same.

Returning from the iteration phase to the start

phase.

The derivation uses a merge with an entry of type 2

instead of one of type 3. In this case, it misses one ’ +k’,

∀k ∈ MF in derivation. But the only moment in a deri-

vation where there are two features ’−k’, is followed

by a merge operation with an entry of type 3, but one

of them will be unified immediately with the introduced

feature ’ +k’.

In this case, there are two ’−k’ in the derivation,

but only one of them can be unified in the conclusion

phase. The analysis will finish with this additional fea-

ture ‘−k’ and could not yield a successful derivation :

+SN . . . +S1 Sacc, · · · , /S1/, · · · ,−S1 S1, · · · ,/SN/, · · · ,−SN /SN/,−SN /SN/

All the other stages of derivation are deterministic,

therefor we obtain correctly the words on a counter.

Conclusion and prospects

The languages generated by Minimalist Grammars

contain the counter languages. This is the point that

distinguishes these grammars from other linguistic

formalisms.

A version of a(2
n), ∀n ∈ IN counts is presented in

[Mi 05].

An MG of the nested counters is in progress. The

nested counters are the sentences of the following

shape : 1n2k3n4k · · ·Nk, ∀n ∈ IN, ∀k ∈ IN which is a

context-sensitive language, as counter languages with

more than two terminals.

In this respect MG (strongly) differs from other deri-

vational formalizations of NL syntactic structures.

They provide an account for linguistic analysis and

we could show these complex syntactic structures by

theoretical exploration. The main open question is whe-

ther it is possible to generate languages outside the class

of natural languages.

Références

[Ha 01] Harkema H. (2001). A Characterization of Mi-

nimalist Languages. Logical Aspect of Computa-

tional Linguistics 2001. Springer-Verlag.

[Mi 05] Michaelis J. (2005). A Note on the Complexity

of Constraint Interaction : Locality Conditions and

Minimalist Grammars. Logical Aspect of Compu-

tational Linguistics 2005. Springer-Verlag.

[Mi Mö Mo 00] J. Michaelis, U. Mönnich and F. Mora-

wietz (2000). Algebraic Description of Derivatio-

nal Minimalism. Algebraic Methods in Language

Processing. 125-141

[Mö Mo Kep 01] U. Mönnich, F. Morawietz and S.

Kepser (2001). A Regular Query for Context-

Sensitive Relations. IRCS Workshop Linguistic

Database. 187-195

[St 97] Stabler Ed. (1997), Derivational Minimalism,

Logical Aspect of Computational Linguistics

1997. vol 1328, Springer-Verlag.

4


