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Abstract: Reproduction is a demanding activity for animals, since they must produce, and in 

some cases protect and provision, their young. It is often overlooked that demands of 

reproduction may also be exacerbated by exposure to contaminants. In this study, we make 

use of an exceptional long-term dataset to perform a cross-sectional study on the long-lived 

wandering albatross (Diomedea exulans) in order to test the effects of reproduction, persistent 

organic pollutants [POPs: pesticides and polychlorinated biphenyls (PCBs)], mercury, 

individual age (3–47 years), and sex on the levels of plasma oxidative damage and 

inflammation. The results of our study support the hypothesis that oxidative damage may be a 

physiological cost of reproduction and that individuals carrying higher levels of organic or 

non-organic contaminants have higher oxidative damage. Levels of the inflammatory protein 

haptoglobin were similar between breeding and nonbreeding birds, with the exception of 

breeding males which had the lowest levels of haptoglobin. Our data also show an effect of 

age and of organic contaminants on the plasma oxidative damage level, but not on plasma 

haptoglobin. In addition, plasma oxidative damage level increased with red blood cell 

mercury concentration in females but not in males. Hence, our study highlights that the 

harmful effects of contaminants may come through interaction with factors like life stage or 

gender, suggesting potential for high variation in susceptibility to contamination among 

individuals. 

 

 

 

Keywords: Ageing Inflammation Mercury  Oxidative stress  POPs  Reproduction 
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Introduction 

 

Reproduction is a critical and demanding phase of animals’ lives. Transition from a non-

reproducing to a reproducing state is associated with hormonal changes that may incur in 

various metabolic costs to the individual (Ketterson and Nolan 1992). Reproductive effort 

(e.g., egg production, parental care) may also have costs that are paid later in life in terms of 

reduced survival or fecundity (Stearns 1992). Oxidative stress has been proposed as one cost 

associated with reproduction (Alonso-Alvarez et al. 2004; Wiersma et al. 2004; Costantini 

2008; Metcalfe and Monaghan 2013). Oxidative stress is the rate at which oxidative damage 

is generated, which depends on a complex balance between pro- and antioxidant mechanisms, 

including repair systems (Halliwell and Gutteridge 2007). Such damage can contribute to cell 

senescence, loss in organ and organism performance, and may influence life-history strategies 

(Costantini 2008; Metcalfe and Alonso-Alvarez 2010). Progressive damage to biomolecules 

(e.g., oxidation of DNA, lipids or telomeres) may also trigger an inflammatory response, a 

mechanism used by the organism to protect itself from a stressful agent (Sorci and Faivre 

2009; Jelena et al. 2013). Inflammation-inducible proteins, like haptoglobin, can limit the 

spread of oxidative damages across tissues by binding molecules with pro-oxidant activity 

(Jelena et al. 2013). 

An individual that reproduces in a polluted environment is also faced with the need of 

controlling the action of contaminants because they can influence the immune activity, 

increase stress levels, or reduce survival of wild animals (Dell’Omo 2002; Koivula and Eeva 

2010; Isaksson 2010). Interest in the interactions between contaminants and organism 

adaptation in a changing world has dramatically grown in the last few decades. It is, however, 

sometimes forgotten in ecological and behavioral studies that some of the among individuals 

or species variation in life-histories or physiological parameters may simply be the by-product 

of contaminant exposure (Carere et al. 2010; Frederick and Jayasena 2011; Tartu et al. 2013). 

For example, several persistent organic pollutants (POPs) can cause reproductive failure in 

free-living birds through different mechanisms, such as eggshell thinning, embryo mortality, 

or alterations of reproductive behaviors (e.g., Burger and Gochfeld 2004; Bustnes et al. 2003, 

2012). Biomagnification of the non-essential metal mercury in food webs is also a great cause 

of concern, because it causes detrimental effects on behavior, neurology, endocrinology, or 

development in humans and wildlife (Scheuhammer et al. 2007; Tan et al. 2009; Frederick 
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and Jayasena 2011; Tartu et al. 2013). Moreover, it has been shown in some studies that both 

organic and non-organic contaminants can increase generation of oxidative damage 

(Metodiewa and Dunford 1990; Whysner and Wang 2001; Isaksson 2010). Therefore, 

contaminants and oxidative stress might interact, possibly exacerbating costs of reproduction 

and of other life history stages. This may be especially true for top predators (e.g., seabirds, 

birds of prey) in which accumulation of contaminants in the body is higher 

(biomagnification). 

In this study, we assessed the effects of reproduction, persistent organic pollutants 

(organochlorine pesticides and PCBs), mercury, individual age (3–47 years), and sex on the 

levels of plasma oxidative damage and inflammation. To this end, we performed a cross-

sectional study on known-age free-living wandering albatrosses (Diomedea exulans), a large 

and very long-lived species (≈50 years). We make use of an exceptional long-term dataset 

(Weimerskirch et al. 1997) to identify the history of each bird. The non-breeding part of the 

albatross population is composed of young, immature birds that have never bred before and 

middle-aged or old birds that have considerable breeding experience but did not breed over 

the course of the field study (Weimerskirch et al. 1997). Using the non breeding component of 

a population offered us the opportunity to have a control group for the breeding season during 

which we carried out the field work; this is a crucial aspect that field studies have invariably 

failed to include in tests of the oxidative cost of reproduction (Metcalfe and Monaghan 2013). 

Furthermore, wandering albatrosses bear high levels of some contaminants in their tissues 

(Hindell et al. 1999; Blévin et al. 2013), a feature that makes these seabirds a suitable species 

to investigate the effects of POPs and mercury on plasma oxidative damage and 

inflammation. 

 

Materials and methods 

Study area and birds 

 

The field study was carried out on Possession Island in the southwestern Indian Ocean 

(46.8°S, 51.8°E), where 300–400 pairs of wandering albatrosses nest each year. Wandering 

albatrosses return to their breeding grounds in December and females lay a single egg in late 

December–early January. Both parents incubate alternatively until hatching in March. All 

birds had been ringed as part of a long-term mark–recapture program (Weimerskirch et al. 
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1997), with nestlings being ringed since 1965. From 21 December 2007 to 4 March 2008, we 

captured wandering albatrosses on the breeding grounds and a sample of venous blood was 

taken from the tarsus within 3 min of capture with a 1-ml heparinized syringe and a 25-gauge 

needle. The volume of the blood draws never exceeded 0.05 % of the bird’s body mass (8–12 

kg). The blood was centrifuged to separate plasma (for POPs, oxidative damage, and 

inflammation analyses) from red blood cells (for total mercury and molecular sexing), which 

were then stored at −20 °C until laboratory analyses. Sample sizes varied across analyses 

because we could not collect all the data from each individual: breeding males were 40–46; 

breeding females were 27–33; non-breeding males were 20–33; non-breeding females were 

7–11 (for sample sizes, see also figure captions). Birds were sexed by molecular sexing 

according to Fridolfsson and Ellegren (1999). Data on oxidative damage and inflammation 

have been previously published by our group in an article in relation to aging of albatrosses 

(Lecomte et al. 2010). Here, we are revisiting this database in order to simultaneously analyze 

the effects of breeding activity and body contaminant levels on oxidative damage and 

inflammation. 

 

Measurement of plasma oxidative damage 

 

The Cayman’s TBARS assay (Cayman Chemical, Ann Arbor, USA) was used to measure the 

thiobarbituric acid reactive substances in plasma. This method provides a general 

quantification of oxidative damage molecules that occur in the plasma, such as those 

generated by lipid peroxidation or carbonylation. The principle of the assay is based on the 

formation of an adduct between the thiobarbituric acid and the oxidative damage molecules 

under high temperature (90–100 °C) and acidic conditions, which generates a color directly 

proportional to the concentration of oxidative damage molecules. First, 10 μl of each plasma 

sample or standard were added to 10 μl of sodium dodecyl sulfate into 500-μl vials, and 

mixed. Then, 400 μl of color reagent (132.5 mg of thiobarbituric acid diluted into 12.5 ml of 

an acetic acid solution and 12.5 ml of a sodium hydroxide solution) were added to each 

plasma solution, and capped vials were kept in boiling water for 1 h. After 1 h, the vials were 

removed from boiling water and immediately put on ice for 10 min in order to stop the 

reaction. Finally, 150 μl of each solution were randomly pipetted in well plates and readings 

were taken at 530 nm. Standard curves were obtained from serial dilutions of an initial 



 6 

standard of MDA (from 0 to 50 μM). The coefficient of variation of measures was 9.0 %. 

 

Measurement of haptoglobin 

 

Plasma haptoglobin (inflammation-inducible protein) was measured using a colorimetric 

assay (Tri-Delta Development, Ireland) based on hemoglobin-binding reaction. In plasma, 

haptoglobin binds free hemoglobin released from erythrocytes, so inhibiting its pro-oxidative 

activity. First, 7.5 μl of each plasma sample or standard were randomly pipetted in well plates. 

To each well, 100 μl of a solution of hemoglobin and 140 μl of a solution of chromogen were 

added, respectively. Plates were then agitated and left to incubate for 5 min at room 

temperature. Then, solutions were read at 630 nm. Standard curves were obtained from serial 

dilutions of an initial standard (0–2.5 mg/ml). The coefficient of variation of measures was 

3.7 %. 

 

Measurement of mercury 

 

Total mercury was analyzed in red blood cells, which indicates short-term exposure (Kahle 

and Becker 1999; Tartu et al. 2013; Goutte et al. 2014). Total mercury (Hg) was quantified 

with an Altec AMA 254 spectrophotometer (aliquots mass: 5–10 mg dry weight, dw; see also 

Bustamante et al. 2006). All analyses were repeated 2–3 times until having a relative standard 

deviation <5 %. Accuracy was checked using a certified reference material (CRM; Tort-2 

Lobster Hepatopancreas, NRC, Canada; certified Hg concentration: 0.27 ± 0.06 μg/g dw). Our 

measured values were 0.24 ± 0.02 μg/g dw, n = 31. Blanks were analyzed at the beginning of 

each set of samples and the detection limit of the method was 0.005 μg/g dw. Mean values of 

replicates were used in statistical analyses. 

 

Measurement of POPs 

 

The targeted compounds included seven indicator PCBs (CB-28, -52, -101, -118, -138, -153, 

and -180), and 10 organochlorine pesticides. The compounds chosen for further investigation 

were CB-99, -105, -118, -128, -138, -153, -180, -183, -187, and -194, and the Σpesticides 

(p,p-DDE, HCB, cis-chlordane, trans-nonachlor). Certified solutions containing all analytes at 
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2 ng/μl each were obtained from LGC Standards (Molsheim, France). To each plasma sample 

of 100 μl, internal standards (1 ng each) were added gravimetrically: PCBs 30, 103, 155, and 

198 were used to quantify PCBs and p,p′-DDT-d8 was used to quantify pesticides, 

respectively. All standards were provided by either Dr Ehrenstorfer or Cambridge Isotope 

Laboratory (via Cluzeau Info Labo, Sainte-Foy-La-Grande, France). POPs were extracted 

using 1 ml of pentane:dichloromethane (90:10; v/v); after centrifugation (2,000 rpm, 2 min at 

4 °C), the organic layer was collected and the operation was repeated. Both extracts were 

combined and purified on an acid silica gel column (40 % sulphuric acid, H2SO4). After 

extract loading, analytes were eluted with 3 × 5 ml of pentane/dichloromethane (90/10; v/v). 

The extract was then concentrated using a Rapid-Vap vacuum evaporation system from 

Labconco (Kansas City, MO, USA) to a volume of 1 ml; it was then further concentrated 

under a gentle stream of nitrogen (40 °C) after addition of 100 μl of isooctane as solvent 

keeper. A syringe standard (octachloronaphtalene, 1 ng) was finally added to quantify internal 

standards and to assess their recovery rate for each sample (68–108 %). Final extracts were 

analyzed by gas chromatography coupled with electron capture detection (GC-ECD) as 

described elsewhere (Tapie et al. 2011). The quality control was done by means of the 

analysis of procedural blanks (clean and empty glass tubes treated like a sample, one run for 8 

samples). Chicken plasma samples (Sigma-Aldrich, St Quentin Fallavier, France) spiked at 3 

ng/g were also analyzed; the recovery rates of PCBs and organochlorine pesticides were in the 

range 77–103 % with coefficients of variation lower than 17 % (n = 5), except for CB-52 (22 

%) and mirex (29 %). POPs levels were blank corrected and the detection limit (LoD) was set 

at two times the mean blank value; for analytes that were not detected in blanks, LoD was 

determined as the concentration with a signal to noise ratio of 3. Overall, LoDs ranged from 

0.09 to 0.76 ng/g wet weight. Additionally, serum total lipids were measured on an aliquot of 

10 μl by the sulfo-phospho-vanillin (SPV) method for colorimetric determination (e.g., Houde 

et al. 2006). Ecological effects of POPs will be fully discussed in a separate article. 

 

Statistical analyses 

 

Analyses were carried out using STATISTICA (v.10; Stat-Soft, Tulsa, OK, USA). We used 

generalized linear models with a backward removal (critical P value at 0.05) to build the 
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minimum model significantly explaining the observed variance. A normal distribution and 

identity link function was used for the plasma oxidative damage; a normal distribution and log 

link function was used for haptoglobin. In each model, we included the individual 

reproductive status at the time of bleeding (breeding vs. non-breeding) and the sex as main 

factors, and the individual age as a covariate. We also included the concentration of mercury 

or an index of organohalogenated contaminant concentration as covariate. Two-way 

interactions were also included. In the non-breeding cohort of our population, we included 

both individuals that were sexually mature or were not (i.e., <6 years of age; Weimerskirch et 

al. 1997) because they did not differ in oxidative damage nor in haptoglobin (P ≥ 0.26). In the 

breeding cohort, we had some pairs (14–17); however, we did not include it in the models 

because preliminary analyses showed that a pair never significantly explained variation in 

oxidative damage nor in haptoglobin (P ≥ 0.85). Importantly, breeding and non-breeding birds 

did not differ in age in all databases used for the statistical analyses (t test: P ≥ 0.11; e.g., in 

the larger database, the mean age and standard error were 23.9 ± 1.3 years and 23.1 ± 2.4 

years for breeding (n = 71) and non-breeding (n = 44) birds, respectively). In our dataset, 

there was no multicollinearity because the variance inflation factor was always <2. 

As an index of organohalogenated contaminant concentration, we used the first or the second 

principal component that we extracted from a principal component analysis (PCA) on the 

correlation matrix of organohalogenated toxicants. We excluded from the statistical analyses 

levels of contaminants that had low loadings in a preliminary PCA or that had values below 

the detection limit. In the end, 13 organohalogenated chemicals met our requirements to enter 

in the final models. Two PCAs were run for oxidative damage and haptoglobin databases, 

separately. In both cases, the first two principal components explained 67 % of the total 

variance of contaminants for the oxidative damage database (PC1 = 44 %, PC2 = 23 %) and 

for the haptoglobin database (PC1 = 45 %, PC2 = 22 %; Table 1), respectively. Of the 13 

compounds, only γ-HCH and CB-180 had low loadings on the two main axes of variation. We 

have therefore tested their effect on oxidative damage or inflammation separately. Given that 

their effect was not significant (data not shown), we have not discussed them. Since blood 

volume was not always sufficient to carry out all physiological and contaminant analyses, and 

since outliers were excluded from the database, sample sizes differed among statistical models 

(see figure captions). 
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Results 

Plasma oxidative damage and mercury 

 

Breeding albatrosses had higher levels of plasma oxidative damage than non-breeding birds 

(Fig. 1; Table 2); older non-breeding individuals tended to have a higher oxidative damage 

level than younger individuals, but the relationship between age and oxidative damage did not 

appear in breeding birds (Fig. 2; Table 2). Differences between males and females in oxidative 

damage were affected by the individual load of mercury: females having high mercury 

concentration suffered higher oxidative damage (r = 0.34, P = 0.038), while males showed an 

opposite, although non-significant pattern (r = −0.20, P = 0.078; Fig. 3; Table 2). 

 

Plasma oxidative damage and persistent organic pollutants 

 

In the model where the PC1 was included as a covariate (Table 2), similar differences between 

breeding and non-breeding individuals emerged as for the model of mercury; moreover, birds 

with high levels of organohalogenated toxicants had higher levels of oxidative damage (Fig. 

4). In the model with PC2 as a covariate (Table 2), a difference again emerged between 

breeding and non-breeding birds in oxidative damage level. 

 

Haptoglobin and mercury 

 

Mercury did not affect the concentration of haptoglobin. The final minimum model showed 

only a significant interaction between reproductive status and sex (Table 2): while 

haptoglobin concentration in non-breeding individuals was similar between males and 

females, haptoglobin was higher in breeding females than in breeding males (Fig. 5). 

 

Haptoglobin and persistent organic pollutants 

 

PC1 and PC2 did not significantly influence the concentration of haptoglobin. As for the 

model with mercury, only the interaction between reproductive status and sex was significant 

(Table 2). 
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Discussion 

 

The results of our study show for the first time in a free-living vertebrate that breeding 

individuals may have higher plasma oxidative damage than non-breeding individuals. Levels 

of the inflammatory protein haptoglobin were similar between breeding and non-breeding 

birds, with the exception of breeding males which had the lowest levels of haptoglobin. Our 

data also show an effect of age and contaminants on the plasma oxidative damage level, but 

not on plasma haptoglobin. The cost of reproduction is a central paradigm of life-history 

theory (Stearns 1992). We currently know very little about the currency of costs of 

reproduction. It has been suggested that oxidative stress may be one key cellular mechanism 

underlying the costs of reproduction (Costantini 2008; Metcalfe and Alonso-Alvarez 2010). 

However, there is not a general consensus (Metcalfe and Monaghan 2013). The few studies in 

which reproductive effort was manipulated, for example, found that enzymatic and non-

enzymatic antioxidant defences may be altered, possibly sacrificed in favor of investment in 

reproduction (Alonso-Alvarez et al. 2004; Wiersma et al. 2004; Losdat et al. 2011) or up-

regulated in response to an increase in free radical production (Garratt et al. 2013). Moreover, 

while the increase in egg production effort may induce an increase in plasma oxidative 

damage (Travers et al. 2010), experimental increases of offspring rearing effort did not result 

in an increase in oxidative damage (Garratt et al. 2013). Metabolic costs of reproduction may 

also be induced by increases in sexual hormones that accompany the transition from a non-

reproducing to a reproducing state (Alonso-Alvarez et al. 2007; Casagrande et al. 2012). Our 

data were collected in a way that does not allow us to disentangle the relative contributions of 

changes in hormonal status and effort in egg production or chick rearing. Regardless of 

mechanisms, our findings provide evidence, at least in this particular species, that 

reproductively active individuals may have higher plasma oxidative damage than individuals 

of comparable age that are not breeding. In contrast to oxidative damage, results on 

haptoglobin apparently provided a different picture. While reproducing and non-reproducing 

females did not differ, reproducing males had lower levels of plasma haptoglobin than non-

reproducing males and all females. Haptoglobin is a well-known acute phase protein that 

indicates an ongoing inflammatory response, and is found in a wide range of taxa, including 

birds. Haptoglobin normally circulates at low levels, but concentrations increase during 

inflammatory responses. It exerts an antioxidant activity because it binds free hemoglobin 
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released from erythrocytes, so inhibiting its pro-oxidative activity mediated by iron (Jelena et 

al. 2013). Studies on various bird species have found that haptoglobin concentration is a 

distinctive trait of an individual and has the capacity to predict endotoxin-induced changes in 

concentration of this acute phase protein (Matson et al. 2012). A decrease in circulating 

haptoglobin is often reported as an index of a status of haemolytic anaemia (Körmöczi et al. 

2006). We do not know why haptoglobin in breeding males was lower than other birds. It 

might suggest that breeding males were in better health status (e.g., in cases in which the 

parasite load was low) than other birds. In particular, the high levels of haptoglobin in non-

breeding birds might indicate that they skipped reproduction because of a poor health status. 

However, the previously described association between low haptoglobin concentration and 

hemolytic anemia (Körmöczi et al. 2006) requires caution in interpretation. Further studies 

will, therefore, be needed to ascertain the role of haptoglobin as a parameter of health status in 

albatrosses. 

Our data also show that older individuals had a higher plasma oxidative damage level than 

younger individuals. However, the increase in plasma oxidative damage with individual 

chronological age only emerged in non-breeding birds. Previous work on the same population 

of breeding wandering albatrosses showed that individual age strongly affected foraging 

behavior and reproductive performance, but was unrelated to physiological measures like 

immune markers or hormones (Lecomte et al. 2010). Another study on a different population 

of wandering albatrosses revealed that declines in performance with age are followed by a 

striking increase in breeding success and a key parental investment trait at the final breeding 

attempt (Froy et al. 2013). Physiological changes typical of reproduction might therefore have 

hidden the relationship between age and accumulation/overproduction of oxidative damage. 

Breeding albatrosses tended to have higher levels of plasma oxidative damage than non-

breeding birds regardless of individual age. When birds are around 40 years old, however, the 

differentiation in oxidative damage between breeding and non-breeding birds became less 

evident, probably because of a terminal increase in damage in non-breeding birds. From our 

dataset, it is unclear whether the increase in oxidative damage reflects senescence and why 

such an increase in older individuals was not observed in breeding birds. Individual age was 

strongly correlated with the number of lifetime individual breeding events (r = 0.83, P < 

0.001). Hence, the increase in damage with age might also reflect reproduction-induced 

accumulation of damage. Our data are cross-sectional, which makes it impossible to separate 
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within-individual ageing patterns from between individual heterogeneity and any effects of 

differential survival among phenotypes. Our results suggest that a careful selection of relevant 

markers of physiological oxidative status is needed to test whether or not the observed 

terminal increases in reproductive investment in wandering albatrosses or other species are 

independent of individual state. 

Individual contaminant load significantly contributed to explain variation in oxidative damage 

but not in inflammation. Albatrosses carrying higher levels of POPs had higher oxidative 

damage. Our data are in line with a recent meta-analysis showing a significant impact of 

pollution on various classes of antioxidants and oxidative damage in wild animals (Isaksson 

2010). Although our analysis was restricted to a single biomarker of oxidative damage in 

plasma, Isaksson (2010) showed that thiobarbituric acid reactive substances in blood are a 

sensitive biomarker to contaminant exposure. POPs may cause oxidative stress through 

various routes, like increases in superoxide anion production (Metodiewa and Dunford 1990) 

or free iron release from metalloproteins (Whysner and Wang 2001). POPs might also cause 

oxidative stress through increases in corticosterone secretion (Costantini et al. 2011). This is 

relevant because studies on kittiwakes (Rissa tridactyla) and glaucous gulls (Larus 

hyperboreus) found that baseline corticosterone concentration was higher in those birds with 

higher POPs burden (Verboven et al. 2010; Nordstad et al. 2012). Preliminary data also show 

that corticosterone increases with POP levels in wandering albatrosses (Alizée Meillere and 

Sabrina Tartu, unpublished data). Previous studies on seabirds have also shown that exposure 

to POPs may cause changes in the oxidative balance (Hegseth et al. 2011; Bourgeon et al. 

2012) and reduce survival (Erikstad et al. 2013). Overall, these findings suggest that oxidative 

stress might be a plausible mechanism involved in the reduction of longevity in individuals 

highly contaminated with POPs. 

As regards mercury, females having high mercury concentration in red blood cells (Carravieri 

et al., unpublished data) suffered high plasma oxidative damage. In contrast, males showed an 

opposite but non-significant pattern. This difference between sexes in the relationship 

between mercury and oxidative damage is possibly explained by females (mean level of 10.3 

μg/g dry weight) carrying higher levels of mercury than males (mean level of 6.3 μg/g dry 

weight). Similarly, Tavares et al. (2013) found that females had significantly higher levels of 

mercury in red blood cells than males in wandering albatrosses from South Georgia. Results 

on wandering albatrosses differ from those of previous studies on various fish-eating bird 
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species, which found that mercury concentrations in males are in most cases higher than 

females (Monteiro and Furness 1995; Robinson et al. 2012). Such difference in albatrosses 

might be driven by males and females foraging on different prey or different environments 

(Weimerskirch et al. 1993) that expose them to differing mercury threats. If foraging 

strategies differ between males and females, this may also contribute to explain the higher 

plasma oxidative damage of females if, for example, their diet is richer in unsaturated fatty 

acids or if the foraging cost for females is higher. 

Mercury is a highly toxic non-essential metal that negatively influences humans and wildlife 

(Tan et al. 2009). Our data suggest that mercury might also negatively impact on females 

through an increase in oxidative stress. The increase in damage with mercury level was, 

however, similar between reproducing and non-reproducing birds. 

In birds, mercury is excreted through its deposition in the feathers during the molt (Monteiro 

and Furness 1995). In this pathway, mercury binds to keratin sulfhydryl groups during 

synthesis of feathers. Seabirds with slow molt cycles, such as albatrosses, may, however, have 

a limited capacity for mercury elimination through feathers (Thompson and Furness 1989). 

Mercury may also be excreted from the body through the glutathione pathway. Mercury binds 

to the sulfhydryl groups on glutathione or on other thiols and forms a complex that is finally 

excreted in the feces (Ballatori and Clarkson 1985). Sulfhydryl groups like thiols are 

important molecules that regulate the oxidative balance and any depletion leads to disruption 

of redox signaling and control and an increase in oxidative stress (Jones 2006). High 

contamination with mercury might lead to a high depletion of thiols regardless of the pathway 

of excretion, which may compromise defenses against oxidation. Consequent depletion of 

glutathione to mercury contamination may, for example, compromise the activity of the 

enzyme glutathione peroxidase (Hoffman and Heinz 1998), which uses glutathione as a 

cofactor to detoxify the organism from peroxides and hydroperoxides. Importantly, the 

activity of selenium dependent glutathione peroxidase may be further compromised by 

depletion of selenium that is being used to biosynthesize mineral granules containing mercury 

and selenium in the liver (Nigro and Leonzio 1996). Our results raise the need of further 

studies to elucidate the consequences of oxidative stress induced by mercury in this 

threatened seabird species. In particular, further studies are needed to assess whether oxidative 

stress induced by mercury impinges on reproductive fitness or on other fitness-related traits. 

In conclusion, results of our study support the hypothesis that oxidative stress may be higher 
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in reproducing individuals, possibly reflecting a transient increase in damage over the 

breeding phase. Our results also suggest that the individual oxidative stress level may be 

shaped by the interaction between exposure to contaminants and other factors, such as sex. 

Finally, our data provide evidence that plasma oxidative damage is higher in non-breeding 

older individuals. We highlight the need of future studies in order to tease apart the 

mechanisms (e.g., hormones, parental effort) that contribute to increase the oxidative damage 

level in breeding individuals. We also highlight the need of using additional biomarkers of 

oxidative damage in order to assess whether the effects of reproduction and contaminants on 

oxidative balance are systemic or are limited to particular molecular classes or body tissues. 
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Table 1. Loadings (expressed as correlation coefficient of each single contaminant with PC1 

or PC2) of variables onto the first two principal components. 

 
      

 Oxidative damage  Haptoglobin 

 
PC1 PC2 

 
PC1 PC2 

HCB 0.509 0.658  0.480 0.685 

γ-HCH 0.308 0.485  0.274 0.476 

PCB-52 0.704 -0.474  0.719 -0.458 

2,4-DDE 0.761 -0.066  0.765 -0.093 

PCB-101 0.715 -0.610  0.724 -0.602 

Cis-chlordane 0.788 0.314  0.798 0.317 

Trans-nonachlor 0.653 0.518  0.656 0.502 

PCB-118 0.710 -0.640  0.724 -0.618 

4,4-DDD 0.622 0.524  0.634 0.502 

PCB-153 0.800 -0.210  0.795 -0.195 

PCB-138 0.798 -0.411  0.802 -0.382 

PCB-180 0.576 0.040  0.562 0.067 

Mirex 0.541 0.647   0.528 0.657 

      

The first two principal components explained 67% of the total variance of contaminants for 

the oxidative damage database (PC1 = 44%, PC2 = 23%) and for the haptoglobin database 

(PC1 = 45%, PC2 = 22%). Positive and negative loadings indicate a positive or a negative 

correlation between the contaminant and the PC1 or the PC2; contaminants with the same 

loading sign, therefore, go in the same direction. DDD = dichlorodiphenyldichloroethane, 

DDE = dichlorodiphenyldichloroethylene, HCB = hexachlorobenzene, γ-HCH = lindane, 

PCB = polychlorinated biphenyl. 
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Table 2. Generalized linear models explaining the factors that influenced the plasma oxidative 

damage and plasma haptoglobin variation in wandering albatrosses. 

 

Inital Model Final Model Inital Model Final Model 
  Oxidative damage df Wald p-value df Wald p-value Haptoglobin df Wald p-value df Wald p-value 

reprod status 1 6.01 0.014 1 11.43 0.001 1 1.94 0.164 

sex 1 1.79 0.180 1 4.62 0.032 1 1.09 0.296 

age 1 1.88 0.170 1 0.04 0.844 

mercury 1 0.15 0.702 1 2.51 0.113 

reprod status × age 1 5.39 0.020 1 4.19 0.041 1 0.07 0.794 

reprod status × mercury 1 0.67 0.415 1 3.63 0.057 

reprod status × sex 1 1.29 0.257 1 5.31 0.021 1 6.95 0.008 

sex × age 1 0.03 0.859 1 2.65 0.103 

sex × mercury 1 5.24 0.022 1 5.68 0.017 1 0.02 0.896 

reprod status 1 7.585 0.006 1 6.63 0.010 1 0.206 0.650 

sex 1 0.519 0.471 1 2.186 0.139 

age 1 1.250 0.264 1 0.129 0.719 

PC1 1 0.869 0.351 1 4.27 0.039 1 0.233 0.629 

reprod status × age 1 2.891 0.089 1 0.053 0.818 

reprod status × PC1 1 0.018 0.894 1 0.096 0.756 

reprod status × sex 1 0.085 0.771 1 4.299 0.038 1 7.90 0.005 

sex × age 1 0.472 0.492 1 2.622 0.105 

sex × PC1 1 0.798 0.372 1 0.778 0.378 

reprod status 1 10.98 0.001 1 11.67 0.001 1 0.56 0.456 

sex 1 0.44 0.507 1 2.67 0.103 

age 1 1.15 0.283 1 0.39 0.531 

PC2 1 0.02 0.902 1 0.13 0.718 

reprod status × age 1 2.63 0.105 1 0.01 0.925 

reprod status × PC2 1 0.00 0.975 1 0.39 0.532 

reprod status × sex 1 0.00 0.950 1 2.04 0.153 1 7.90 0.005 

sex × age 1 0.44 0.509 1 2.23 0.136 

sex × PC2   1 0.21 0.648         1 0.01 0.923       
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Figure 1. Breeding albatrosses (males, n = 40; females, n = 31) had higher plasma oxidative 

damage than non-breeding birds (males, n = 33; females, n = 11) irrespective of sex. Data are 

shown as mean plus standard error. 
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Figure 2. Plasma oxidative damage increased with individual chronological age in non-

breeding (n = 44) but not in breeding (n = 71) albatrosses. Dashed line = breeding birds; solid 

line = non-breeding birds. The arrow indicates the age of first reproduction (6 years; 

Weimerskirch et al. 1997). 
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Figure 3. Plasma oxidative damage level increased with red blood cell mercury concentration 

in females (n = 38) but not in males (n = 77), irrespective of reproductive state. Dashed line = 

males; solid line = females.
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Figure 4. Plasma oxidative damage level was higher in those individuals having higher 

plasma levels of persistent organic pollutants (r = 0.29, n = 104). 
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Figure 5. Breeding males (n = 40) had lower plasma concentrations of haptoglobin than 

breeding females (n = 31; Fisher test P = 0.011) and non-breeding males (n = 32; Fisher test P 

= 0.017), but not of non-breeding females (n = 11; Fisher test P = 0.197). Data are shown as 

mean plus standard error. 


