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Abstract

We show how to recover equilibrated face tractions for the hybrid high-order method for linear elasticity
recently introduced in [1I], and prove that these tractions are optimally convergent.

Résumé

Tractions équilibrées pour la méthode hybride d’ordre élevé. Nous montrons comment obtenir des
tractions de face équilibrées pour la méthode hybride d’ordre élevé pour I’élasticité linéaire rrécemment
introduite dans [I] et prouvons que ces tractions convergent de maniére optimale.

1. Introduction

Let Q = R?, d e {2,3}, denote a bounded connected polygonal or polyhedral domain. For X < ©,
we denote by (-,-)x and |-|x respectively the standard inner product and norm of L?(X), and a similar
notation is used for L2(X)? and L?(X)%*?. For a given external load f € L?(Q)?, we consider the linear
elasticity problem: Find u € Hg(Q)? such that

2u(Vsu, Viv)g + A(Vu, Vu)g = (f,v)a. (1)

with ¢ > 0 and A > 0 real numbers representing the scalar Lamé coefficients and Vg denoting the symmetric
gradient operator. Classically, the solution to satisfies —V.o(u) = f a.e. in ) with stress tensor
o(u) :=2uVsu + A 4(V-u). Denoting by T an open subset of Q with non-zero Hausdorff measure (T will
represent a mesh element in what follows), partial integration yields the following local equilibrium property:

(o(u), Vovr)r — (o(u)nr,vr)or = (f,vr)r  Yvr € P(T)Y, (2)

where 0T and np denote, respectively, the boundary and outward normal to 7. Additionally, the normal
interface tractions o(u)nr are equilibrated across 0T n Q. The goal of this work is to (i) devise a re-
formulation of the Hybrid High-Order method for linear elasticity introduced in [1] that identifies its local
equilibrium properties expressed by a discrete counterpart of and (ii) to show how the corresponding
equilibrated face tractions can be obtained by element-wise post-processing. This is an important com-
plement to the original analysis, as local equilibrium is an essential property in practice. The material is
organized as follows: in Section [2] we outline the original formulation of the HHO method; in Section [3] we
derive the local equilibrium formulation based on a new local displacement reconstruction.

2. The Hybrid High-Order method

We consider admissible mesh sequences in the sense of [2], Section 1.4]. Each mesh 7} in the sequence

is a finite collection {T'} of nonempty, disjoint, open, polytopic elements such that Q = Urer, T and
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h = maxpeT, hr (with hr the diameter of T'), and there is a matching simplicial submesh of 7, with locally
equivalent mesh size and which is shape-regular in the usual sense. For all T' € Ty, the faces of T" are collected
in the set Fr and, for all F' € Fr, nrp is the unit normal to F' pointing out of 7. Additionally, interfaces
are collected in the set .7-'}1 and boundary faces in }‘}f. The diameter of a face F' € F}, is denoted by hp.
For the sake of brevity, we abbreviate a < b the inequality a < Cb for positive real numbers a and b and
a generic constant C' which can depend on the mesh regularity, on p, d, and the polynomial degree, but is
independent of h and A\. We also introduce the notation a ~ b for the uniform equivalence a < b < a.
Let a polynomial degree k > 1 be fixed. The local and global spaces of degrees of freedom (DOFs) are

U = Pﬁ(T)dx{ X P§_1<F>d} VT eT,, U} :={ X P’;(T)d} { X P’;_1<F>d}. 3)

FeFr TeTh FeFy,

A generic collection of DOFs from U} is denoted by v, = ((vr)reT,, (VP)per,) and, for a given T € Ty,
Vp = (vT7 (VF)FG}-T) € Q? indicates its restriction to Q?. For all T € Ty, we define a high-order local
displacement reconstruction operator pk : Uy — PEY1(T)? by solving the following (well-posed) pure
traction problem: For a given vy € U5, phv, is such that

(Vsplivr, Vow)r = (Vevr, Vow)r + Z (vi —vr, Viwnrp)p Vw e PEYH(T)4, (4)
FeFr

and the rigid-body motion components of p’%yT are prescribed so that ST p’%gT = ST vy and ST Vs (p’%gT) =
> FeFr SF %(nTF®vF — vp®nyrp) where Vg is the skew-symmetric gradient operator. Additionally, we
define the divergence reconstruction D% : U% — P%(T) such that, for a given v, € U%,

(Divr, @) = (Vovr,q)r + Y, (Ve —vr,qnre)r  Yqe PY(T). (5)
FG]:T

We introduce the local bilinear form ar : gg X Q% — R such that
ar(Wp,vr) =2 {(Vsplic‘ﬂT7 V)T + ST(ﬂT7!T)} + A Djwr, Divr)r, (6)

where the stabilizing bilinear form st : Q? X g§ — R is such that

s7(Wp, Vp) = Z hz_rl(ﬂcf(quc“ﬂT - WF)W?(PIJS“!T —Vvr))r, (M)
FeFr

and a second displacement reconstruction P% : U% — PE+1(T) is defined such that, for all v, € UL,
Phvy = vr + (phvy — 7hph). Let I% . HY(T)? — U% be the reduction map such that, for all T € 7; and
all ve HY(T)?, Itw = (7hv, (7hv)Fery). The potential reconstruction pf and the bilinear form sp are
conceived so that they satisfy the following two key properties:
(i) Stability. For all v, € Q’fp,
|Vsprvrl7 + sr(vp,vy) =~ [Vovr|F + jr(vr, vr), (8)

with bilinear form jr : Ql% X Qi} — R such that jr(wp,vp) = ZFE}-T h}l(wT —Wp,Vp — Vp)p.
(ii) Approzimation. For all v e HF2(T)?,

1
{IVs(0 = phIb) |3 + sr(Thv, i)} ™ < W5 o] ey (9)

We observe that, unlike sp, the stabilization bilinear form jr only satisfies jp(I5v, Ihv) < A¥ 0| g (ya-
The discrete problem reads: Find u,, € Qlfi,o = {u, €U} |up =0 VF e FP} such that

an(uy,vy) == Y ar(wp,vp) = > (Fovr)r Vv, e Up,. (10)
TeTh TeTh

The following convergence result was proved in [I]:



Theorem 1 (Energy error estimate). Let uw € H}(Q)? and u,, € Qi,o denote the unique solutions to
and (10), respectively, and assume w € H*2(Q)% and V-u € H*™1(Q). Then, letting G, Q;‘;O be such that

~

Uy = I for all T € Ty, the following holds (with Ivrl2 = ar(vp,vy) for all vy € uk):

2 luz —

TeTh

2
h2 (k+1) (H'U,HHkJrQ(Q)d + AHV’u”Hk‘Fl(Q)) . (11)

Moreover, assuming elliptic reqularity, > r.s |u— pTuT||L2(T < W2ED) ([l sz gy + )\|\V.u|\Hk+1(Q))2.

3. Local equilibrium formulation

The difficulty in devising an equivalent local equilibrium formulation for problem comes from the
stabilization term sp, which introduces a non-trivial coupling of interface DOFs inside each element. In
this section, we introduce post-processed discrete displacement and stress reconstructions that allow us to
circumvent this difficulty. For a given element T' € T}, define the following bilinear form on Q’%:

ar(wyp,vp) = 2u{(Vsphwy, Viphvr)r + jr(wp, vp) b+ AN DSwp, DEvr)r, (12)

where the only difference with respect to the bilinear form a7 defined by @ is that we have stabilized using
jr instead of s;. We observe that, while proving a discrete local equilibrium relation for the method based
on ar would not require any local post-processing, the suboptimal consistency properties of jr would only
yield h?* in the right-hand side of (11)). Denoting by |-|a,7 the local seminorm induced by @r on UE. one
can prove that, for all v, € U%.,

(13)

We next define the isomorphism c¥ : U5 — U% such that

&T(Ql%ﬂTvlT) = ar(Wp,vr) + (2p)j7 (Wr, V) Vvp € lecra (14)

and rigid-body motion components prescribed as above. We also introduce the stress reconstruction S? :
Uk — PE(T)?*4 such that
Sk = 2uV.ph + \I[4DE) o k.. (15)

Lemma 2 (Equilibrium formulation). The bilinear form ar defined by @ is such that, for all wp, v € Q;,

ar(wp,vp) = (Shwp, Vovr)r + Z (trr(Wp),ve —v7)F, (16)
FE]‘_T

with interface traction Trp : QT — Pk (F)? such that

Trr(Wr) = Siwrnrr + hp' [((Ehwr)r —wr) — ((hwy)r —wr)]. (17)

Proof. Let Wy := g’%ﬂT. We have, using the definitions of g’% and of the bilinear form ar,

ar (W, V) = ar(Wp, vp) — (2p)j7 (W, V)
= 2u{(Vsp§iWr, Vipivr)r + jr(Wyp — wp,vp) b + AN(DfWy, Divy)r
= (Shwp, Vovr)r + . (Shwpnrp,ve —vr)p + (20)j7 (W — Wy, vyp),
FE]‘—T

where we have concluded using (@) with w = phw,, (5) with ¢ = DEW,., and recalling the definition
of §%. To obtain (T6), it suf'ﬁces to use the definition of j. O



Lemma 3 (Local equilibrium). Let u, € Uh o denote the umque solution to (10). Then, for all T € Ty, the
following discrete counterpart of the local equzltbmum relation (2) holds:

(Skup, Vovr)r — Z (trr(ur),vr)r = (f,vr)r Yvr € PH(T)4, (18)
FeFr

and the numerical flur are equilibrated in the following sense: For all F € Fi such that F < 0Ty n 0Ts,

Tr,r(Ur, ) + 71, r(up,) = 0. (19)

Proof. To prove (18)), let an element T' € 7, be fixed, take as an ansatz collection of DOFS in v, =
((vT)TeTm(O)FGf’with vy in PE(T)? and vp» = 0 for all 77 € T,\{T'}, and use with wp = up
to conclude that ar(up,vy) corresponds to the left-hand side of . Similarly, to prove . let an
interface F' € Fi be fixed and take as an ansatz collection of DOFs in v, = ((0)7eT;,, (vF)Fe;h) € Uh o
with vp in P%_ (F)? and vpr = 0 for all F/ € F,\{F}. Then, using with wp = ugp in (10), it
is inferred that an(uy,,v,) = (T, r(Ur) + 71, r(Ug,),vre)r = 0, which proves the desired result since
Trr(ug) + Trr(ug,) € Py (F)% O

To conclude, we show that the locally post-processed solution yields a new collection of DOFs that
is an equally good approximation of the exact solution as is the discrete solution u,. Consequently, the
equilibrated face numerical tractions defined in optimally converge to the exact tractions.

Proposition 4 (Convergence for ckuy). Using the notation of Theorem the following holds:

2
Z HCTUT - uT”a 7 < < R2kHD (Hu||H’“+2(Q)d + )\HV'UHHHI(Q)) . (20)
TeTh

Proof. Let T € Ty, Recalling (14), we have
ar(chup — Up,vy) = ar(up, vp) + (2p)jr (up, vp) — dr(lp, vr)
= ar(ur — Uy, vr) + (2u)sT(Up, vr) + (20)j7 (Up — g, vp).

Hence, using the Cauchy—Schwarz inequality followed by the stability property and multiple applications
of the norm equivalence ,

~ ~ ~ ~ A . ~ ~ /2
‘GT(El}HT —Ug,vr)| < {H!T - ET”?;,T + (2p)sr(Up, Ur) + (2u)j7 (ur — Up, up — !T)} lvrlar

~ ~ A /2
pS {H!T - !T||<21,T + (2M)3T(ET7!T)}

Using again followed by the latter inequality, we infer that

~ ok =~
ar(CrUr — Up, vV, U iy, Or)}
(crur — Uy, vr) < A{lup = Gp)2 7 + 2p)sr(Uy,07)} /2

HCTUT —Uplar = sup
v Uk \{0}

Icfug —

The estimate then follows squaring the above inequality, summing over T' € 7}, and using and @D,
respectively, to bound the terms in the right-hand side. O

To assess the estimate , we have numerically solved the pure displacement problem with exact
solution w = (sin(ray)sin(wxz) + /231, cos(may) cos(mxa) + Y2xs) for p = A =1 on a h-refined sequence of
triangular meshes. The corresponding convergence results are presented in Figure [l In the left panel, we
compare the quantities on the left-hand side of estimates and . Although the order of convergence
is the same, the original solution u, displays better accuracy in the energy-norm. This is essentially due to
face unknowns, as confirmed in the right panel, where the square roots of the quantities ZTGTh [ur —ur|%

and D ey cku, — |2 (both of which are discrete L?-norms of the error) are plotted.
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Figure 1: Convergence results in the energy-norm (left) and L2-norm (right) for the solution to (IO} (solid lines) and its
post-processing based on g? (dashed lines). The right panel shows that the post-processing has no sizable effect on element
unknowns.
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