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Abstract

Non-negative matrix factorization (NMF) approximates a given matrix as a product of two
non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow
convergence for high-dimensional data and may be stuck away from local minima. Gradient
descent methods have better behavior, but only apply to smooth losses such as the least-
squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative
decomposition problems (where one factor is fixed) with the KL divergence, based on the
Chambolle-Pock algorithm. All required computations may be obtained in closed form and
we provide an efficient heuristic way to select step-sizes. By using alternating optimization,
our algorithm readily extends to NMF and, on synthetic examples, face recognition or music
source separation datasets, it is either faster than existing algorithms, or leads to improved
local optima, or both.

1 Introduction

The current development of techniques for big data applications has been extremely useful in many
fields including data analysis, bioinformatics and scientific computing. These techniques need to
handle large amounts of data and often rely on dimensionality reduction; this is often cast as
approximating a matrix with a low-rank element.

Non-negative matrix factorization (NMF) is a method that aims at finding part-based, lin-
ear representations of non-negative data by factorizing it as the product of two low-rank non-
negative matrices (Paatero and Tapper, 1994; Lee and Seung, 1999). In 2000, two multiplica-
tive algorithms for NMF were introduced by Lee and Seung, one that minimizes the conventional
least-squares error, and other one that minimizes the generalized Kullback-Leibler (KL) diver-
gence (Lee and Seung, 2000).

These algorithms extend to other losses and have been reported in different applications,
e.g., face recognition (Wang et al., 2005), music analysis (Févotte et al., 2009), and text min-
ing (Guduru, 2006). An important weakness of multiplicative algorithms is their slow convergence
rate in high-dimensional data and their susceptibility to become trapped in poor local optima (Lin,
2007). Gradient descent methods for NMF provide additional flexibility and fast convergence (Lin,
2007; Kim et al., 2008; Gillis, 2011). These methods have been extensively studied for the mini-
mization of the least-squares error (Lin, 2007; Kim et al., 2008).

The goal of this paper is to provide similar first-order methods for the KL divergence, with up-
dates as cheap as multiplicative updates. Our method builds on the recent work of Sun and Févotte
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(2014) which consider the alternating direction method of multipliers (ADMM) adapted to this
problem. We instead rely on the Chambolle-Pock algorithm (Chambolle and Pock, 2011), which
may be seen as a linearized version of ADMM, and thus we may reuse some of the tools developed
by Sun and Févotte (2014) while having an empirically faster algorithm.

1.1 Contributions

The main contributions of this article are as follows:

– We propose a new primal-dual formulation for the convex KL decomposition problem in
Section 3.1, and an extension to the non-convex problem of NMF by alternating minimization
in Section 3.5.

– We provide a purely data-driven way to select all step-sizes of our algorithm in Section 3.3.

– In our simulations in Section 4 on synthetic examples, face recognition or music source sepa-
ration datasets, our algorithm is either faster than existing algorithms, or leads to improved
local optima, or both.

– We derive a cheap and efficient implementation (Algorithm 2). Matlab code is available online
at: anonymized website

2 Problem Formulation

Let V ∈ R
n×m
+ denote the n × m given matrix formed by m non-negative column vectors of

dimensionality n. Considering r ≤ min(n,m), let W ∈ R
m×r
+ and H ∈ R

r×n
+ be the matrix factors

such that

V ≈WH.

Two widely used cost functions for NMF are the conventional least-squares error (not detailed
herein), and the generalized KL divergence

D(V‖WH) = −
m
∑

i=1

n
∑

j=1

Vij

{

log

(

(WH)ij
Vij

)

+ 1

}

+

m
∑

i=1

n
∑

j=1

(WH)ij . (1)

In this work, only the KL divergence is considered. Therefore, the optimization problem is as
follows:

minimize
W,H ≥ 0

D(V‖WH). (2)

We recall that the previous problem is non-convex in both factors simultaneously, whereas
convex in each factor separately, i.e., the non-negative decomposition (ND) problems,

minimize
W ≥ 0

D(V‖WH) (3)

and minimize
H ≥ 0

D(V‖WH), (4)

are convex.

We now present two algorithms for NMF, multiplicative updates (Lee and Seung, 2000), and
the ADMM-based approach (Sun and Févotte, 2014).
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2.1 Multiplicative updates

Lee and Seung (2000) introduced two multiplicative updates algorithms for NMF. One minimizes
the conventional least-squares error, and the other one minimizes the KL divergence.

The NMF problem, for both losses, is a non-convex problem in W and H simultaneously, but
convex with respect to each variable taken separately; this make alternating optimization tech-
niques, i.e., solving at each iteration two separate convex problems, very adapted: first fixing H to
estimate W, and then fixing W to estimate H (Lee and Seung, 2000; Févotte et al., 2009). The
multiplicative updates algorithms (like ours) follow this approach.

For the KL divergence loss, the multiplicative update rule (Lee and Seung, 2000) for W and H
is as follows and may be derived from expectation-maximization (EM) for a certain probabilistic
model (Lee and Seung, 2000; Févotte and Cemgil, 2009):

Wia ← Wia

∑n
µ=1 HaµViµ/(WH)iµ

∑n
ν=1Haν

, and

Haµ ← Haµ

∑m
i=1WiaViµ/(WH)iµ

∑m
k=1Wka

.

The complexity per iteration is O(rmn).

2.2 Alternating direction method of multipliers (ADMM)

Sun and Févotte (2014) propose an ADMM technique to solve Problem (2) by reformulating it as

minimize D(V‖X)

subject to X = YZ

Y = W, Z = H

W ≥ 0, H ≥ 0.

The updates for the primal variables W, H, X, Y and Z are as follows and involve certain
proximal operators for the KL loss which are the same as ours in Section 3.2:

Y⊤ ←
(

ZZ⊤ + I
)−1 (

ZX⊤ +W⊤ + 1
ρ

(

Zα⊤
X − α⊤

Y

))

Z ←
(

Y⊤Y + I
)−1 (

Y⊤X+H+ 1
ρ

(

Y⊤αX − αZ

))

X ←
(ρYZ− αX − 1) +

√

(ρYZ− αX − 1)2 + 4ρV

2ρ

W ←
(

Y + 1
ραY

)

+

H ←
(

Z+ 1
ραZ

)

+
.

Note that the primal updates require solving linear systems of sizes r × r, but that the overal
complexity remains O(rmn) per iteration (the same as multiplicative updates).

The updates for the dual variables αX, αY and αZ are then:

αX ← αX + ρ (X−YZ)

αY ← αY + ρ (Y −W)

αZ ← αZ + ρ (Z−H) .
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This formulation introduces a regularization parameter, ρ ∈ R+, that needs to be tuned (in
our experiments we choose the best performing one from several candidates).

Our approach has the following differences: (1) we aim at solving alternatively convex problems
with a few steps of primal-dual algorithms for convex problems, as opposed to aiming at solving
directly the non-convex problem with an iterative approach, (2) for the convex decomposition
problem, we have certificates of guarantees, which can be of used for online methods for which
decomposition problems are repeatedly solved (Lefèvre et al., 2011) and (3) we use a different
splitting method, namely the one of Chambolle and Pock (2011), which does not require matrix
inversions, and which allows us to compute all step-sizes in a data-driven way.

3 Proposed Method

In this section we present a formulation of the convex KL decomposition problem as a first-order
primal-dual algorithm (FPA), followed by the proposed NMF technique.

3.1 Primal and dual computation

We consider a vector a ∈ R
p
+ and a matrix K ∈ R

p×q
+ as known parameters, and x ∈ R

q
+ as an

unknown vector to be estimated, where the following expression holds,

a ≈ Kx,

and we aim at minimizing the KL divergence between a and Kx.

This is equivalent to a ND problem as defined in Problems (3) and (4), considering a as a
column of the given data, K as the fixed factor, and x as a column of the estimated factor, i.e., in
Problem (3) a and x are column vectors of V⊤ and W⊤ with the same index and K is H⊤, and
in Problem (4) a and x are columns of V and H with the same index and K is W.

The convex ND problem with KL divergence is thus

minimize
x∈Rq

+

−
p

∑

i=1

ai (log(Kix/ai) + 1) +

p
∑

i=1

Kix, (5)

which may be written as

minimize
x∈X

F (Kx) +G(x), (6)

with

F (z) = −
p

∑

i=1

ai (log(zi/ai) + 1)

G(x) = 1x�0 +

p
∑

i=1

Kix.

Following Pock et al. (2009); Chambolle and Pock (2011), we obtain the dual problem

maximize
y∈Y

− F ∗(y)−G∗(−K∗y),

with

F ∗(y) = sup
z

{

y⊤z − F (z)
}

= −
p

∑

i=1

ai log (−yi)

G∗(y) = sup
x

{

y⊤x−G(x)
}

= 1y�K⊤1.
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We then get the dual problem

maximize
K⊤(−y) � K⊤1

a⊤ log (−y) . (7)

In order to provide a certificate of optimality, we have to make sure that the constraint
K⊤(−y) � K⊤1 is satisfied. Therefore, when it is not satisfied, we project as follows:

y ← y/max{K⊤(−y)⊘K⊤1},
where ⊘ represents the entry-wise division operator.

3.2 Primal-dual algorithm

The general FPA framework of the approach proposed by Chambolle and Pock for Problem (6) is
presented in Algorithm 1.

Algorithm 1: First-order primal-dual algorithm.

Select K ∈ R
p×q
+ , x ∈ R

q
+, σ > 0, and τ > 0;

Set x̄ = xold = x, and y = Kx;

for N iterations do

y ← proxσF ∗(y − σKx̄);
x← proxτG(x− τK∗y);
x̄← 2x− xold;
xold ← x;

end

return x⋆ = x.

Algorithm 1 requires the computation of proximal operators proxσF ∗(y) and proxτG(x). These
are defined as follows:

proxσF ∗(y) = argmin
v

{‖v − y‖2
2σ

+ F ∗(v)

}

, and

proxτG(x) = argmin
u

{‖u− x‖2
2τ

+G(u)

}

.

For further details, see (Boyd and Vandenberghe, 2004; Rockafellar, 1997).

Using the convex functions F ∗ and G, we can easily solve the problems for the proximal
operators and derive the following closed-form solution operators

proxσF ∗(y) =
1

2

(

y −
√

y ◦ y + 4σa
)

, and

proxτG(x) =
(

x− τK⊤1
)

+
.

The detailed derivation of these operators may be found in the Appendix, the first one was already
computed by Sun and Févotte (2014).
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3.3 Automatic heuristic selection of σ and τ

In this section, we provide a heuristic way to select σ and τ without user intervention, based on the
convergence result of Chambolle and Pock (2011, Theorem 1), which states that (a) the step-sizes
have to satisfy τσ‖K‖2 ≤ 1, where ‖K‖ = max{‖Kx‖ : x ∈ X with ‖x‖ ≤ 1} is the largest singular
value of K; and (b) the convergence rate is controlled by the quantity

C =
‖y0 − y⋆‖2

2σ
+
‖x0 − x⋆‖2

2τ
,

where (x⋆, y⋆) is an optimal primal/dual pair. If (x⋆, y⋆) was known, we could thus consider
the following minimization problem with the constraint τσ‖K‖2 ≤ 1:

min
σ,τ

‖y0 − y⋆‖2
2σ

+
‖x0 − x⋆‖2

2τ

⇐⇒ min
σ

‖y0 − y⋆‖2
2σ

+
‖x0 − x⋆‖2

2
σ‖K‖2.

Applying first order conditions, we find that

σ =
‖y0 − y⋆‖
‖x0 − x⋆‖

1

‖K‖ and τ =
‖x0 − x⋆‖
‖y0 − y⋆‖

1

‖K‖ .

However, we do not know the optimal pair (x⋆, y⋆) and we use heuristic replacements. That
is, we consider the unknown constants α and β, and assume that x⋆ = α1 and y⋆ = β1 solve
Problems (5) and (7). Letting (x0, y0) = (0,0) we have

‖x0 − x⋆‖ = |α|√q and ‖y0 − y⋆‖ = |β|√p.

Plugging x⋆ to Problem (5), we are able to find that α = 1⊤a
1⊤K1

> 0. Now, using optimality
conditions: y⋆ ◦ (Kx⋆) = −a, we obtain β = −1.

The updated version of the parameters is:

σ =

√

p

q

1

α‖K‖ and τ =

√

q

p

α

‖K‖ .

Finally, an automatic heuristic selection of step sizes σ and τ is as follows:

σ =

√
p
∑p

i=1Ki1√
q‖K‖∑p

i=1 ai
and τ =

√
q
∑p

i=1 ai√
p‖K‖∑p

i=1 Ki1
.

Note the invariance by rescaling of a and K.

3.4 Implementation

The proposed method is based on Algorithm 1. The required parameters to solve each ND problem
are

• Problem (3):

� a ←
(

V⊤
)

i

� K ← H⊤

� x ←
(

W⊤
)

i
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� σ ←
√

m
r

1⊤H1

1⊤(V⊤)
i
‖H‖

� τ ←
√

r
m

1
⊤(V⊤)

i

1⊤H1‖H‖

• Problem (4):

� a ← Vi

� K ←W

� x ← Hi

� σ ←
√

n
r

1⊤W1

1⊤Vi‖W‖

� τ ←
√

r
n

1⊤Vi

1⊤W1‖W‖
.

The previous summary treats each ND problem by columns. For algorithmic efficiency, we
work directly with the matrices, e.g., a ∈ R

n×m
+ instead of Rn

+. We also include normalization
steps such that the columns of W have sums equal to 1. The stopping criteria is enabled for
maximum number of iterations (access to data) and for duality gap tolerance.

3.5 Extension to NMF

A pseudo-code of the first-order primal-dual algorithm for non-negative matrix factorization can
be found in Algorithm 2. It corresponds to alternating between minimizing with respect to H and
minimizing with respect to W. A key algorithmic choice is the number of inner iterations iterND

of the convex method, which we consider in Section 4.

The running-time complexity is still O(rnm) for each inner iterations. Note moreover, that
computing the largest singular value of H or W (required for the heuristic selection of step-sizes
everytime we switch from one convex problem to the other) is of order O(rmax{m,n}) and is thus
negligible compared to the iteration cost.

3.6 Extension to topic models

Probabilistic latent semantic analysis (Hofmann, 1999) or latent Dirichlet allocation (Blei et al.,
2003), generative probabilistic models for collections of discrete data, have been extensively used
in text analysis. Their formulations are related to ours in Problem (5), where we just need to
include an additional constraint: 1⊤x = 1. In this sense, if we modify G, i.e., G(x) = 1{1⊤x =
1; x � 0} + 1⊤Kx, we can use Algorithm 1 to find the latent topics. It is important to mention
that herein proxτG(x) does not have a closed solution, but can be efficiently solved with dedicated
methods for orthogonal projections on the simplex (Maculan and de Paula, 1989).

4 Experimental Results

The proposed technique was tested on synthetic data, the CBCL face images database and a music
excerpt from a recognized jazz song by Louis Armstrong & His Hot Five. The performance of
the proposed first-order primal-dual algorithm (FPA) was compared against the traditional mul-
tiplicative updates algorithm (MUA) by Lee and Seung (2000) and the contemporary alternating
direction method of multipliers (ADMM) by Sun and Févotte (2014). The three techniques were
implemented in Matlab.

4.1 Synthetic data

A given matrix V of size n = 200 and m = 1000 is randomly generated from the uniform distribu-
tion U(0, 750). The low-rank element was set to r = 15. Initializations W0 and H0 are defined by
the standard normal distribution’s magnitude plus a small offset.

4.1.1 ND problem

To examine the accuracy of our method, we first apply Algorithm 2 to convex ND problems for
fixed values of n, m and r, solving separately Problems (3) and (4). For both problems, we set

7



Algorithm 2: Proposed technique.

Select V ∈ R
n×m
+ , W0 ∈ R

n×r
+ , and H0 ∈ R

r×m
+ ;

Set W = W̄ = Wold = W0, H = H̄ = Hold = H0, and χ = WH;

while stopping criteria not reached do

Normalize W and set σ =
√

m
r

1⊤H1

1⊤V⊤‖H‖
1, τ =

√

r
m

1⊤V⊤

1⊤H1‖H‖
1, and H(−χ⊤) ≤ H1;

for iterND iterations do

χ⊤ ← χ⊤ − σ ◦
(

W̄H
)⊤

;

χ⊤ ← 1
2

(

χ⊤ −
√

χ⊤ ◦ χ⊤ + 4σ ◦V⊤
)

;

W⊤ ←
(

W⊤ − τ ◦
(

H
(

χ⊤ + 1
)))

+
;

W̄⊤ ← 2W⊤ −W⊤
old;

W⊤
old ←W⊤;

end

Normalize H and set σ =
√

n
r

1
⊤
W1

1⊤V‖W‖
1, τ =

√

r
n

1
⊤
V

1⊤W1‖W‖
1, and W⊤(−χ) ≤W⊤1;

for iterND iterations do

χ← χ− σ ◦
(

WH̄
)

;
χ← 1

2

(

χ−√χ ◦ χ+ 4σ ◦V
)

;

H←
(

H− τ ◦
(

W⊤ (χ+ 1)
))

+
;

H̄← 2H−Hold;
Hold ← H;

end

end

return W⋆ = W, and H⋆ = H.

the number of iterations of the traditional MUA and contemporary ADMM to 1200, as well as
for the proposed FPA. Optimal factors W⋆ and H⋆ are obtained by running 5000 iterations of
the MUA, starting from W0 and H0. For the first ND problem, we fix H to H⋆ and estimate W
starting from W0; for the second one, we fix W to W⋆ and estimate H from H0. The optimal
regularization parameter of ADMM, the tuning parameter that controls the convergence rate, is
ρ = 0.15 (small values imply larger step sizes, which may result in faster convergence but also
instability). Figure 1 (a-b) present us the distance to optimum of MUA and ADMM, as well as for
the primal and dual of our technique that reveals strong duality. The FPA and ADMM algorithm
converge to the same point, whereas the MUA exhibits slow convergence. Note moreover the
significant advantage towards our algorithm FPA, together with the fact that we set automatically
all step-sizes. In Figure 1 (c-d), we illustrate the distance to optimum versus time of the three
methods.

4.1.2 NMF problem

The setting is slightly different as in the ND experiment, we increased the problem dimension to
n = 250, m = 2000 and r = 50, and repeat both previously presented experiments. For all methods,
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Figure 1: ND on synthetic data. (a-b) Distance to optimum versus iteration number. Distance to
optimum reveals the difference between the values of the objective function and optimal point, p⋆.
In the case of the dual function values, the distance to optimum is the difference between p⋆ and
the dual points. (c-d) Distance to optimum versus time.

we set the number of iterations to 3000. The parameter iterND indicates the number of iterations
to solve each ND problem. We set iterND to 5 iterations. To have a fair comparison between
algorithms, for FPA, the number of iterations means access to data, i.e., we use 5 iterations to solve
Problem (3) (as well as for Problem (4)), and repeat this 600 times. The optimal regularization
parameter of the ADMM is here ρ = 1.

In Figure 2 we present the objective function of the three algorithm for the non-convex Problem (2).
The MUA initially reports high decrement in the objective, but as time increases it exhibits evi-
dent slow tail convergence. The FPA primal objective decreases dramatically in only seconds (few
iterations), and furthermore, it presents fast tail convergence achieving the lowest objective value.
The ADMM has poor initial performance, but then achieves an optimal value similar to the one
obtained by FPA. In order to show that FPA converges faster and with lower computational cost,
we store the cost function values and computation times at each iteration. The total time required
by the FPA was 190s, whereas 205s by the ADMM and 473s by the MUA. Then we analyze the
ADMM and MUA for the same time 190s (the vertical dotted line in Figure 2 (b)), i.e., 2786 and
1211 iterations, respectively: the competitive algorithms have a significantly larger cost function
for the same running time. The result of this experiment is illustrated in Figure 2 (b). The results
considering the objective function versus iteration number may be found in the Appendix.

4.1.3 NMF with warm restarts

The problem dimension is n = 150, m = 2000 and r1 = 50. We run 3000 iterations of each method
using initializations W0 and H0; then we increase ten times the low-rank element, r2 = 100; and
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Figure 2: NMF on synthetic data. Recall that the dual function is not presented due to the
non-convexity of the NMF problem.

finally run 2000 more iterations, producing W2 and H2. The idea is to use as initializations the
estimations obtained after the first 3000 iterations, W1 and H1, considering that the low-rank
element changed. A trivial solution could be to include random entries so that W1 and H1 have
the proper dimensions, but that increases the objective value, diminishing the estimations. On
the other hand, if we include zero entries so that W1 and H1 have the proper dimensions, we
would be in a saddle-point where none of the algorithms could perform. However, if we set only
one factor with zero entries, [W1, c1] ∈ R

n×r2 with c = 0, and the other one with non-zero values,
[H1; ν] ∈ R

r2×m, we still maintain the same last objective value and perform FPA. In this situation,
MUA cannot perform either (because of the absorbing of zeros), therefore we try some values of
c to run the algorithm. Figure 3 illustrates the proposed experiment. Notice that as c → 0, the
MUA starts to get stuck in a poor local optima, i.e., the one obtained with W1 and H1. ADMM
has a similar behavior as FPA, therefore, it is not displayed.
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Figure 3: NMF with warm restarts on synthetic data. Value of the objective function at each
iteration.

4.2 MIT-CBCL Face Database #1

We use the CBCL face images database (Sung, 1996) composed of m = 2429 images of size n = 361
pixels. The low-rank element was set to r = 49. Figure 4 shows samples from the database.

Our next experiment is to determine the optimal the number of iterations for the current
database. Therefore, we run 3000 iterations of FPA, using 3, 5, 10 and 15 iterations for the ND
problem. The MUA and ADMM (ρ=50) algorithms are performing as well. Figure 5 illustrates
the decay of the objective function of the FPA, MUA and ADMM algorithms.
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Figure 4: MIT-CBCL Face Database #1 samples.
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(a) Objective function versus iteration number.
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(b) Objective versus iteration number (zoomed).

Figure 5: NMF on the CBCL database. Value of the objective function at each iteration solving
Problem (2) varying the number of iterations to solve each ND problem.
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We appreciate that setting the number of iterations to 3 yield to over-alternation, whereas using
15 or even more iterations result in an under-alternating method. Using 10 iterations reveal good
performance, but the best trade-off is obtained with 5 iterations. Therefore, we set iterND = 5,
i.e., the number of iterations to solve Problem (3) and Problem (4). All following results in the
MIT-CBCL Face Database #1 are with the same setting.

Finally, in Figure 6 (a) we present the objective function of the three algorithm for the non-
convex Problem (2), where all algorithms perform similarly. However, in the zoomed Figure 6 (b)
we can appreciate that the MUA presents the slowest convergence, whereas the proposed method
the fastest one. The results considering the objective function versus iteration number may be
found in the Appendix.
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(b) Objective function versus time (zoomed).

Figure 6: NMF on the CBCL face image database.

4.3 Music excerpt from the song “My Heart (Will Always Lead Me Back to
You)”

The last experiment is to decompose a 108-second-long music excerpt from “My Heart (Will Always
Lead Me Back to You)” by Louis Armstrong & His Hot Five in the 1920s (Févotte et al., 2009).
The time-domain recorded signal is illustrated in Figure 7.
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Figure 7: Time-domain recorded signal.

The recording consists of a trumpet, a double bass, a clarinet, a trombone, and a piano. The
recorded signal is original unprocessed mono material contaminated with noise. The signal was
downsampled to 11025 kHz, yielding 1,19×106 samples. The Fourier Transform of the recorded
signal was computed using a sinebell analysis window of length 23 ms with 50% overlap between
two frames, leading to m = 9312 frames and n = 129 frequency bins. Additionally, we set r = 10.
Figure 8 illustrates the previously described spectrogram.
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Figure 8: Log-power spectrogram.

The decomposition of the song is produced by the three algorithms. We initialize them with
the same random values W0 and H0. For a fair competition, the number of iterations is set to
5000 for MUA and ADMM, and for our algorithm FPA we consider it as access to data, i.e., we
use 5 iterations for the ND, repeating it 1000 times. For comparison, we measure the computation
time of the three techniques. FPA has a run time of 13 min, whereas the ADMM (ρ = 10) one of
15 min and the MUA one of 80 min.
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(a) Objective function versus time.
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Figure 9: NMF on an excerpt of Armstrong’s song.

In this experiment, Figure 9 illustrates the evolution of the objective of the three techniques
along time. Initially the MUA obtained the lowest objective value, but as previously discussed,
as the number of iterations increases the MUA starts exhibiting evident slow tail convergence and
since approximately 100s it is reached by the FPA and shows no further substantial decrement,
i.e., it gets stuck in a worse local optima. FPA converges to a slight lower cost value, overpassing
MUA. Finally, ADMM reveals a slow initial performance on this dataset, but later converges to
a similar point as the previous algorithms. The results considering the objective function versus
iteration number may be found in the Appendix.

5 Conclusion

We have presented an alternating projected gradient descent technique for NMF that minimizes
the KL divergence loss; this approach solves convex ND problems with the FPA. Our approach
demonstrated faster convergence than the traditional MUA by Lee and Seung (2000) and contem-
porary ADMM by Sun and Févotte (2014). The FPA introduces a new parameter, the number of
iterations for each convex ND problem. Experiments reveal that the number of iterations is mostly
bounded between 3 and 10 iterations, which leads to a trivial tuning by the user. Therefore, our
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algorithm affords reasonable simplicity, where further user manipulation is not required. Finally,
an extension to latent Dirichlet allocation and probabilistic latent semantic indexing can be easily
implemented using our proposed method, thus allowing to go beyond the potential slowness of the
expectation-maximization (EM) algorithm.
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Appendix

Derivation of proximal operators

The definition of the proximal operator of F ∗ and G, i.e., (I + σ∂F ∗)−1(y) and (I + τ∂G)−1(x),
respectively, is as follows (Pock et al., 2009; Chambolle and Pock, 2011):

(I + σ∂F ∗)−1(y) = argmin
v

{‖v − y‖2
2σ

+ F ∗(v)

}

, and

(I + τ∂G)−1(x) = argmin
u

{‖u− x‖2
2τ

+G(u)

}

,

where ∂F ∗ and ∂G are the subgradients of the convex functions F ∗ and G.

To facilitate the computation of (I + σ∂F ∗)−1(y), we consider Moreau’s identity

y = (I + τ∂F ∗)−1 (y) + σ

(

I +
1

σ
∂F

)−1
( y

σ

)

= proxσF ∗(y) + σ proxF/σ(y/σ).

Let us consider the variable v ∈ Y, and using Moreau’s identity, we can compute

proxσF ∗(y) = y − σ proxF/σ(y/σ)

= y − σ argmin
v

{

σ

2

∥

∥

∥
v − y

σ

∥

∥

∥

2
+ F (v)

}

= y − σ argmin
v

{

σ

2

∥

∥

∥
v − y

σ

∥

∥

∥

2
−

n
∑

i=1

ai

(

log

(

vi
ai

)

+ 1

)

}

= y − σ argmin
v

{

n
∑

i=1

σ

2

(

v2i −
2viyi
σ

+
y2i
σ2

)

− ai

(

log

(

vi
ai

)

+ 1

)

}

= y − σ argmin
v

{

n
∑

i=1

σ

2
v2i − yivi − ai log (vi)

}

.

Applying first order conditions to obtain the minimum:

d

dvi

{σ

2
v2i − yivi − ai log (vi)

}

= 0 =⇒ σvi − yi −
ai
vi

= 0

=⇒ σv2i − yivi − ai = 0

=⇒ vi =
yi ±

√

y2i + 4σai

2σ

=⇒ v =
y +
√
y ◦ y + 4σa

2σ
, as v ≻ 0.

Finally, the proximal operator is as follows:

proxσF ∗(y) =
1

2

(

y −
√

y ◦ y + 4σa
)

.

For the second proximal operator, we consider u ∈ X and compute proxτG(x) as
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proxτG(x) = argmin
u�0

{‖u− x‖2
2τ

+G(u)

}

= argmin
u�0

{

‖u− x‖2
2τ

+
n
∑

i=1

Kiu

}

=
(

x− τK⊤1
)

+
.

Synthetic data: additional results

NMF problem

A given matrix V of size n = 250 and m = 2000 is randomly generated from the uniform distribu-
tion U(0, 750). The low-rank element was set to r = 50. For the three methods, we set the number
of iterations to 3000. We set iterND to 5 iterations. The optimal tuning parameter of the ADMM
is here ρ = 1. In Figure 10 we present the objective function versus iteration number of the three
algorithms for the non-convex NMF problem.
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(a) Objective versus iteration number.
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(b) Zoomed version.

Figure 10: NMF on synthetic data. It is important to recall that the dual function is not presented
due to the non-convexity of the NMF problem.

MIT-CBCL Face Database #1: additional results

ND problem

We solve convex ND problems for fixed values of n, m and r, setting the number of iterations of
all algorithms to 1500. Optimal factors W⋆ and H⋆ are obtained by running 5000 iterations of the
MUA. The optimal tuning parameter of the ADMM is here ρ = 0.1. Figure 11 (a-b) presents us the
distance to optimum of the MUA and ADMM, as well as for the primal and dual of our technique
that reveals strong duality in all experiments. In Figure 11 (c-d), we illustrate the distance to
optimum versus time of the three methods.

NMF problem

For all methods, we set the number of iterations to 3000. We set iterND to 5 iterations. The
optimal tuning parameter of the ADMM is here ρ = 50. In Figure 12 we present the objective
function versus iteration number of the three algorithms.

Features learned from the CBCL face image database

The features learned from the CBCL face image database obtained with the three algorithms is
presented in Figure 13. The figure reveals the parts-based learned by the algorithm, i.e. W.

17



0 500 1000 1500

10
5

Number of iterations

D
is

ta
nc

e 
to

 o
pt

im
um

 

 

MUA objective
ADMM objective (ρ = 0.1)
FPA primal
FPA dual

(a) Estimate W given H⋆.

0 500 1000 1500

10
5

Number of iterations

D
is

ta
nc

e 
to

 o
pt

im
um

 

 

MUA objective
ADMM objective (ρ = 0.1)
FPA primal
FPA dual

(b) Estimate H given W⋆.

10
0

10
2

10
5

10
10

Time (s)

D
is

ta
nc

e 
to

 o
pt

im
um

 

 

MUA objective
ADMM objective (ρ = 0.1)
FPA primal

(c) Estimate W given H⋆.

10
0

10
2

10
5

10
10

Time (s)

D
is

ta
nc

e 
to

 o
pt

im
um

 

 

MUA objective
ADMM objective (ρ = 0.1)
FPA primal

(d) Estimate H given W⋆.

Figure 11: Distance to optimum versus (a-b) iteration number, and (c-d) time.
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Figure 12: NMF on the CBCL face image database.

“My Heart (Will Always Lead Me Back to You)”: additional results

ND problem

We solve convex ND problems for fixed values of n, m and r, setting the number of iterations of
all algorithms to 2000. Optimal factors W⋆ and H⋆ are obtained by running 5000 iterations of the
MUA. The optimal tuning parameter of the ADMM is here ρ = 0.5. Figure 14 (a-b) presents us the
distance to optimum of the MUA and ADMM, as well as for the primal and dual of our technique
that reveals strong duality in all experiments. In Figure 14 (c-d), we illustrate the distance to
optimum versus time of the three methods.

NMF problem

For all methods, we set the number of iterations to 5000. We set iterND to 5 iterations. The
optimal tuning parameter of the ADMM is here ρ = 10. In Figure 15 we present the objective
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(a) MUA. (b) ADMM. (c) FPA.

Figure 13: Features learned from the CBCL face image database.
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Figure 14: Distance to optimum versus (a-b) iteration number, and (c-d) time.

function versus iteration number of the three algorithms.
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Figure 15: NMF on an excerpt of Armstrongs song.

Features learned from the song

The decomposition of the song by Louis Armstrong and band obtained with the proposed FPA
is presented in Figure 16, revealing the parts-based learned by the algorithm, i.e., W. The time-
domain signal is recovered from Wiener filtering (Févotte et al., 2009).
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Figure 16: Decomposition of Louis Armstrong and band song.
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