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Abstract

Cover is the most frequently used measure for vegetation surveys. Generally,
it is coded with the Abundance/ Dominance Braun-Blanquet’s integer code,
giving rise to data which are generally considered as ordinal. Since each one
of these integers is associated with a whole interval of values, we argue that
these codes actually convey more information than that of a simple order, and
develop this point of view, considering them as imprecise data.

To our knowledge, there is no ready-made method to investigate relation-
ships between a vector of such responses and several explanatory variables.
Consequently, we propose a three-step method for this purpose. These steps
are: (1) randomly recover (through a probability associated with the assessor’s
subjectivity) possible “original numerical responses”; (2) cluster these numerical
response vectors according to an appropriate metric, into an appropriate num-
ber of groups; (3) average every variable conditionally to the classifier associated
with step two, giving rise to “per group regression functions”. This method is
applied to explain with hydrological variables the abundance variations of Pota-
mogeton pectinatus in a brackish lagoon (the Berre lagoon, Provence, France).
We reveal the main relationships between P. pectinatus cover and fresh water
inputs, salinity and nutrient abundance (nitrate and phosphate); the obtained
results are compared to those from Canonical Correspondence Analysis. The
proposed method is also tested on artificial data, similar to the original cover
data.
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1. Introduction

Cover is the most frequently used indicator for vegetation surveys, since it is
not destructive and requires relatively little effort compared to other measure-
ment of vegetation health (Chen et al., 2008a; Kim and Travers, 1997a). We
will use here a “ la Braun-Blanquet” cover score adapted for marine ecology
(see Table 1), because the field of vision of divers is reduced (Marcos-Diego
et al., 2000). This coding was adopted for studying the temporal variations of
the cover of the Berre lagoon by Potamogeton pectinatus (from 1970 to 2004),
in connection with annual measuring of ten hydrological variables. The P.
pectinatus cover was annually sampled at 35 stations around the lagoon, while
hydrological variables were only sampled at a single place, each year.

Explaining the variations of the cover of this lagoon by P. pectinatus from
variations of hydrological variables is typically a regression problem, which is
made special by the structure of the surveys, since

• the cover is coded on an ordinal scale (this important point will be dis-
cussed further)

• the coding process is affected by the subjectivity of the observer; in addi-
tion, it can be disrupted by environmental factors

• each survey is associated with a vector of 35 cover codes, instead of a
single value of some target variable

• the spatial dependence between the observations cannot be taken into
account (no repetition, no spatial structure for hydrological data).

While most authors consider cover data as ordinal and debate about the troubles
this causes for data processing (Podani, 2005, 2007; Ricotta and Avena, 2006;
Van der Maarel, 2007), we will adopt another position, considering that it has
the richer structure of coarse data (Heitjan and Rubin, 1991). This will enable
us to propose an original method (Coarse Vector Response Regression: CVRR)
combining stochastic restoration with clustering and nonparametric regression,
in order to investigate relationships between such a vector of cover codes and
several explanatory variables. The performance of CVRR will be tested first on
well-designed Monte Carlo simulations and then on the Berre Lagoon data.

2. Data description

In this section, we provide an outline of the available data: implementation
of the P. pectinatus cover survey, list of the hydrological independent variables.

2.1. The Berre lagoon and P. pectinatus data compilation

The Berre lagoon (Provence, Southern France) is one of the largest Mediter-
ranean coastal lagoons (155 km2). In the late 19th and early 20th centuries,
urban development and mainly petrochemical industrialization of the lagoon’s
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region resulted in a steady increase in pollution. Since 1966, the diversion of
the Durance River towards the Saint-Chamas EDF hydroelectric power plant,
and then into the lagoon resulted in (i) a heavy input of freshwater (up to
seven times the volume of the lagoon per year), (ii) the decline of surface water
salinity from 2.4− 3.6% to 0.1− 2.2%, (iii) eutrophication and unstable ecolog-
ical conditions (Nérini et al., 2000). In the years following the diversion of the
Durance River into the lagoon, newly forced, isolated, patches of P. pectinatus
have been reported (Riouall, 1972; Stora, 1976) while, in the same time, other
species, as Zostera beds, were drastically reduced (Bernard et al., 2005, 2007).
At the mid 1980s, P. pectinatus constituted extensive continuous belts, along
the north-west shoreline of the lagoon, from a few centimeters below the mean
water level to 1 m depth (Mossé and Mossé, 1985).

By means of a GIS database, we coupled historical data (1970 to 1996) and
ground truth (for the recent years: 1998 to 2004) in an attempt to assess the
patterns of change of the P. pectinatus cover over time and to connect them
with changes in the lagoon environment, on the basis of quantitative data.
The whole shoreline of the Berre lagoon was surveyed annually between 1998
and 2004 (from a small boat and by snorkeling) and P. pectinatus cover was
recorded. Thirty five stations were identified and geographically localized as
common sampling stations for each year of the whole time series (Figure 1).
Historical data (for the years 1970, 1972, 1984, 1986, 1989) were then coupled
with ground truth (for the years 1990, 1994, 1995, 1996, 1998, 2002, 2004) in a
GIS database (ArcGIS 8.0 R©). For the whole time series, the observations were
done during July and August. Of course, the cover is specific to the investigated 

 

Figure 1:
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sampling station. The surface area of each station has been defined as the surface
area included between the 50 m long fraction of the shoreline centered on the
sampling station. The records of the P. pectinatus cover have been coded from
0 to 4 (see Table 1).

Code Observations Corresponding interval Bound
for cover for cover (%)

0 absent none 0
1 isolated shoots negligible ]0, 0.05[
2 isolated patches < 2 [0.05, 2[
3 confluent patches 2 << 10 [2, 10[
4 continuous belts > 10 [10, 35]

Table 1: Codes and percentages corresponding of the cover of P. pectinatus in the sampling
stations

2.2. A sketch of the temporal evolution of P. pectinatus - the regime shift hy-
pothesis

In a preliminary step, the sum of the cover codes from all the 35 stations
has been defined as a yearly total abundance index, denoted T. It can vary from
0 (P. pectinatus absent in the whole lagoon ) to 140 (present with a cover >
10 % in all the 35 stations). Between 1970 and 2004, T varied from a minimum
of 0 to a maximum of 62, in 1986 (see Figure 2). This sudden year-to-year
variations in P. pectinatus abundance suggests a “regime shift”, defined as a
rapid reorganization of the ecosystem from a stable state to another along a
non linear evolution (Brock and Carpenter, 2006; Rodionov, 2004; Rodionov
and Overland, 2005). In our case, the ecosystem switches between state (a):
the species was present in very few places with very low abundance (sometimes
limited to isolated shoots) and state (b): it constituted extensive beds along
large parts of the lagoon shore. While the shift from (a) to (b) cannot be dated
precisely due to lack of data, the shift back to (a) occurred between 1995 and
1996 (see Figure 2).

2.3. Hydrological data

The hydrological variables, and their codes for data analyzes, are mean an-
nual salinity (coded Sal.); mean salinity in August (Sal. Aug.); total an-
nual inputs of freshwater by the Durance river from January to December
(Mt/a)(FW); total inputs of freshwater by Durance River from October to
September (Mt/a) (FW-1); annual inputs of silts from the Durance River
(103t/a) (Silt); annual inputs of P-PO4 (t) (P- PO4); annual inputs of N-NO3

(t) (N-NO3); mean concentration of N-NO3 in surface water (µmol.L−1) ([N-
NO3]); mean concentration of P-PO4 in surface water (µmol.L−1) ([P-PO4]);
concentration of suspended solids in surface water (wg.L−1) ([SS]).
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Figure 2:

3. Statistical methods

In this section, we will show the shortcomings of two classical methods for
processing our data, and propose an original regression method for coarse vector
responses designed for our purpose.

3.1. Standard analyzes

3.1.1. Basic linear regression

The exploration of relationships between P. pectinatus cover (using total
abundance index T) and hydrological conditions of the lagoon was first carried
out through simple linear models. These basic analyzes had disastrous out-
comes, exemplified on Figure 3 by the “best” result: concentrations in N-NO3

(R2 = 0.186, P-value of the regression slope = 0.16).
But notice T is a very rough summary of these 35 values which are not

even authentic numbers, only ordinal codes. Furthermore, one can infer from
Figure 3 that the relationships we are trying to reveal are likely nonlinear.
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Figure 3:

3.1.2. Canonical Correspondence Analysis (CCA)

To investigate relationships between P. pectinatus cover and hydrological
variables, we then considered a more efficient method: CCA (Greenacre, 2007;
Ter Braak, 2006; Ter Braak and Venderschot, 1995). It is a multivariate ex-
ploratory method designed for investigating the relationships between rows (in-
dividuals) and columns (characters) of a contingency table, in connection with
the structure of a second table of numerical variables measured on the same
individuals. It is in a way a generalization of simple correspondence analysis
where linear restrictions are set on attributed row and column scores. Carrying
on CCA needed to associate the five-component vector of counts of the ordinal
codes of P. Pectinatus cover observed at the 35 sites to each observation (year).
These counts were displayed on a 12 by 5 frequency table form. This table was
associated to the 12 by 10 table of values of the hydrological variables. In the
present analysis the row scores are linear combination of the hydrological vari-
ables (mufti-linear regression); the columns scores being computed by weighting
averaging. Thus, the variations of P. pectinatus cover could be directly related
to the variations of hydrological variables.The results can be displayed on or-
dination plots simultaneously visualizing the correlations between hydrological
variables and the similarities between observations (years) and degrees of cover.
The cca procedure from the R package ‘‘anacor’’was chosen for calculations
(De Leuw and Mair, 2009).

The two first axes (Figure 4) corresponded to about 80% of total chi-square.
The first dimension (64%) was clearly more important than the second dimen-
sion (18%) for explaining the variability of data. Only four hydrological vari-
ables were highly or moderately correlated with the two first axes of cca. These
variables and their correlation coefficients with the two axes were: [N-NO3]
(r1=-0.446, r2=-0.110), Sal.Aug. (r1=-0.171, r2=0.694), FW-1 (r1=0.237, r2=-
0.415), and [P-PO4] (r1=-0.03, r2=0.685).

The observations (years) could be clustered in three groups (see Figure 4).
The first group was not very dispersed; it was characterized by a “0” degree of
cover and included 1970, 1972, 1996, 1998, 2002, and 2004. It was essentially
associated with increased values of [N-NO3], and at a lesser degree to Silt and
Sal.Aug (r=-0.17 with first axis). The second group included 1984, 1990, 1994,
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Figure 4:

1995, and was rather characterized by the degree of cover “1”. The position of
this group on the first dimension, showed that it was rather associated with low
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values of [N-NO3] (r1=-0.446) and had a weak association with increased values
of FW-1 (r1=0.237).This group was very scattered along the second dimension.
It was an heterogeneous group. At last, the third group included 1986 and 1989
and was characterized by the degrees “3” and “4” of cover, increased values of
FW-1 (r1=0.237) and low values of Sal.Aug (r2=0.694) and [P-PO4] (r2=0.685).
The second dimension (axis 2) enabled us to characterize the degree of cover
“2” by increased values of Sal. and [P-PO4]. Notice that this classification is
quite compatible with the regime shift hypothesis.

CCA was rather well-suited for our purpose, but it suffers from several draw-
backs:

• the cover is considered as a categorical variable;

• it is a linear method, while the investigated relationships should be non-
linear (see Figure 3 and associated comments);

• in the present study, where the number of hydrological variables (10) is
close to the number of observations (12 years), CCA leads approximately
to the same results as those of a correspondence analysis (CA) (Ter Braak
and Venderschot, 1995).

Thus, both the above methods didn’t take into account essential characteristics
of the data. Classical methods of ordinal regression (Guizan and Harrell, 2000)
cannot be used either, because in our case the dependent variable is a vector
of ordinal codes instead of a single target variable. Consequently, we propose
a specific method for analyzing such data. This method combines stochastic
restoration, clustering and nonparametric regression, in a sequence of trials. A
trial consists of three steps:

1. (restoration) replace each annual observation (a vector of 35 ordinal codes)
by an appropriate vector of numbers in [0, 1]

2. (classification) split the obtained set of vectors into an appropriate fixed
number G of classes

3. (regression) compute the cover mean versus the mean of each hydrological
variable, conditionally to the classifier.

After performing a reasonable number R of trials (here: R = 200) one obtains,
for each variable (including the cover), R different G-uples which give rise to
“per group regression functions” (see Figures 8, 10, 13 &15). The method is
exposed in more details hereunder.

3.2. The proposed method: CVRR

Consider the bulk “ecological state” of the lagoon, defined as the P. pectina-
tus extension, described for the kth year by the random vector of ordinal codes
−→
Ck :=

{
c1

k, · · · , c35k
}
- upper indices stand for years, while the lower ones stand

for stations.
To highlight the hydrological variables responsible of the ecological state of

the lagoon, we will firstly follow Singer et al. (2004). These authors proposed
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to assign scores to ordinal categories before applying linear models and other
methods designed for continuous variables, arguing that ordinal variables are
indeed ill-suited for such models. In our case, since the ith modality, ci, is
associated with some interval of cover [ai, bi[ (see Table 1), a natural score
is the “central score”: S(ci) := bi+ai

2 ∈ [0, 1]; Billard and Diday (2006), for
instance, proposed this coding to define PCA for interval variables.

3.2.1. From ecological states to per group regression functions through the Cen-
tral Score

Combining
−→
Ck with the central score S, we obtain the kth “digitized state”

−→
b k := {S(ck1), . . . , S(c

k
35)} of the lagoon. We aim at explaining the variations

of these states, keeping in mind that there are clusters of states (regime shift
hypothesis) and that the influence of hydrological variables on the cover is likely
non-linear.

Clustering the states with the Partitioning AroundMedoids algorithm (PAM)
(Kaufman and Rousseew, 1990), for instance, makes it possible to get rid of a
major part of noise. This robust algorithm (Van der Laan et al., 2003; Kauf-
man and Rousseew, 1990) produces a set of cluster centers (medoids) from a
dissimilarity matrix between objects of interest. When the “natural” number of
clusters is unknown, the Silhouette test is one of the best methods for discover-
ing it. Roughly speaking, it consists (Van der Laan et al., 2003) in optimizing
the number of clusters in order that the clusters are homogeneous and stable
(transferring an element from a cluster to another one would not improve the

classification). We jointly used both these methods to cluster {
−→
b 1, . . . ,

−→
b 12}

into a convenient number of groups, from points of view associated with different
distances between digitized states.

For quantifying the differences between successive ecological states, we had
to choose an appropriate distance between these vectors of 35 attributed scores.
Notice that the usual Euclidean distance implicitly takes into account the ge-
ographical position of the sampling sites, which corresponds to the 35 coor-

dinates of each state vector
−→
bk . Consequently, if γ denotes a permutation of

these coordinates, we have generally, for any pair (k,m) of digitized states:

‖
−→
b k −

−→
b m‖ 6= ‖

−→
b k − γ ◦

−→
b m‖. Since only one value of each hydrological

variable is associated with each state, independently of any geographical lo-
calization around the lagoon, such a property is undesirable. Consequently,
distances between statistical distributions of annual scores were used. Amongst
the numerous distances between distributions used by statisticians and proba-
bilists (Gibbs and Su, 2002), we discarded those based on probability densities
(Hellinger and Bhattacharya distances, divergences, etc.), because their compu-
tation needs a preliminary density estimation step. We focused instead on two
distances based on distribution functions: the Kolmogorov distance:

DK(F1, F2) = sup
x

|F1(x)− F2(x)|
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and the Wasserstein (or Kantorovich) distance (Gibbs and Su, 2002):

DW (F1, F2) =

∫ ∞

−∞
|F1(x)− F2(x)|dx.

Because both these distances gave very similar results, we will only focus on
DW.

According to the Silhouette test, the set of states is optimally split into three
groups of years. These groups are G1:={1970,1972,1998,2002,2004},

G2:={1984,1990,1994,1995,1996}, and G3:={1986,1989}; they are quite com-
patible with the regime shift hypothesis (see Figure 2).

Consider now (formally) the nonparametric regression function associated

with some variable Z and the digitized state: mZ(
−→
b ) := E(Z|

−→
B =

−→
b ). It is of

course of no practical interest, but remember that {
−→
b 1, ...,

−→
b 12} consist in three

homogeneous groups. We can use the classifier G
(−→
B
)
∈ {1, 2, 3} associating

to each state its class number to build a valid regressor. It is the “per group
regression function”:

m̃Z(g) := E(Z|G(
−→
B ) = g).

In this setting, the conditional relationship between two variables X an Z
can be summarized by the three points:

{(m̃X(g1), m̃Z(g1)), (m̃X(g2), m̃Z(g2)), (m̃X(g3), m̃Z(g3))}.

Fixing Z := S(C), we get a schematic representation of the relationships
between the digitized cover Z and each hydrological variable X , by displaying
these expectations on a bi-dimensional scatterplot. Thus, while usual regression
consists in finding a curve f such that Z ≈ f(X) + ε, we merely plot the graph
of the random variable (X,Z) coarsened (Heitjan and Rubin, 1991) by the
classifier. Figure 5 illustrates the result obtained for X=[N-NO3].

This plot clearly captures the information shown by Figure 3, but one could
object that it depends on the score chosen. Shall we display a totally different
graph by using another score? To control the dependence between the classifier
and the score, we propose hereafter to supersede deterministic scores by well-
suited random ones. This lead us to investigate the nature of cover further.

3.2.2. The cover: its evaluation and coding

Let π ∈ [0, 1] be the actual (but unknown) P. pectinatus cover at one sam-
pling site, for one sampling year. In practical terms, the diver first got an
“estimation” π̂ of this parameter by visual census (snorkeling); afterward, he
coarsened this estimation by assigning it to some interval O(π̂) ∈ {0, 1, 2, 3, 4},
giving rise to a record. Thus, even if the cover firstly appears as an ordinal
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variable, it conveys more information than just some order. A point of cardinal
importance with π is indeed its imprecision: we cannot be sure that its actual
value has been assigned to the right interval by the diver. This imprecision
can be imputed to three different (but intricated) causes: noise, environmental
factors, and subjectivity of the diver.

But notice that in our case, under no circumstances π̂ results from a mea-
surement! It is indeed the opinion of the diver about the cover of a parcel, a
subjective belief integrating simultaneously environmental disruptions, which is
afterward coarsened in accordance with the coding displayed in Table 1. Such
data can be handled in the setting of the Evidence Theory (Shafer, 1976), widely
used in the Artificial Intelligence community. In the next sections and in Ap-
pendices A&B, we propose a method for generating random covers, based on
the Transferable Belief Model (TBM). This method makes it possible to involve
subjective factors in the coarsening process and, consequently, in the restoration
process.

In the nineties, Smets (Smets and Kennes, 1994; Smets, 1999) developed a
model for representing quantified beliefs, the Transferable Belief Model, “sup-
posed simulating the behavior of a reasonable and consistent agent” (Smets and
Kennes, 1994). It is a subjectivist and non-probabilist extension of the Evidence
Theory of Shafer (1976), where belief functions are interpreted as weighted opin-
ions held by agents. The TBM is a two-levels model:

• the credal level, where subjective personal beliefs of the agents are enter-
tained, upgraded, discounted, aggregated, etc. (Ha-Duong, 2008; Smets,
1990; Delmotte and Smets, 2004), see also (Shafer, 1976)
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• the pignistic level (for betting), where beliefs are translated into proba-
bilities to make decisions (Smets, 2005b).

Our case is indeed similar to the “one sensor problem” handled by Delmotte
and Smets (2004), which consists in identifying a target from signals obtained
from a sensor. These authors showed (see Appendix A) that this problem can
be solved by computing pignistic probabilities depending on conditional prob-
abilities obtained by training the sensor in a preliminary step. Since we don’t
possess such informations, we propose in Appendix B to work in a completely
symbolic setting: we will use the TBM to build pignistic probability distribu-
tions associated with typical theoretical behaviors of the diver (confident or
suspicious). These distributions will be used to restore the P. pectinatus cover
observations with random scores.

3.2.3. Stochastic restoration of the cover

It is now time to describe the proposed stochastic restoration scheme. From
the outset, we considered apart the first category, claiming that when P. pecti-
natus is not observed at all, π = 0.

Consider a diver B, whose particular behavior has been formalized in the
TBM setting (see Appendix B for detailed explanations); let BetPB be the cor-
responding pignistic probability. Because of the coding used, this distribution is
discrete but notice that π as well as its perception by B, π̂, are naturally contin-
uous. Thus, BetPB should be absolutely continuous (Smets (2005a) considered
such pignistic probabilities). Consequently, as far as it is acceptable, we will
supersede the original BetPB by a convenient Beta distribution β (pB, qB). We
chose this family of distributions because it proved its efficiency for modeling
plant cover (Chen et al., 2008b,a; Irvine and Rodhouse, 2010). It is noteworthy
that a Beta distribution is also a particular case of the BetaPERT distribution,
frequently used to model expert opinion in the Risk Management literature
(Paisley and Hostrup-Pedersen, 2004; Pellegrino and Costantino, 2012).

The vector of parameters (pB, qB) of the fitted distribution will result from
minimizing DW

(
FSBetPB , Fβ(p,q)

)
, where Fβ(p,q) denotes the d.f. of some

Beta distribution, and FSBetPB denotes the Stineman monotonic interpolation
(Wagon, 2000) of the empirical d.f. associated with BetPB (see Figures 7 , 9,
12 and 14).

Random scores will then be generated from the data by using the rule σB :
C −→ [0, 1] below:

σB :

{
0 7→ 0
i 7→ β (pB, qB) |Ci

if i ≥ 1

where β (pB, qB) |Ci
denotes the restriction of the probability to Ci. Notice that

this restoration process depends on the conditions of observation (sensu lato),
and not on the data, which is natural. By following the process described in
Section 3.2.1, each set of restored states can be afterward clustered into an
optimal number of groups determined by the Silhouette test. Finally, per group
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regression functions are computed from the results of a reasonable number of
trials.

4. Monte Carlo experiments

To put CVRR to the test, we performed simulations in conditions simi-
lar to those of the Potamogeton data. Suppose we can observe the values
{ν1, ν2, ..., νK} ofK “hydrological random variables” {V1 ∈ V1, V2 ∈ V2, ..., VK ∈
VK}, and there areK known measurable functions, {ψ1, ψ2, ..., ψK} determining
the “cover”:

∀ 1 ≤ k ≤ K, ψk(vk) = π ∈ [0, 1].

We chose to define an ecological state as a random vector, whose independent
coordinates obey a common law Dg, for some g ∈ {1, · · · , G}. Thus, we should
find at most G clusters in a sample of states. But how could we simultaneously
generate clusters of such vectors of cover (or “ecological states”) and bulk values
of the forcing hydrological variables, according to these relations?

4.1. Pitfalls of such simulations
A straightforward method for simulating a vector of cover would consist in

generating a N-sample (here, N=35) of some probability distribution Lk asso-
ciated with the kth variable, and consider the N-sample of covers induced on
[0, 1] by ψk. This approach raises complicated issues, because the distributions
{L1, L2, ..., LK} should be in coherence with the functions {ψ1, ..., ψK} , i.e.
the induced cover probabilities associated with different hydrological variables
should be the same! In other words, for any pair (k,m) of indices, the induced
laws ψk ∗Lk and ψm ∗Lm should obey a common distribution D on [0, 1]. This
is a severe constraint, made worse by another constraint: suppose we simulate
this way T ecological states; the corresponding vectors should belong to at most
G clusters!

A simpler way to proceed consists, when ψk possesses (in some sense) a
measurable inverse ϕk := ψ−1

k , in generating a sample {π1, · · · , π35} from
some distribution Dg on [0, 1] associated with a cluster, and in computing
{ϕk (π1) , · · · , ϕk (π35)}. Notice that in this case {ϕk (π1) , · · · , ϕk (π35)} is a
sample of the distribution Lg

k := ϕk ∗ Dg.
We will follow this strategy.

4.2. A straightforward case: simulating one-to-one relationships

Suppose ψk is bijective; we can merely use its inverse, ϕk := ψ−1
k for com-

puting the random value of the kth hydrological variable for some vector of
random covers, −→π . Choosing the mean as a centrality criterion (it could be
the median, as well), we can easily generate a realist bulk measure of Vk at the

“time t”: νk = ϕk(
−→π t) := ǫ+ 1

35

∑35
i=1 ϕk(π

t
i), where ǫ ≈ N(0, σ) is an additive

noise. Thus, if all the possible relations were bijective, CVRR should enable us
to recover any ψk from the codes and hydrological variables.
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4.3. A general alternative: simulating a multifunction

But statistical relationships are not always one to one, and we must imagine
more complicated situations (Einbeck and Tutz, 2006a,b) ! Suppose ψk is a
multi-valued application (i.e. ψk(ν) ∈ P([0, 1]) is not a singleton). Since ψk

is not a function, it doesn’t have an inverse, but we can nevertheless consider
the associated inverse relation (Halmos, 1997), defined by Φk := {(π, ν) : π ∈
ψk(ν)}. Alternatively, we can consider its lower inverse application (Berge,
1966), ψ−

k (π) := {ν : ν ∈ Vk, π ∈ ψk(ν)}. Berge (1966) has shown that:

• if ψk is injective (i.e. ν1 6= ν2 =⇒ ψk(ν
1) ∩ ψk(ν

2) = ∅), ϕk := ψ−
k is a

function

• if ψk is a function, the application ϕk is injective

• ϕ−
k = ψk.

In conclusion, as soon as ψk is injective, Φk is the graph of ϕk, and we can base
our simulations on covers and ϕk.

The algorithm used for simulating a vector of covers and hydrological vari-
ables is thus:

1. generate a random vector −→π = (π1, ..., π35) , whose coordinates obey a
given law Dg, for some g ∈ {1, · · · , G}

2. on the one hand, coarsen this vector according to some given table of
codes, getting a row of a matrix M of ordinal codes

3. on the other hand, apply {ϕ1, ..., ϕK} to −→π and obtain a vector (ν1, ..., νK)
of the so-called hydrological variables, getting a row of another matrix,W .

5. Results

5.1. Results of CVRR on simulated covers and K = 6 hydrological variables

We generated according to the algorithm above 30 random Gaussian vectors
of cover, {(πt

1, · · · , π
t
35) , 1 ≤ t ≤ 30}, such that all the components of the vector

of covers at the “time” t obey a common distribution N(µt, σ) . The mean
µt was randomly drawn from the set {0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1}, and σ

was arbitrarily fixed to 0.1. Thus, each row of the obtained 30 by 35 matrix of
covers, Π, belonged to some group of Gaussian vectors, and we had at the most
G = 8 groups of covers.

5.1.1. Using the completed GIPREB grid

The simulated covers were first coarsened by using the intervals bounds of
Table 1, completed by ]0.35, 1] (the cover is thus coded on 6 modalities), giving
rise to a 30 by 35 matrix M of codes. Notice that this grid is very ill-suited for
such data, as the reader can see on Figure 6.

The pignistic probability (see Appendix B) associated with the confident
agent BC is

BetPC = (0.1868967, 0.208193, 0.20982056, 0.208193, 0.1868967),
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and Figure 7 shows that the corresponding distribution function (d.f.) is well-
fitted by the d.f. of β (0.260144, 1.30305). Applying {ϕ1, ..., ϕ6} to the rows of
Π, we obtained a 30 by 6 matrix W . Then we processed this pair of matrices
exactly the same way as with the Berre data in Section 3.2.1.

We plotted on Figure 8 the results obtained by BC with two discontinuous
applications (ψ1 and ψ2), two smooth bijective functions (ψ4 and ψ5) , and two
injective (but multi-valued) applications, ψ3 and ψ6 (for thorough explanations
about the graphical elaboration of this plot, see Section 5.2). Notice that none
of the applications is correctly restored, excepted in the case of small cover
values (π < 0.5).
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Figure 7:

Consider now the suspicious agent BS , whose pignistic probability is

BetPS = (0.0004964, 0.0207859, 0.0821761, 0.2504686, 0.6460731).

One can easily verify on Figure 9 that the corresponding d.f. is perfectly fitted by
the distribution β (0.9875, 0.9986), very close indeed to the uniform distribution.

This agent obtains results slightly better than those of BC (see Figure 10);
this is natural, since the GIPREB grid was not designed for such data! Nev-
ertheless, the results of BS are pretty feeble too, and this is also imputable
to the grid. Suppose for instance we observed a very good ecological state:
−−−→
Nice = {41, · · · , 435}, and let {x1, · · · , x35} be associated simulated covers.
Since the pignistic probability is approximately uniform (see Figure 9), the
generated data are approximately uniform on [0.35, 1]. Since the mean and
the standard deviation of the uniform distribution on [0.35, 1] are respectively
µ = 0.675 and σ = 0.18764, the Gnedenko central limit theorem shows that

x̄35 =
∑

35
i=1

xi

35 approximately obeys N
(
µ, σ√

35

)
= N (0.675, 0.03172). Thus,

roughly speaking, we can say that x̄35 is very close to 0.675, and that it is
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Figure 8:

bounded by 0.75. On the contrary, {ϕk (x1) , · · · , ϕk (x35)} may be quite scat-

tered, and ϕk(
−→x ) := ǫ + 1

35

∑35
i=1 ϕk(xi), where ǫ ≈ N(0, 0.1) may be rather

fluctuating (see Figures 8 & 10).

5.1.2. Using a regular grid

The simulated covers were afterward coarsened by using a regular grid, with
the same number of intervals than the GIPREB one (see Figure 11), giving rise
to another 30 by 35 matrix M of codes. This grid is much better suited for
our simulated data. In addition, remember that in this case the confident and
the suspicious agents are confounded (see Appendix B); consequently, we only
plotted the pignistic distribution corresponding to the first one, on Figure 12;
naturally, it is also rather close to the uniform distribution.

We can see on Figure 13 that the bijective functions (a linear and a cubic
one) were very well restored. The injective application ψ3 was very well restored
too, and one can infer from the associated panel that it is not a function of ν3;
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Figure 9:

thus, π cannot be predicted by ν3. Linking the averages in function of the
ordinate instead of the abscissa, the reader could see that, on the contrary, its
lower inverse ϕ3 is indeed a function of π (see the confidence regions). The
restoration of ψ6 was rather poor, but notice that it was a hard problem, since
ϕ6 is the sum of a linear trend and a cosine of rather high frequency. At
last, neither ψ1 nor ψ2 is injective; consequently, using CVRR is dubious in
these cases. Nevertheless, the trends corresponding to these applications were
satisfactorily restored.

5.2. Application to the P. pectinatus data

First of all, we discarded six stations (30-35) from the data set, because
their cover was always null. Theses stations are located is the South part of
the lagoon, and are characterized by unfavorable physical (strong currents) and
sedimentary (gravel and shells) conditions for P. pectinatus growth.

The pignistic probability associated with BC is (see Appendix B):

BetPC = (0.2389146, 0.2610854, 0.2610854, 0.2389146),
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Figure 10:

and Figure 14 shows that the corresponding d.f. is rather well fitted by a
beta distribution (the biggest fitting error is: P (β (0.324432, 4.41761)> 0.35) =
0.0329426); notice that, contrary to previous pignistic probabilities, it is sup-
ported by the cover interval associated with Table 1.

Two hundred preliminary independent runs were performed and, using DW
as the distance between restored states, the optimal number of classes was 1
(6.5% of runs), 2 (78%) or 3 (15.5%). Consequently, the correct number of
groups should not exceed three. We decided to set it to three, because it was
the result already obtained with the central score (see Section 3.2.1), and also
because with three classes (or more - see Section 5.1) it is possible to reveal
nonlinear relationships.

We subsequently performed two hundred other runs, clustering the restored
states into three groups, and associating to each run a per group regression
function similar to that displayed on Figure 5. We obtained this way 200 triples
{(m̃Z (gs1) , m̃Z (gs2) , m̃Z (gs3)) : 1 ≤ s ≤ 200} for each variable Z (including the

19



-0.5 0.0 0.5 1.0 1.5

0

1

2

3

4

The Unif grid

Figure 11:

cover itself). Remember m̃Z (gsk) is the average of all the values of Z associated
with observations (years) assigned to the kth group, in the sth run. It is also
important to note that, for coherency, these random groups of years were labeled
in function of the target variable Y (the cover), in order that we have:

m̃Y (gs1) ≤ m̃Y (gs2) ≤ m̃Y (gs3) ∀s, 1 ≤ s ≤ 200.

Thanks to this sorting, we are able to associate the groups issued from differ-
ent runs, and to characterize the relationship between Y and each hydrological
variable X by the three conditional distributions associated with the groups (see
Figures 8 & 15). On these plots, the points are naturally linked by segments,
in function of their abscissas.

A synthesis of the triples obtained from these 200 runs

{(m̃X (gs1) , m̃Y (gs1)) , (m̃X (gs2) , m̃Y (gs2)) , (m̃X (gs3) , m̃Y (gs3)) : 1 ≤ s ≤ 200}

is displayed on Figure 15. Each panel of this figure crosses the restored cover
(the ordinate Y ) with some hydrological variables (the abscissa X ). The struc-
ture of the three groups (the associated conditional distributions, summed up
by confidence regions, medians and averages) crystallizes the possible relation-
ship between X and the cover. The different panels of Figure 15 highlights the
variables which could actually explain the cover of P. pectinatus : Sal., Sal.Aug.,
FW-1, Silt, [N-NO3] and [P-PO4]. On the contrary, since the relationships be-
tween the cover and the other hydrological variables (FW, N-NO3, [SS] and
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P-PO4) are not monotonous, they could not explain it straightforwardly. It is
noteworthy that most of the good predictors were retained by CCA; neverthe-
less, surprisingly, CCA discarded Silt.

But what about the suspicious agent BS? In his case, the pignistic proba-
bility is (see Appendix B):

BetPS = (0.0014277, 0.0558381, 0.2287379, 0.713996),

which is close to the uniform distribution on [0, 0.35]. Since the results obtained
by both of the agents were very similar, we focused only on those of BC , for
sake of brevity.

5.2.1. Ecological interpretation

Trough the whole observation series, among the several hypotheses which
could account for the year-to-year variation in the extent of P. pectinatus in
the Berre lagoon, the inputs of freshwater generating the drop in salinity may
have constituted one of the main controlling factors. P. pectinatus is a fresh-
water species; the plant frequently inhabits rivers, streams, coastal ponds and
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Figure 13:

estuarine wetlands, as it can adapt to moderate salinity and fluctuating water
levels (Kantrud, 1990; Pilon et al., 2002). Indeed, we can see on Figure 15
that mean annual salinity (Sal.) and mean salinity in August (Sal.Aug.) are
linked with P. pectinatus abundance. Of interest is the strong relationship be-
tween the cover and total annual inputs of freshwater by the Durance River
from October to September (FW-1), which integrates the 12 months-period be-
fore the peak-vegetation of P. pectinatus. On the contrary, the annual input
summed from January to December (FW) cannot predict the abundance of this
species. Inputs of silts from the Durance River are linked negatively with the P.
pectinatus abundance. Water transparency frequently limits the depth distribu-
tion of aquatic angiosperms (Bowen and Valiela, 2001; Valiela et al., 1997) and
the heavy inputs of silts up to the latter 1970s could have constrained the P.
pectinatus growth, although this species is well-adapted to turbid environment
(Kantrud, 1990). Eventually, the reduction of silts loads in the early 1980s may
have increase the water transparency and, as a consequence, improve the growth
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Figure 14:

of P. pectinatus. Finally, P. pectinatus abundance is linked with concentrations
in phosphate and nitrate, while that is not the case with inputs of these chemical
elements. In surface water, concentrations in phosphates remained low through
the whole time series, close to the value given to be limiting for P. pectinatus
growth. This can cope with the common assumption that phosphorus is usually
the limiting factor for growth of freshwater macroalgae (Van Wijk, 1989).

6. Conclusion

We have proposed an original method for explaining a vector of imprecise
interval data with several quantitative variables. It combines stochastic restora-
tion (based on the Transferable Belief Model), clustering and nonparametric
regression. After a preliminary test on realistic simulated data, it has been ap-
plied to explain the annual cover variations of Potamogeton pectinatus in the
Berre lagoon from 1970 to 2004 with ten hydrological variables. Our results
suggest that freshwater inputs, salinity and nutrient were the forcing variables
responsible for the phase shifts from P. pectinatus meadows to bare silt habitat.
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Figure 15:

Through the whole time series, the P. pectinatus extent has been enhanced by
respectively increasing freshwater inputs and decreasing salinity, while it has
been limited by phosphorus and nitrogen concentrations in water.

The obtained issues were basically in accordance with those from CCA, but
notice that CVRR can deal with nonlinear relationships. Moreover, CCA does
not take into account the nature of such data, contrarily to CVRR. Furthermore,
the proposed restoration method takes into account hypotheses about the diver’s
behavior. Of course, other hypothetical behaviors could be tried. It could also
be possible to obtain pignistic probabilities from the concrete experience of
divers.

We considered the ten explanatory variables one at a time, plotting char-
acteristics of the clusters. The per group regression consisted in linking the
obtained average conditional expectations:{(

m̃π (g1) , m̃Y (g1)
)
,
(
m̃π (g2) , m̃Y (g2)

)
,
(
m̃π (g13) , m̃Y (g3)

)}

where Y denotes any explanatory variable. It would be conceivable to su-
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persede these separate simple regressions by a single multiple regression, if we
had much more than three clusters! This remark points out that CCVR has
been described as an “inter-groups” method. It could be easily completed by
“intra-groups” analyzes (simples or multiples regressions for instance). This
would not be very interesting here, because of the small size of our data set (12
observations, necessarily duplicated during the restoration process).

In conclusion, the results obtained on real data as well as on realistic (but
richer!) simulated data show that CVRR can reveal nonlinear relationships
between the coarsened cover and hydrological variables, whichever these rela-
tionships are one-to-one. Consequently, it should be generally helpful in Ecology
(or other disciplines) for investigating the relationships between vectors of coarse
responses and explicative variables.
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Appendix A: the TBM model for a single sensor

The TBM has been widely used to model fusion of expert opinions (Ha-
Duong, 2008) and fusion of sensors data (Delmotte and Smets, 2004), amongst
other topics. Particularily, the “one sensor problem” handled by Delmotte and
Smets (2004) has been a source of inspiration for us. These authors suppose
there is a set of n targets C := {c1, · · · , cn} (various aircrafts, for instance); the
actual (unknown) one is c̊ ∈ C, while the set of possible observations (images,
for instance) is Π. The identification problem consists in estimating c̊ from
a set πk := {π1, · · · , πk} of independent observations of the same target π̊.
Delmotte and Smets (2004) proposed to estimate c̊ by ĉ := arg max

c∈C
BetP [̊π] (c),

where BetP [̊π] denote the pignistic probability associated with the observation
of π̊. Concretely (Smets, 2005b), BetP [̊π] is computed from a “basic belief
assignment” (bba) m [̊π] (A) allocating to any logical proposition A about c̊
some amount of belief (in [0, 1]), conditionally to the observation of π̊. Delmotte
and Smets (2004) proved that in the “one sensor problem” case, m [̊π] can be
computed from the conditional probability measures {P (π|c1) , · · · , P (π|cn)}
on Π. Thus, this method requires knowledge of these probabilities, obtained for
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instance from a confusion matrix built by training the sensor in a preliminary
step.

Appendix B: determining pignistic probabilities from symbolical be-
lief functions

In the TBM, a pignistic probability BetP results from the “pignistic trans-
formation” of a given basic belief assignment (bba) m (Smets, 1999, 2005b),
in one-to-one correspondence with a belief function Bel. There is a number of
belief functions (Dubois et al., 2008) corresponding to a unique pignistic prob-
ability BetP ; to obtain a unique bba m from BetP , it is necessary to impose
constraints to m.

Aregui and Denoeux (2008) constructed this way a belief function from a
pignistic probability; we will follow the opposite way, building pignistic proba-
bilities from symbolical belief functions. Each belief function will be associated
with the evidential corpus (or “frame of discernment” (Shafer, 1976)) of some
“agent” (alias B). The evidential corpus of B consists of logical propositions,
corresponding to “all B knows” (Smets, 1998; Smets and Kennes, 1994). We will
build belief functions corresponding to two agents, with different behaviours: a
confident one (BC), and a suspicious one (BS).

6.1. The nature of Bel and m, and their relationships

Let Ω be a finite set of logical propositions.

Definition 1. (Shafer, 1976) A belief function Bel is a function from the power
set P(Ω) (frequently denoted 2Ω) to [0, 1] such that, for any family {A1, · · · , An}
of elements of P(Ω)

Bel(∅) = 0 (1)

Bel

(
n⋃

i=1

Ai

)
≥

n∑

i=1

Bel (Ai)−
∑

i>j

Bel (Ai ∩ Aj) · · ·+ (−1)
n+1

Bel

(
n⋂

i=1

Ai

)
.

(2)
The associated basic belief assignment m, is the Moebius representation of Bel,
defined by Shafer (1976):

∀A ∈ P(Ω), m (A) :=
∑

∅6=B⊆A

(−1)
|A−B|

Bel(B) (3)

where |E| denotes the cardinality of E. This function fulfills the conditions

∑

A∈P(Ω)

m (A) = 1

m (∅) = 1−Bel (Ω) .
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Reciprocally, we have the relation:

∀A ∈ P(Ω), Bel (A) =
∑

∅6=B⊆A

m (B) .

In addition, we will suppose that m is normal, i.e. m (∅) = 0 (this “closed-
world” assumption means that the frame of discernment certainly contents the
true value of the variable of interest(Smets, 1990)- this is clearly our case). Let
now π̂ be some observation by B, and let G ∈ P(Ω). According to Smets (1990,
1999), Bel(G) is the total amount of belief of B supporting the proposition
”π̂ ∈ G”, while m(G) is the partial amount of belief of B supporting this
proposition, which does not support any strict subset of G (due to lack of
precision, insufficient information, etc). For instance, B believes that π̂ ∈ A∪B,
but is unable to choose between π̂ ∈ A or π̂ ∈ B.

6.2. The pignistic probability associated with a normal basic belief assignment

The pignistic transformation (Smets, 1999, 2005b) makes possible to skip
from the credal level to the pignistic one, in order to take decisions.

Definition 2. The pignistic probability distribution associated withm is BetP ,
defined on Ω as

∀ω ∈ Ω, BetP (ω) :=
∑

A⊆Ω|ω∈A

m (A)

|A|
.

Remark 3. An interesting characteristic of BetP is that it is the centre of gravity
of the set of probabilities dominating the belief function Bel (Dubois et al.,
2008).

6.3. Calculating m and BetP in the case of a family of contiguous intervals

Suppose ω0 is an observation of B, and consider the algebra generated by
the finite set of propositions

Ω := {ω0 ∈ [a1, a2[ , ω0 ∈ [a2, a3[ , · · · , ω0 ∈ [aI , aI+1]} := {C1, · · · , CI} .

For simplicity of notations, we will identify each Ci with the associated
interval, and suppose a1 = 0 and aI+1 = 1.

First, what is the meaning of the number Bel (Ci) in this work? Suppose
B observed π, detected π̂ and decided O(π̂) = i ∈ {0, 1, 2, 3, 4}. Then, Bel (Ci)
measures the belief of B in the proposition π ∈ Ci; in other words, the function
Bel measures the confidence of B in the apparatus used (including B himself).

Now, because of formula (3) ∀i, m (Ci) = Bel (Ci) and, for any pair of
intervals

Bel (Ci ∪ Cj) = Bel (Ci) +Bel (Cj) +m (Ci ∪ Cj) ≥ 0. (4)

Thus, m (Ci ∪ Cj) = Bel (Ci ∪ Cj) − (Bel (Ci) +Bel (Cj)) is a determination
of the indiscernibility of Ci and Cj for B. Naturally, this quantity should be a
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decreasing function of the size of the void between the intervals. Consequently,
we should have

m (Ci ∪ Ci±1) ≥ m (Ci ∪Ci±2) ≥ m (Ci ∪ Ci±3) , etc. (5)

and, for k great enough, m (Ci ∪Ci±k) should be very small.

6.3.1. BC, a confident agent

Suppose BC highly trusts the coding used, i.e. he thinks the atoms of
Ω consist of intervals perfectly suited for coding the capability of observa-
tion of a diver. Then the same credal level must be assigned to each inter-
val: ∀i, Bel (Ci) = µ. Notice that this implies µ ≤ 1

I
, since 1 = Bel (Ω) =

Bel

(
I⋃

i=1

Ci

)
≥

I∑

i=1

Bel (Ci) = I µ. Since all the intervals possess the same de-

gree of belief, we can also reasonably postulate that ∀i, m (Ci ∪ Ci±1) = ε ∈
]0, 1[.

Introduce now two auxiliary functions, ∆ and δ defined on the complement
P ⊖ S of the singletons in the power set P({1, · · · , I}):

P ⊖ S({1, · · · ,K}) := P({1, · · · ,K})− {{1} , · · · , {K}}).

These functions are ∆(E) := max
i,j∈E

|i− j| and δ(E) := min
i,j∈E

|i− j|. In

accordance with inequality (5), we postulate in addition that

∀E ∈ P ⊖ S({1, · · · , I}), m

(
⋃

i∈E

Ci

)
= ε∆(E).

Then, we can write:

∀i, BetP (Ci) = m (Ci) +
1
2

∑

j=i±k

m (Ci ∪ Cj) +
1
3

∑

(i,j,k)|δ({i,j,k})>0

m (Ci ∪ Cj ∪ Ck) + · · ·

= µ+ 1
2

∑

j=i±k

ε∆({i,j}) + 1
3

∑

(i,j,k)|δ({i,j,k})>0

ε∆({i,j,k}) + · · ·

These probabilities can be easily calculated in the case of the Potamogeton
data (I = 4):

ΞBetP (C1) = µ+ 1
2

(
ε+ ε2 + ε3

)
+ 1

3

(
ε2 + 2 ε3

)
+ 1

4ε
3 = µ+ 1

2ε+
5
6ε

2 + 17
12ε

3

ΞBetP (C2) = µ+ 1
2

(
ε2 + 2 ε

)
+ 1

3

(
ε2 + ε3 + ε2

)
+ 1

4ε
3 = µ+ ε+ 7

6ε
2 + 7

12ε
3

ΞBetP (C3) = µ+ 1
2

(
ε2 + 2 ε

)
+ 1

3

(
ε2 + ε3 + ε2

)
+ 1

4ε
3 = µ+ ε+ 7

6ε
2 + 7

12ε
3

ΞBetP (C4) = µ+ 1
2

(
ε+ ε2 + ε3

)
+ 1

3

(
ε2 + 2 ε3

)
+ 1

4ε
3 = µ+ 1

2ε+
5
6ε

2 + 17
12ε

3

where the total mass is Ξ = 4µ+ 3 ε+ 4 ε2 + 4 ε3.
Fixing µ = 1

4 and ε = 0.05 (which corresponds to an admissible degree of
indiscernibility: 20% of the basic degree of belief µ), we obtain the pignistic
probability BetPC = (0.238915, 0.261085, 0.261085, 0.238915).
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6.3.2. BS, a not so much confident agent

Consider now our second agent, BS , and let us denote λ (G) the Lebesgue
measure of some interval G. BS does not trust much the imposed system of in-
tervals, and allocates to each atom a credal level proportional to its width:
∀i, m (Ci) = Bel (Ci) = ηi := α (ai+1 − ai); since Ω is the unit interval,
Bel (Ω) = 1 = λ (Ω) ⇒ α = 1.

Consider now the indiscernibility determinationm (Ci ∪ Ci±1) = Bel (Ci ∪ Ci±1)−
(ηi + ηi±1). We postulate that the difficulty for BS of choosing between Ci and

Ci±1 should depend on the ratios
(

ηi

ηi±1
,
ηi±1

ηi

)
on the one hand (their balance),

and on the size of Ci ∪Ci±1, ηi + ηi±1, on the other hand. The influence of the
balance between intervals will be quantified by the arbitrary function

Q
(
x{i,i±1}

)
:=

(
1−min

((
1

x{i,i±1}
− 1

)2

,
(
x{i,i±1} − 1

)2
))5

,

where x{i,i±1} := min
(

ηi

ηi±1
,
ηi±1

ηi

)
∈]0, 1]. The function Q(x) is represented

on Figure 16; it is maximum and equals 1 at x = 1 (balanced intervals), and
practically vanishes for x < 0.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 16:

In addition, we will impose for consistency that when all the atoms are
of equal length, BS would take the same decision as BC . Consequently,
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we postulate for contiguous intervals:

Ξm (Ci ∪Ci±1) :=
2ε

I

Q
(
x{i,i±1}

)

ηi + ηi±1

(where Ξ :=
∑

A∈P(Ω)m (A) denotes the total a posteriori mass), because the

indiscernibility should naturally be a decreasing function of λ (Ci ∪ Ci±1).
As for pairs of non-contiguous intervals, we will also take into account the

void:

Ξm (Ci ∪Ci+k) :=
2εk

I−k+1

Q(x{i,i±k})
ηi+ηi+k

(
1−

∑k−1
j=1 ηi+j

)

Ξm (Ci ∪Ci−k) :=
2εk

I−k+1

Q(x{i,i±k})
ηi+ηi−k

(
1−

∑k−1
j=1 ηi−j

)

since m (Ci ∪ Ci+k) should naturally decrease when the void size increases.

Consider now the sets E := {i, i+ k1, · · · , i+ kL−1} and
⋃

e∈E

Ce, where 0 = k0 <

k1 < · · · < kL−1 < I − i. Denoting SE :=

L−1∑

l=0

ηi+kl
the mass of the support

and VE :=

kL−1∑

j=0

ηi+j −SE the mass of the voids, we define the indiscernibility of

order L (L intervals involved) by:

Ξm

(
⋃

e∈E

Ce

)
:= ε∆(E)Q (xE)

L

I + L− 1− kL−1

(1− VE)

SE

where xE := max
i,j∈E

min ηi

ηj
measures the global balance of the supporting

intervals.
Fixing again ε = 0.05, we obtain as pignistic probability in the case of the

Potamogeton data

BetPS = (0.00142514, 0.0562086, 0.229236, 0.71313) .
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Figures captions

Figure 1: Study site and sampling stations (indicated by numbers 1 to 35).

Figure 2: Total abundance index of P. pectinatus in the Berre lagoon from
1970 through 2004 (points). Groups of years (according to the metric DW) are
indicated by ellipses. Vertical lines indicates the “shift” between state (a) and
state (b) (Rodionov, 2004: shift of the mean; probability = 0.1; length cut-off=4
years; Huber parameter = 1).

Figure 3: Linear model obtained between T and [N-NO3].

Figure 4: First principal plane of CCA. Upper panel: hydrological variables;
lower panel: observations and cover codes.

Figure 5: A per group regression function: the abscissas and ordinates of
these three points are conditional expectations per group of observations (years).

Figure 6: The completed GIPREB grid (vertical lines), and the distributions
{D1, · · · ,D8}.

Figure 7: Completed GIPREB grid; distribution function of the pignistic
probability, superimposed to the associated Beta distribution, in green. In black
(but nearly hidden): the Stineman interpolation.

Figure 8: Completed GIPREB grid; recovering of relationships between a
coarsened vector of simulated “cover” (eight clusters) and different types of
“hydrological variables”, corrupted by additive errors. On each plot, each group
is represented by three statistical characteristics: the convex polygon containing
75% of the data; the bivariate median (labeled by a star), and the average.
Averages are linked by segments according to the sorted abscissas, giving rise
to per group regressions; the true functions are dashed.

Figure 9: Completed GIPREB grid; distribution function of the pignistic
probability, superimposed to the associated Beta distribution, in green. The
Stineman interpolation is hidden by the Beta d.f.

Figure 10: Completed GIPREB grid; recovering of relationships between
a coarsened vector of simulated cover (eight clusters) and different types of
hydrological variables, corrupted by additive errors. On each plot, each group is
represented by three statistical characteristics: the convex polygon containing
75% of the data; the bivariate median (labeled by a star), and the average.
Averages are linked by segments according to the sorted abscissas, giving rise
to per group regressions; the true functions are dashed.
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Figure 11: The grid used (vertical lines), and the distributions {D1, · · · ,D8}.

Figure 12: Regular grid; distribution function of the pignistic probability,
superimposed to the associated Beta distribution, in green. The Stineman in-
terpolation is hidden by the Beta d.f.

Figure 13: Regular grid; recovering of relationships between a coarsened
vector of simulated “cover” (eight clusters) and different types of “hydrological
variables”, corrupted by additive errors. On each plot, each group is represented
by three statistical characteristics: the convex polygon containing 75% of the
data; the bivariate median (labeled by a star), and the average. Averages are
linked by segments according to the sorted abscissas, giving rise to per group
regressions; the true functions are dashed.

Figure 14: Original GIPREB grid; distribution function of the pignistic
probability, superimposed to the associated Beta distribution, in green. In black:
the Stineman interpolation.

Figure 15: Statistical characteristics of the per group regression function.
On each plot, each group is represented by three statistical characteristics: the
convex polygon containing 75% of the restored data; the bivariate median (la-
beled by a star), and the average. Averages are linked by segments according
to the sorted abscissas, giving rise to per group regression functions.

Figure 16: The function Q (x).
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