
HAL Id: hal-01079112
https://hal.science/hal-01079112v1

Submitted on 9 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Brief Announcement: Update Consistency in
Partitionable Systems

Matthieu Perrin, Achour Mostefaoui, Claude Jard

To cite this version:
Matthieu Perrin, Achour Mostefaoui, Claude Jard. Brief Announcement: Update Consistency in
Partitionable Systems. DISC14 - 28th International Symposium on Distributed Computing, Oct
2014, Austin, United States. �hal-01079112�

https://hal.science/hal-01079112v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Brief Announcement: Update Consistency in

Partitionable Systems

Matthieu Perrin, Achour Mostéfaoui, and Claude Jard

LINA – University of Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
matthieu.perrin@univ-nantes.fr

achour.mostefaoui@univ-nantes.fr

claude.jard@univ-nantes.fr

Data replication is essential to ensure reliability, availability and fault-
tolerance of massive distributed applications over large scale systems such
as the Internet. However, these systems are prone to partitioning, which by
Brewer’s CAP theorem [1] makes it impossible to use a strong consistency cri-
terion like atomicity. Eventual consistency [2] guaranties that all replicas even-
tually converge to a common state when the participants stop updating. How-
ever, it fails to fully specify shared objects and requires additional non-intuitive
and error-prone distributed specification techniques, that must take into ac-
count all possible concurrent histories of updates to specify this common state
[3]. This approach, that can lead to specifications as complicated as the imple-
mentations themselves, is limited by a more serious issue. The concurrent spec-
ification of objects uses the notion of concurrent events. In message-passing sys-
tems, two events are concurrent if they are enforced by different processes and
each process enforced its event before it received the notification message from
the other process. In other words, the notion of concurrency depends on the
implementation of the object, not on its specification. Consequently, the final
user may not know if two events are concurrent without explicitly tracking the
messages exchanged by the processes. A specification should be independent
of the system on which it is implemented.

We believe that an object should be totally specified by two facets: its ab-
stract data type, that characterizes its sequential executions, and a consistency
criterion, that defines how it is supposed to behave in a distributed environ-
ment. Not only sequential specification helps repeal the problem of intention,
it also allows to use the well studied and understood notions of languages and
automata. This makes possible to apply all the tools developed for sequential
systems, from their simple definition using structures and classes to the most
advanced techniques like model checking and formal verification.

Eventual consistency (EC) imposes no constraint on the convergent state,
that very few depends on the sequential specification. For example, an im-
plementation that ignores all the updates is eventually consistent, as all repli-
cas converge to the initial state. We propose a new consistency criterion, up-
date consistency (UC), in which the convergent state must be obtained by a
total ordering of the updates, that contains the sequential order of each pro-



•

I(1)
•

D(2)
•

R{1}
•

Rω

{2}

•

I(2)
•

D(1)
•

R∅

•

Rω

{1}

(a) Not EC and not UC

•

I(1)
•

D(2)
•

R{1}
•

Rω

{1,2}

•

I(2)
•

D(1)
•

R∅

•

Rω

{1,2}

(b) EC but not UC

•

I(1)
•

D(2)
•

R{1}
•

Rω

{1}

•

I(2)
•

D(1)
•

R∅

•

Rω

{1}

(c) EC and UC

Fig. 1: Three histories for a set of integers, with different consistency criteria. An
event labeled ω is repeated infinitely often.

cess. Another equivalent way to approach it is that, if the number of updates
is finite, it is possible to remove a finite number of queries such that the re-
maining history is sequentially consistent. Unlike Fig. 1a, Fig. 1b presents an
eventually consistent history, as both processes read {1, 2} once they have con-
verged. However, it is not update consistent: in any linearization of the updates,
a deletion must appear as the last update, so this history cannot converge to
state {1, 2}. State {1} is possible because the updates can be done in the order
I(2),D(1), I(1),D(2), so Fig. 1c, is update consistent. As update consistency is
strictly stronger than eventual consistency, an update consistent object can al-
ways be used instead of its eventually consistent counterpart.

We can prove that update consistency is universal, in the sense that ev-
ery object has an update consistent implementation in a partitionable system,
where any number of crashes are allowed. The principle is to build a total or-
der on the updates on which all the participants agree, and then to rewrite the
history a posteriori so that every replica of the object eventually reaches the state
corresponding to the common sequential history. Any strategy to build the to-
tal order on the updates would work. For example, this order can be built from
a timestamp made of a Lamport’s clock [4] and the id of the process that per-
formed it. The genericity of the proposed algorithm is very important because it
may give a substitute to composability. Composability is an important property
of consistency criteria because it allows to program in a modular way, but it is
very difficult to achieve for consistency criteria. A same algorithm that pilots
several objects during a same execution allows this execution to be update con-
sistent. This universality result allows to imagine automatic compilation tech-
niques that compose specifications instead of implementations.

References

1. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News 33 (2002) 51–59

2. Vogels, W.: Eventually consistent. Queue 6 (2008) 14–19
3. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: specifi-

cation, verification, optimality. In: Proceedings of the 41st annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ACM (2014) 271–284

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21 (1978) 558–565


	Brief Announcement: Update Consistency in Partitionable Systems

