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Abstract
Studies on the dynamics of particles in turbulence have recently experienced
advances in experimental techniques, numerical simulations and theoretical
understandings. This ‘focus on’ collection aims to provide a snapshot of this
fast-evolving field. We attempt to collect the cutting-edge achievements from
many branches in physics and engineering, among which dynamics of particles
in turbulence is the common interest. In this way, we hope to not only blend
knowledge across the disciplinary boundaries, but also to help the identification
of the pressing, far-reaching challenges to be addressed in a topic that spans such
a breadth.

Keywords: turbulence, turbulent transport, dispersion, Lagrangian dynamics,
inertial particles, collective effects

Most natural and industrial flows are turbulent and contain dispersed inclusions (‘particles’).
These include, e.g., fuel sprays in combustion engines, pneumatic transport of grains in
agriculture, flow of bubbles in chemical reactors, sedimentation in rivers and estuaries, dust/
sand storms, clouds and protoplanetary disks. To study the complicated flow patterns, fluid
dynamicists also add tiny tracer particles in the flow for either visualization or quantitative
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measurements. Understanding the dynamics of the dispersed particles in turbulent flows is
therefore of fundamental importance to astrophysicists who are studying the formation of
planets, to cloud physicists and meteorologists who are predicting precipitation, to environment
policy makers who aim to prevent the occurrence of dust storms, and to engineers who strive to
design the best cars.

The problem, on the other hand, is by no means easy. Even a meaningful categorization
requires some elaboration. Let us start with dilute inclusion of passive particles. When the
particles are small and their densities are comparable with the carrying fluid, they usually follow
the local fluid motion. Particles of this type are used as fluid tracers in experimental studies of
fluid turbulence. If any of these conditions are not fulfilled, the dynamics of the particles deviate
from those of the fluid. Such particles are generically called ‘inertial particles’. The situation
becomes more complicated if the particles are ‘active’, e.g., if they can self-propel, such as
zooplankton in the ocean, or if the particles exchange mass, momentum or energy with the
carrying fluid, such as water droplets in clouds. For both passive and active particles, if the
amount of inclusion is high, their presence will modify the underlying turbulent flow itself,
which in turn feed back on the dynamics of particles. In facing such a challenging problem (or
problems), our available weapons are rather limited. Accurate and detailed measurements have
long been difficult. We are still disputing the exact form of equation of motion for non-tracer
particles. Most of what we know (or believe to know) today relies on analysis using simplified
limiting cases (as the ‘point particle’ approximation for instance).

However, the situation is changing rapidly. Very important progress has been achieved
during the last decade. Advances in measurement techniques have given access to new data
with unprecedented temporal and spatial resolutions. Promising numerical approaches have
emerged and various theoretical analyses and models have been developed. We are very proud
that the contributions to this ‘focus on’ collection present a balanced coverage of the specific
fields involved and the methods used (experimental, numerical and theoretical).

2. Methodological advances

The scientific advances in the comprehension of particle–turbulence interactions represented in
this ‘focus on’ collection are naturally concomitant with new methodological developments,
with which more complex situations can be investigated and subtler phenomena can be
elucidated.

New methods in numerical simulations. On the numerical aspects, new strategies of large-
eddy-simulations (LES) are proposed, with novel sub-grid scale models based on a stochastic
differential equation to account for particles inertia [1] and coupling hybrid Eulerian–La-
grangian approaches [2], improving the capacities of LES to handle pair separation and
collisions for point-like particles. A long standing limitation of simulations of particles in
turbulence was their insufficient capability to address the effects of finite particle sizes, as usual
models for particle motion are based on the Maxey–Riley–Gatignol equation that was derived
for particles with vanishingly small sizes [3, 4]3. New methods have emerged in the past few
years in order to handle numerically the finite-particle-size effects by fully resolving the flow
around particles with size larger than the dissipative scale of the carrier turbulent flow.

3 An essentially identical equation has also been independently derived by Tsai before [5].
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Simulations based on one of such methods, the immersed boundary technique, are presented
in [6].

New methods in theory. From the theoretical point of view, this ‘focus on’ collection
exhibits several new approaches capable of addressing important key questions and comparing
theories with experiments and numerics. These include new Lagrangian perspectives on the
intermittency of both the velocity [7] in fluid turbulence and the magnetic field in
magnetohydrodynamic (MHD) turbulence [8], and on the dynamics of rotating turbulence
[9]. The non-trivial definition of the ‘slip velocity’ for finite size particles is discussed in two
contributions to this ‘focus on’ collection [6, 10]. As a natural consequence of being a topic
crossing several fields, many theories and mechanisms have been proposed to explain the
dynamics of inertial particles in turbulence. It is very welcome to see the illustration of the
differences and similarities between several leading theories on the spatial distribution [11] and
the relative velocities between inertial particles [12], and the probing of the equivalence
between several clustering scenarios [13].

New methods in experiments. On the experimental side, several important advances are
also worth mentioning. The development of instrumented particles [14] now gives access to
physical quantities (not only kinematic) in the Lagrangian frame, directly measured with
sensors embedded in a moving particle. Although limited to relatively large particles (currently
in the centimeter range), this new tool opens a whole new range of possibilities, e.g., to probe
the fluctuations of temperature and chemical concentration along particle trajectories. After
more than a decade of development, image-based particle tracking technique has gained wide
application. It was developed for measuring tracer trajectories in turbulence [7], but has been
extended to study the dynamics of non-spheric solid particles [10] and gas bubbles [15], as well
as to study the collision rate between water droplets in a turbulent air flow [16], an important
but very challenging experimental task. At the same time, bias errors in new data analysis
methods, such as using Voronoï tessellation of experimental images for preferential
concentration diagnosis, are now well understood [17]. Laser Doppler velocimetry (LDV)
coupled with particle size analysis, despite being a single-point measurement technique, has the
advantage of simultaneously resolving particle velocity and size. When used in a wind tunnel, it
could therefore provide measurements of spatial clustering of polydispersed inertial particles by
invoking Taylorʼs frozen-turbulence hypothesis [18], which is not easily achievable with
common particle tracking techniques.

In the following sections we briefly summarize the main results that can be found in this
collection of papers, which we have organized into the following sub-topics:

• turbulent dynamics of fluid particles (Lagrangian turbulence),

• single particle dynamics of inertial particles and finite-size effects,

• collective dynamics of particles.

3. Turbulent dynamics of fluid particles (Lagrangian turbulence)

When the inertial effects of particles diminish, such as when particle sizes are much smaller
than the Kolmogorov scale of the flow and when particle densities match that of the fluid, they
follow the fluid motion faithfully. These particles are used extensively in modern turbulence
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experiments and flow visualizations. Investigating the dynamics of these particles provides us a
direct handle on the Lagrangian properties of fluid turbulence.

By studying the evolution of the probability density function (PDF) of the temporal
velocity increments along particle trajectories, Wilczek et al [7] showed that the non-self-
similar, non-Gaussian PDFs (or intermittency) evolve under the control of particle acceleration,
a small scale quantity, conditioned on velocity increments, an inertial range quantity. This
finding is in full agreement with the commonly accepted view that intermittency comes from the
direct interaction between small and large scales, but it also clearly points to the interaction
mechanism, at least for the velocity increments.

Further insight on Lagrangian dynamics of turbulence can be obtained from multi-particle
statistics. In the past, studies on the dynamics of pairs and tetrads of particles have for instance
shed light on dispersion processes [19], and on the role of velocity gradients [20, 21]. In this ‘focus
on’ collection, Naso and Godeferd investigated tetrad dynamics numerically in the context of
rotating turbulence [9], which led them to relate turbulence strain and enstrophy production with
flow topology. The role of the Zeman scale, at which the local eddy-turnover time and the rotation
time scale are equal, was demonstrated to influence multi-scale dynamics of rotating turbulence.

Using direct numerical simulations (DNS), Homann et al [8] studied the Lagrangian
properties of turbulence dynamics and the magnetic field in a Taylor–Green dynamo. Their
result showed a significant impact of the magnetic field, with a strong increase of the correlation
time of velocity and magnetic field fluctuations experienced by tracer particles, and an
intermittent scaling regime of the Lagrangian magnetic field structure functions.

4. Single particle dynamics of inertial particles and finite-size effects

In spite of the apparent simplicity of the problem, full understanding of the turbulent dynamics
of individual particles in turbulence has not emerged yet. The case of small, heavy particles,
whose dynamics can be reasonably approximated using the linear Stokes equation (with the
Stokes number as the only parameter characterizing particle inertia), has been extensively
investigated numerically in recent decades using high resolution DNS in homogeneous
isotropic conditions. The knowledge accumulated from this canonical situation offers a solid
ground for the development of new numerical strategies in more realistic flow configurations
using LES, as mentioned above [1, 2], and for addressing more complex situations where
collective effects can arise (see section 5).

Another challenge for a better understanding of particle dynamics concerns the effects of
finite particle size. Past experimental results have revealed that these effects cannot be modeled
as a simple filtering on the point-particle dynamics [22–24]. Numerical simulations including
Faxén corrections have been shown to be accurate only for particles with diameter smaller than
a few dissipative scales [25, 26]. These studies therefore called for the development of
dedicated numerical tools to investigate finite-particle-size effects [26–29]. In this ‘focus on’
collection, Kidanemariam et al [6] applied the immersed boundary method [27] to study particle
transport in non-homogeneous turbulence (channel flow). They showed that the apparent lag of
particles dynamics compared to that of the carrier flow was due to the preferential distribution
of particles in low-speed streaks. Their work revealed the necessity to redefine the notion of
relative velocity between the particle and the fluid, or the ‘slip velocity’, for the finite-size case,
due to local and global inhomogeneities at the scale of the particle. Several strategies, based on
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local averaging and on velocity fluctuations of the carrier flow in the vicinity of the particle
have been proposed in two separate articles of this ‘focus on’ collection [6, 10].

From the experimental point of view, finite-size effects are of primary importance when
measurements with instrumented particles are considered [14], which are in the centimeter scale
at present due to technological limitations. Understanding the dynamics of finite-sized particles,
for which we do not even have an appropriate equation of motion, is crucial to the interpretation
of the information actually gathered by such particles.

5. Collective dynamics of particles

Collective dynamics of inertial particles is probably one of the richest topics of
particle–turbulence interaction. The simplest manifestation of such collective effects is the
preferential concentration phenomenon, the accumulation of inertial particles in certain regions
of the flow due to the interaction between particles and turbulence structures. This
inhomogeneous distribution further influences other processes such as particle mixing and
dispersion, particle collision and coalescence, settling, flocking, etc.

Many theories have been proposed for quantitative description of the preferential
concentration in turbulent flows. Despite all considering only the linear Stokes drag on
particles, the available theories differ in appearance, partly due to the different assumptions
made and partly due to the complicated derivation involved. In two companion articles,
Bragg and Collins [11, 12] analyzed several popular theories on the spatial distribution of
small inertial particles in homogeneous and isotropic turbulence and the relative velocities
between them. They illustrated clearly the similarities and differences between these theories.
By comparing with DNS results, they also showed the ranges of Stokes numbers in which
individual theories stayed valid. This ‘unification’ work is particularly useful in clarifying
misconceptions and in identifying the mechanisms that cause the failure of individual
theories. In a similar spirit, Gustavsson et al [13] investigated the concentration fluctuations
of particles in a random flow from kinematic simulations at various Kubo numbers, which
characterizes the correlation time of the velocity field. They compared three mechanisms of
particle collective dynamics: random uncorrelated motion, caustics and spatial clustering as a
consequence of the deformation tensor, and showed in particular the equivalence of the
last two.

Enhancement of the droplet–droplet collision frequency by the interaction between water
droplets and turbulence is believed to be a key mechanism in the acceleration of rain initiation
in warm clouds [30, 31]. Collision rate is directly related to the radial distribution function
(RDF) and the radial relative velocity (RRV) between pairs of particles. Using high resolution
DNS up to ∼λR 500, Rosa et al [32] investigated numerically the RDF and the RRV,
addressing particularly their dependence on Reynolds number and gravity. The results
suggested a saturation of the behavior of pair statistics at high Reynolds numbers, and a
complicated effect of gravity on the collision rates of large particles (roughly corresponding to
cloud droplets above 20 μm in diameter), while smaller ones are insensitive to gravity. Bordas
et al [16] measured experimentally the collision rates between water droplets in wind tunnel
turbulence, and compared experimental results with collision rates obtained theoretically that
include: (i) only gravitational settling; (ii) gravitational settling and turbulence; and (iii) settling
and turbulence and change of collision efficiency due to hydrodynamic interactions between
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particles when approaching. Although quantitative agreement was only partially supported,
theories including both turbulence and collision efficiency gave closer predictions when
confronted with experimental measurements. The role of turbulence on collision enhancement
was also clearly established in the LES simulation by Riechelmann et al [2].

In real particle-laden flows, such as in clouds, the particle sizes are not uniform but
distributed over a range. This polydispersity further complicates the interaction between
particles, and between particles and turbulence. In this ‘focus on’ collection, the role of
polydispersity was addressed in two companion articles by Saw et al [18, 33], which combined
theoretical, numerical and experimental studies of the radial distribution function for
both monodisperse and polydisperse situations. Their study pointed out the leading role of
dissipative motion on the clustering process (at least for particles with Stokes number
below 0.3) and the necessity to correctly disentangle large scale mixing effects from the
preferential concentration in experiments. The numerical investigation of a population of
particles with two different Stokes numbers exhibited a saturation effect, which was limited
by the least clustered population. Based on theories and simulations on polydispersed systems,
they proposed a new analytical form for the radial distribution function for any distribution of
particle sizes.

Particles could also interact with the carrier fluid through phase change, for example, the
condensation/evaporation of water droplets in clouds, during which the particles exchange both
mass and thermal energy with the fluid. Kumar et al [34] investigated numerically the role of
evaporation at the entrainment edge of clouds. Their study illustrated the effect of the Damköhler
number, Da, which compares the typical flow time scale to the typical evaporation time scale, on
the evolution of droplets size distribution: minimal broadening of size distribution was observed
when ≪Da 1 while a strong negative skewness developed when ≫Da 1.

The collective dynamics become even more complex when particles are active. Khurana
and Ouellette [35] studied the effect of environmental fluctuations, which could be random or
with turbulence-like structures, on the stability and the dynamics of model particle flocks.
Their surprising result was that even a low level of turbulence-like fluctuations was sufficient
to destabilize flocks. This work revealed an unexpected impact of flow on collective
animal motion, whose accurate modeling needs to take realistic background fluctuations into
account.

6. Conclusion and perspectives

This collection of articles reflects significant progress achieved during the last decade in the
understanding of particle–turbulence interactions. It provides a snapshot of this fast-evolving
field, with the latest methodological developments (theoretical, numerical and experimental).
Advances in Lagrangian measurement techniques (optical particle tracking, shadowgraphy,
instrumented particles) now give access to new data with unprecedented resolution. New,
promising numerical approaches have emerged. For instance, the dynamics of finite size
particles can be fully resolved and coupled with the DNS of the carrier flow without any
a priori modeling. Various theoretical approaches have also been proven successful, including
stochastic and PDF models, and analysis capable of giving new insights on relevant physical
mechanisms, such as the polydispersity of particle sizes.
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Let us finish by noting that, compared to the breadth of the particle–turbulence interaction
problem, this ‘focus on’ collection is far from being exhaustive. Although it highlights some of
the most important latest developments, it only covers a small part of the full landscape of
related ongoing research activities. There are many aspects for which new developments are
still crucial. To name a few, almost all theoretical investigations and most of the numerical
simulations of the dynamics of inertial particles consider only the Stokes drag. Some may
include finite Reynolds number corrections and some may include the added mass. The effects
of other terms, such as the history forces, however, have been largely ignored even without
solid justification. No comprehensive investigation of the consequences of all these
simplifications exists at the moment, which might help explain why the few available
numerical studies including these extra forces do not seem to give the same conclusion (see,
e.g., [36–38]). This collection is awaiting clarification, most likely by extensive numerical
simulations. On the front of measurement techniques, an important step forward concerns the
ability to access simultaneous conditional diagnosis. For instance it would be extremely useful
if the velocities and sizes of all particles in the observation region could be simultaneously
resolved, which would allow accurate study of the collision rates and will be invaluable for field
measurements where the particle sizes are not under control. Furthermore, simultaneously
accessing the velocities of the particles and the local velocity of the carrier flow, as
demonstrated for large neutrally buoyant particles in turbulent flows [39], will help in gaining a
better insight into the coupling mechanisms between particles and the flow. These experimental
challenges require the combination of several techniques (Lagrangian particle tracking, particle
sizing, local tomographic or holographic methods around particles, etc). Given the rapid
development we are experiencing, we are optimistic that all these mentioned above will be
adequately addressed in the near future.
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