The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold

Chao Gao*, Shimpei Endo and Yvan Castin
* Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France

PACS 67.85.d - Ultracold gases, trapped gases.

Abstract

We consider a mixture of two single-spin-state fermions with an interaction of negligible range and infinite s-wave scattering length. By varying the mass ratio α across $\alpha_{c} \simeq 13.6069$ one can switch on-and-off the Efimov effect. We determine analytically the third cluster coefficient of the gas. We show that it is a smooth function of α across α_{c} since, unexpectedly, the three-body parameter characterizing the interaction is relevant even on the non-Efimovian side $\alpha<\alpha_{c}$.

Introduction. - A powerful theory tool in the statistical physics of interacting quantum systems is the socalled cluster or virial expansion, where the thermodynamic potentials are expanded in powers of the small degeneracy parameter [1]. Whereas the second cluster coefficient b_{2} had a known general expression since the 1930s [2], it has been a long-lasting challenge to determine the third cluster coefficient b_{3} explicitly. Starting from the late 1950 s, analytical results for b_{3} have been obtained for the two-body hard-core model, the archetype of nonresonant interactions where the s-wave scattering length a is at most of the order of the interaction range, in the form of expansions in powers of a small parameter $\lambda / a[3]$ or a / λ [4], where λ is the thermal de Broglie wavelength.

Interest in b_{3} was reactivated by recent experimental breakthrough with cold atoms: long-lived spin $1 / 2$ Fermi gases can be prepared in the resonantly interacting regime ($|a| \gg$ interaction range) via Feshbach resonances [5]. This motivated numerical calculation of b_{3} in the maximally interacting, unitary limit $1 / a=0$, with the harmonic regulator technique of [6] as done in [7], or with diagrams [8]. Due to scaling invariance in the unitary limit, b_{3} is just a number, and via a precise measurement of the gas equation of state $[9,10]$, its predicted value was confirmed [10].

Physics is richer when the Efimov effect [11] sets in: the continuous scaling invariance is broken, there appears a length scale R_{t} characterizing the interaction, the threebody parameter, and there exists an infinite number of trimer states with an asymptotically geometric spectrum. The third cluster coefficient b_{3} becomes a function of tem-
perature. In a spinless bosonic gas with zero-range interactions, it was determined analytically [12]. Within the three-body hard-core model that fixes R_{t} [13], Quantum Monte Carlo simulations have confirmed this analytical prediction and have shown that the third order cluster expansion can provide a good description of the gas down to the liquid-gas transition [14], exemplifying its usefulness.

The problem is even more intriguing when a system parameter allows to switch on-and-off the Efimov effect, as in the two-component Fermi gas with adjustable mass ratio. For two identical fermions and a distinguishable particle, there is an Efimov effect if the fermion-other particle mass ratio α exceeds $\alpha_{c}=13.6069 \ldots[11,15]$. Up to now, the calculation of b_{3} is numerical and limited to $\alpha<\alpha_{c}$ [16]. Strikingly it predicts that b_{3} has an infinite derivative at $\alpha=\alpha_{c}$. As b_{3} is a coefficient in the grand potential Ω, this would imply a singular derivative of Ω as a function of α, i.e. a first order phase transition, subsisting at arbitrarily low phase space density, i.e. at temperatures T arbitrarily higher than the Fermi temperature T_{F}, contrarily to common expectations for phase transitions. The present work determines b_{3} analytically and solves this paradox.

The cluster expansion. - We consider a mixture of two fully polarized fermionic species, with single particle masses m_{1} and m_{2}, with no intraspecies interaction and a purely s-wave interspecies interaction, of negligible range and infinite scattering length (unitary limit). At thermal equilibrium in a cubic box, the total pressure P admits in
the thermodynamic limit the cluster expansion

$$
\begin{equation*}
\frac{P \lambda_{r}^{3}}{k_{B} T}=\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}} b_{n_{1}, n_{2}} z_{1}^{n_{1}} z_{2}^{n_{2}} \tag{1}
\end{equation*}
$$

where z_{i} are fugacities $\exp \left(\beta \mu_{i}\right), \lambda_{r}=\left[2 \pi \hbar^{2} /\left(m_{r} k_{B} T\right)\right]^{1 / 2}$ is the thermal de Broglie wavelength associated to the reduced mass $m_{r}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ and temperature T, $\beta=1 /\left(k_{B} T\right), \mu_{i}$ is the chemical potential of species i, and \mathbb{N} is the set of all non-negative integers.

To determine the cluster coefficients $b_{n_{1}, n_{2}}$ one can use the harmonic regulator trick [6]: one rather assumes that the system is at thermal equilibrium in an isotropic harmonic trap, with the same trap frequency ω for the two species, and one considers the cluster expansion of $(-\Omega) /\left(k_{B} T Z_{1}\right)$ in powers of z_{1} and z_{2}, with Ω the grand potential and Z_{1} the single particle partition function in the trap. When $\omega \rightarrow 0$, the corresponding coefficients have a limit $B_{n_{1}, n_{2}}$ that one can relate to $b_{n_{1}, n_{2}}[6,7,16]$:

$$
\begin{equation*}
B_{n_{1}, n_{2}}=\left(\frac{m_{r}}{n_{1} m_{1}+n_{2} m_{2}}\right)^{3 / 2} b_{n_{1}, n_{2}} \tag{2}
\end{equation*}
$$

We study $B_{2,1}$ as a function of the mass ratio $\alpha=m_{1} / m_{2}$.
Case $\alpha<\alpha_{c}$: 0-parameter zero-range model. The cluster coefficient $B_{2,1}$ can be deduced from the partition functions of up to three bodies in the trap, that is from the n-body energy spectra for $n \leq 3$. In the unitary limit, the interspecies interaction is described by the Bethe-Peierls binary contact condition on the wavefunction, which leads to a separable three-body Schrödinger equation in internal hyperspherical coordinates [11] even in a harmonic trap [17-19]. The hyperangular part of the problem can be solved in position space [11] or in momentum space [20]: the corresponding real eigenvalue s^{2} (that will serve as a separability constant) obeys the transcendental equation $\Lambda_{l}(s)=0$ of explicit expression $[21]^{1}$

$$
\begin{equation*}
\Lambda_{l}(s)=\cos \nu+\frac{1}{\sin \nu} \int_{\frac{\pi}{2}-\nu}^{\frac{\pi}{2}+\nu} \mathrm{d} \theta P_{l}\left(\frac{\cos \theta}{\sin \nu}\right) \frac{\sin (s \theta)}{\sin (s \pi)} \tag{3}
\end{equation*}
$$

with $l \in \mathbb{N}$ the angular momentum, P_{l} a Legendre polynomial, $\nu=\arcsin \frac{\alpha}{1+\alpha}$ the mass angle. We call $\left(u_{l, n}\right)_{n \in \mathbb{N}}$ the positive roots of Λ_{l}, sorted in increasing order. There is no complex root for $\alpha<\alpha_{c}$. The hyperradial part of the wavefunction, after multiplication by R^{2}, solves an effectively bidimensional Schrödinger equation:

$$
\begin{equation*}
E F=-\frac{\hbar^{2}}{2 M}\left(F^{\prime \prime}+\frac{1}{R} F^{\prime}\right)+\left(\frac{\hbar^{2} s^{2}}{2 M R^{2}}+\frac{1}{2} M \omega^{2} R^{2}\right) F \tag{4}
\end{equation*}
$$

where s is any of the $u_{l, n}, M=2 m_{1}+m_{2}$ is the mass of two particles of species 1 and one particle of species 2 , and the hyperradius R is the corresponding mass-weighted root-mean-square deviation of the positions of the three

[^0]particles from their center of mass. Solving Eq.(4) with the usual boundary conditions that $F(R)$ vanishes at zero and infinity gives
\[

$$
\begin{equation*}
E=(s+1+2 q) \hbar \omega, \quad \forall q \in \mathbb{N} \tag{5}
\end{equation*}
$$

\]

The semi-infinite ladder structure of this spectrum, with equidistance $2 \hbar \omega$, reflects the existence of an undamped breathing mode of the trapped non-Efimovian unitary gas [23] related to its $S O(2,1)$ dynamical symmetry [24].
Finally $B_{2,1}$ is the $\omega \rightarrow 0$ limit of a series $[7,12]^{2}$:

$$
\begin{equation*}
B_{2,1}=\lim _{\omega \rightarrow 0} \sum_{(l, n, q) \in \mathbb{N}^{3}}(2 l+1)\left[e^{-\left(u_{l, n}+1+2 q\right) \beta \hbar \omega}-e^{-\left(v_{l, n}+1+2 q\right) \beta \hbar \omega}\right] \tag{6}
\end{equation*}
$$

with $v_{l, n}=l+2 n+1$ the positive poles of $\Lambda_{l}(s)$ [21]. The summation over q can be done, and even over n by inverse application of the residue theorem [12]:

$$
\begin{equation*}
B_{2,1}=-\sum_{l \in \mathbb{N}}\left(l+\frac{1}{2}\right) \int_{0}^{+\infty} \frac{\mathrm{d} S}{\pi} \ln \frac{\Lambda_{l}(i S)}{\cos \nu} \tag{7}
\end{equation*}
$$

As shown in Fig. 1, the result agrees with the numerical evaluation of the series by [16]. The analytics however directly allows to see why $B_{2,1}$ has an infinite derivative with respect to α at $\alpha=\alpha_{c}^{-}$: it suffices to isolate the contribution of the channel $(l, n)=(1,0)$ in Eq. (6), the only one where $u_{l, n}$ vanishes at $\alpha=\alpha_{c}$, by the splitting

$$
\begin{equation*}
B_{2,1}=B_{2,1}^{(1,0)}+B_{2,1}^{\neq(1,0)} \tag{8}
\end{equation*}
$$

All the other channels have $u_{l, n}>1$ over the figure range and give a smooth contribution to $B_{2,1}$. On the contrary

$$
\begin{align*}
B_{2,1}^{(1,0)} & =\lim _{\omega \rightarrow 0} 3 \sum_{q \in \mathbb{N}}\left[e^{-\left(u_{1,0}+1+2 q\right) \beta \hbar \omega}-e^{-\left(v_{1,0}+1+2 q\right) \beta \hbar \omega}\right] \\
& =-\frac{3}{2}\left(u_{1,0}-v_{1,0}\right) \tag{9}
\end{align*}
$$

and $u_{1,0}$, a decreasing function of α, vanishes as $\left(\alpha_{c}-\alpha\right)^{1 / 2}$ since $\Lambda_{1}(s)$ is even, so that $\frac{\mathrm{d}}{\mathrm{d} \alpha} B_{2,1}$ diverges as $\left(\alpha_{c}-\alpha\right)^{-1 / 2}$.
Case $\alpha>\alpha_{c}$: Efimov zero-range model. - We now assume that the mass ratio obeys $\alpha_{c}<\alpha<$ $75.99449 \ldots$ [25], so that the Efimov effect takes place in the sector $l=1$ only. The function $\Lambda_{l=1}$ has a pair of complex conjugate purely imaginary roots $\pm s$ and we set

$$
\begin{equation*}
u_{1,0}=s=i|s| \tag{10}
\end{equation*}
$$

$|s|$ vanishes as $\left(\alpha-\alpha_{c}\right)^{1 / 2}$ and increases with α. The $1 / R^{2}$ potential in Schrödinger's equation (4) for $F(R)$ becomes

[^1]

Fig. 1: Reduced third cluster coefficient $e^{\beta E_{0}} \bar{B}_{2,1}$ of a trapped two-component three-dimensional unitary Fermi gas in the zero trapping frequency limit, as a function of the mass ratio $\alpha=m_{1} / m_{2}$ of the two species (lower x-axis) or of the root $s=u_{1,0}$ of Λ_{1} (upper x-axis), for various values of the three-body parameter R_{t}, and hence of the global energy scale $E_{\text {glob }}$ of Eqs. $(13,24)$. Here E_{0} is the ground freespace three-body energy, a smooth function of α : for $\alpha \leq \alpha_{c}$, $E_{0}=0$; for $\alpha>\alpha_{c}, E_{0}=-E_{\text {glob }} \exp (-2 \pi /|s|)$ is the ground trimer energy and the factor $\exp \left(\beta E_{0}\right)$ ensures that the plotted quantity remains bounded. Curves from bottom to top for $\alpha \lesssim 15: \beta E_{\text {glob }}=10^{2}($ cyan $), 3 \times 10^{2}($ red $), 10^{3}($ green $), 3 \times$ 10^{3} (blue), 10^{4} (violet), 10^{5} (orange), 10^{6} (magenta). The curves cross, which shows that $e^{\beta E_{0}} \bar{B}_{2,1}$ is not, at all fixed α, an increasing function of $\beta E_{\text {glob }}$ (see inset in Fig. 2). Discontinuous black solid line: limit $\beta E_{\text {glob }} \rightarrow+\infty$, corresponding for $\alpha \leq \alpha_{c}$ to the genuine 0 -parameter zero-range model studied numerically in [16] (black circles), and being, for $\alpha>\alpha_{c}$, identically equal to 3 , the ground-trimer contribution. Vertical dotted line: critical mass ratio α_{c} where the Efimov effect sets in.
attractive, which leads to a "fall to the center" [26] and to an unphysical continuous spectrum of bound states, forcing to modify the boundary condition at $R=0$ [27]:

$$
\begin{equation*}
F(R) \underset{R \rightarrow 0}{=}\left(R / R_{t}\right)^{i|s|}-\left(R / R_{t}\right)^{-i|s|}+O\left(R^{2}\right) \tag{11}
\end{equation*}
$$

To make evident that the third cluster coefficient now depends on one parameter, this length R_{t} called three-body parameter, we write it as $\bar{B}_{2,1}$, that is with one overlining bar. In free space, Eq.(11) leads to a discrete infinite number of Efimov trimer states, with a purely geometric spectrum extending from $-\infty$ to 0 . In any physical system, however, the interaction is not strictly zero range and the spectrum must be bounded from below [11]. One may expect that finite range effects then spoil the geometric nature of the spectrum for the more deeply bound trimers. However, for a narrow Feshbach resonance [21, 28], for momentum-space cut-off models of a Feshbach resonance [29,30], and for the three-body hard core model [13], the spectrum is almost entirely geometric, at least when $|s|$ is not too large $(|s| \lesssim 1)$, and becomes entirely geomet-
ric when $\alpha \rightarrow \alpha_{c}^{+}$, since the typical particle wavenumber times the interaction range tends to zero [21]. In what follows, we assume the bounded from below geometric free space spectrum:

$$
\begin{equation*}
\epsilon_{q}\left(0^{+}\right) \equiv \lim _{\omega \rightarrow 0} \epsilon_{q}(\omega)=-E_{\text {glob }} e^{-2 \pi(1+q) /|s|}, \quad \forall q \in \mathbb{N} \tag{12}
\end{equation*}
$$

The global energy scale $E_{\text {glob }}$ can be calculated from a microscopic model for the interaction, as it was done in the above mentioned models. Here we take it as a parameter that solution of Eq.(4) with $\omega=0$ and with the boundary condition (11) relates to R_{t} as

$$
\begin{equation*}
E_{\text {glob }}=\frac{2 \hbar^{2}}{M R_{t}^{2}} e^{[\ln \Gamma(1+s)-\ln \Gamma(1-s)] / s} \tag{13}
\end{equation*}
$$

with $\ln \Gamma$ the usual branch of the Γ function logarithm.
The contribution to $\bar{B}_{2,1}$ of the channels $(l, n) \neq(1,0)$ is unchanged since no Efimov effect occurs in these channels:

$$
\begin{equation*}
\bar{B}_{2,1}^{\neq(1,0)}=B_{2,1}^{\neq(1,0)} \tag{14}
\end{equation*}
$$

We calculate it as in [12], using Eq.(7) as it is for $l \neq$ 1, while substituting $\Lambda_{l}(i S)$ with $\frac{S^{2}+v_{1,0}^{2}}{S^{2}+u_{1,0}^{2}} \Lambda_{l}(i S)$ for $l=$ 1. In the Efimovian channel $(l, n)=(1,0)$, the spectrum is no longer given by Eq.(5), but by the solution of the transcendental equation deduced from [31] and rewritten as in $[12,32]$ to match Eq.(12) in free space:
$\operatorname{Im} \ln \Gamma\left(\frac{1+s-\epsilon_{q} /(\hbar \omega)}{2}\right)+\frac{|s|}{2} \ln \left(\frac{2 \hbar \omega}{E_{\text {glob }}}\right)+(q+1) \pi=0$
so that the first identity in Eq.(9) is replaced by

$$
\bar{B}_{2,1}^{(1,0)}=\lim _{\omega \rightarrow 0} 3 \sum_{q \in \mathbb{N}}\left[e^{-\beta \epsilon_{q}(\omega)}-e^{-\left(v_{1,0}+1+2 q\right) \beta \hbar \omega}\right]
$$

For a small enough non-zero ω, two classes emerge in the three-body spectrum: (i) negative eigenenergies, that are the equivalent of free space trimer energies, and (ii) positive eigenenergies, that are the equivalent of the free space continuum. The second class is a harmonic spectrum except for an energy dependent "quantum defect" $\Delta(\epsilon)$ [32]

$$
\begin{equation*}
\frac{\epsilon_{q}(\omega)}{\hbar \omega} \underset{q \rightarrow+\infty}{=} 2 q+\Delta\left(\epsilon_{q}(\omega)\right)+O(1 / q) \tag{17}
\end{equation*}
$$

where $q \omega$ is \approx fixed. By the reasoning of [12], we get

$$
\begin{align*}
\bar{B}_{2,1}^{(1,0)}=3 \sum_{q \in \mathbb{N}} & {\left[e^{-\beta \epsilon_{q}\left(0^{+}\right)}-1\right] } \\
& -\frac{3}{2} \int_{0}^{+\infty} \mathrm{d} \epsilon \beta\left[\Delta(\epsilon)-\left(1+v_{1,0}\right)\right] e^{-\beta \epsilon} \tag{18}
\end{align*}
$$

We obtained a new expression of the quantum defect ${ }^{3}$:

$$
\begin{equation*}
\Delta(\epsilon)=2+\frac{2}{\pi} \operatorname{atan} \frac{\tan \left(\frac{|s|}{2} x\right)}{\operatorname{th}\left(\frac{|s|}{2} \pi\right)}+2\left\lfloor\frac{|s| x}{2 \pi}\right\rceil \tag{19}
\end{equation*}
$$

[^2]where $x=\ln \left(\epsilon / E_{\text {glob }}\right)$. The nearest-integer function in the last term exactly compensates the jumps of the atan function when $\tan (|s| x / 2)$ diverges, so as to render $\Delta(\epsilon)$ a smooth function of ϵ and of $|s|$.

The corresponding values of $\bar{B}_{2,1}$ for $\alpha>\alpha_{c}$ are shown in Fig.1, after multiplication by a factor $e^{\beta E_{0}}$, where $E_{0}=\epsilon_{q=0}\left(0^{+}\right)$is the ground trimer energy, so as to absorb its contribution that becomes rapidly dominant and divergent for $k_{B} T<\left|E_{0}\right|$ [33]. The result depends on $\beta E_{\text {glob }}$, a parameter that must be $\gg 1$: our theory, being zero range, requires that R_{t}, of order of the interaction range or effective range, as in the three-body hard core and narrow Feshbach resonance models respectively, is \ll the thermal de Broglie wavelength $\lambda_{t}=\left[2 \pi \hbar^{2} /\left(M k_{B} T\right)\right]^{1 / 2}$. Clearly, there is a discrepancy of $B_{2,1}(\alpha)$ and $\bar{B}_{2,1}(\alpha)$ at α_{c}^{\mp} at non-zero R_{t}. When $R_{t} \rightarrow 0\left(E_{\text {glob }} \rightarrow+\infty\right)$ there is agreement at α_{c}, as seen by first taking the $s \rightarrow 0$ limit in Eq.(19),

$$
\begin{equation*}
\Delta(\epsilon) \underset{\alpha \rightarrow \alpha_{c}^{+}}{\rightarrow} \Delta_{0}(\epsilon)=2+\frac{2}{\pi} \operatorname{atan} \frac{\ln \left(\epsilon / E_{\text {glob }}\right)}{\pi} \tag{20}
\end{equation*}
$$

then taking the $R_{t} \rightarrow 0$ limit in Eq.(18) ${ }^{4}$:

$$
\begin{gather*}
\bar{B}_{2,1}^{(1,0)}\left(\alpha_{c}^{+}\right)=-\frac{3}{2} \int_{0}^{+\infty} \mathrm{d} \epsilon \beta\left[\Delta_{0}(\epsilon)-\left(1+v_{1,0}\right)\right] e^{-\beta \epsilon} \\
\beta E_{\text {glob } \rightarrow+\infty} \tag{21}\\
=\frac{3}{2} v_{1,0}-\frac{3}{\ln \left(\beta E_{\text {glob }}\right)}+O\left(\frac{1}{\ln \left(\beta E_{\text {glob }}\right)}\right)^{2}
\end{gather*}
$$

successfully collated with the $u_{1,0} \rightarrow 0$ value of Eq.(9). The key point however is that this $R_{t} \rightarrow 0$ limit is in practice inaccessible, due to the very slow logarithmic convergence. We expect this problem to extend to $\alpha<\alpha_{c}$, which makes the strictly zero-range calculation of [16] not fully realistic. There also remains the puzzle of the diverging derivative of $B_{2,1}(\alpha)$ with respect to α at α_{c}^{-}. Both issues are solved in the next section.

Case $\alpha<\alpha_{c}$ revised: 1-parameter zero-range model. - We now see that a three-body parameter R_{t} must be introduced for $\alpha<\alpha_{c}$, i.e. even in the absence of Efimov effect, when α is close enough to α_{c}. The root $s=u_{1,0}>0$ then vanishes as $\left(\alpha_{c}-\alpha\right)^{1 / 2}$ and the centrifugal barrier in the hyperradial equation (4) weakens, so that the function $F(R)$, the eigenenergies E and the third cluster coefficient become increasingly sensitive to short distance physics of the interaction [30,34].

Assume that three-body physics inside the interaction range is described by an extra term $V(R) F$ compared to Eq.(4), e.g. a three-body hard core of radius b. Knowing that the relevant eigenenergies E are at most a few $k_{B} T$, and that $b \ll \lambda_{t}$, we can make the following reasonings.
(i) at $R \ll \lambda_{t}$, one can obtain the behavior of $F(R)$ by a zero-energy calculation (neglecting the $E F$ term) in free space (since the harmonic oscillator length is $\gg \lambda_{t}$). Due

[^3]to $b \ll \lambda_{t}$ there exists a range $b \ll R \ll \lambda_{t}$ where one can also neglect $V(R)$. Then $F(R)$ is a superposition of the two particular solutions R^{s} and R^{-s}, with relative amplitudes fixed by a length R_{t} that depends on microscopic details of $V(R)$, e.g. $R_{t}=b$ for the three-body hard core ${ }^{5}$:
\[

$$
\begin{equation*}
F(R) \underset{b \ll}{\sim} \underset{R \ll \lambda_{t}}{ }\left(R / R_{t}\right)^{s}-\left(R / R_{t}\right)^{-s} \tag{22}
\end{equation*}
$$

\]

(ii) one can approach the same range $b \ll R \ll \lambda_{t}$ from large distances. The trapping potential and the $E F$ term must now be kept, and $F(R)$ is the unique solution (up to normalisation) of Eq.(4) that does not diverge at infinity, a Whittaker function of R^{2} divided by R [19]. Then at $R \ll \lambda_{t}, F(R)$ is also found to be a linear superposition of R^{s} and R^{-s}, as it must be, but with coefficients $A_{ \pm}(E)$ that are known functions of E. Matching with Eq.(22) gives an implicit equation for E, as if Eq.(4) was subjected to the modified boundary condition at $R=0[18,35]^{6}$:

$$
\begin{equation*}
F(R) \underset{R \rightarrow 0}{=}\left(R / R_{t}\right)^{s}-\left(R / R_{t}\right)^{-s}+O\left(R^{2-s}\right) \tag{23}
\end{equation*}
$$

The third term in Eq.(23), coming from a property of the Whittaker function, is negligible as compared to the first one, and this model makes sense, for $s<1$ i.e. $\alpha>$ 8.6185 Remarkably this reproduces the Efimov zerorange model (11) if one formally replaces s by $i|s|$. Then it is natural to extend the definition of $E_{\text {glob }}$ to $\alpha<\alpha_{c}{ }^{7}$:

$$
\begin{equation*}
E_{\text {glob }} \underset{0<s<1}{=}\left(\frac{\Gamma(1+s)}{\Gamma(1-s)}\right)^{1 / s} \frac{2 \hbar^{2}}{M R_{t}^{2}} \tag{24}
\end{equation*}
$$

where the first factor is a smooth function of α, as its series expansion involves only even powers of s.

The more common boundary condition $F(R=0)=0$, that led to the spectrum (5), is usually justified as follows: at $R \approx \lambda_{t}$, the R^{-s} term in (22) is negligible as compared to the R^{s} term in the zero-range limit $b \ll \lambda_{t}$, that is $\beta E_{\text {glob }} \gg 1$ as one expects $R_{t} \approx b^{8}$:

$$
\begin{equation*}
\frac{\left(\lambda_{t} / R_{t}\right)^{-s}}{\left(\lambda_{t} / R_{t}\right)^{s}} \approx\left(\beta E_{\text {glob }}\right)^{-s} \ll 1 \tag{25}
\end{equation*}
$$

However this condition becomes more and more difficult to satisfy when $\alpha \rightarrow \alpha_{c}^{-}$, and it will be violated when

$$
\begin{equation*}
s \lesssim \frac{1}{\ln \left(\beta E_{\text {glob }}\right)} \tag{26}
\end{equation*}
$$

[^4]This forces us to recalculate the third cluster coefficient with the boundary condition (23). From the implicit equation for the energy spectrum $\left(\epsilon_{q}(\omega)\right)_{q \in \mathbb{N}}[19]^{9}$:

$$
\begin{equation*}
\frac{\Gamma\left(\frac{1+s-E / \hbar \omega}{2}\right)}{\Gamma\left(\frac{1-s-E / \hbar \omega}{2}\right)}=\left(\frac{E_{\text {glob }}}{2 \hbar \omega}\right)^{s} \tag{27}
\end{equation*}
$$

we recalculate the quantum defect as in [32], using the Euler reflection and Stirling formulas:

$$
\begin{equation*}
\Delta(\epsilon)=2+\frac{2}{\pi} \operatorname{atan} \frac{\operatorname{th}\left[\frac{s}{2} \ln \left(\epsilon / E_{\text {glob }}\right)\right]}{\tan \left(\frac{s}{2} \pi\right)} \tag{28}
\end{equation*}
$$

When $R_{t} \rightarrow 0, \beta E_{\text {glob }} \rightarrow+\infty$ and this reproduces the value $1+s$ of the quantum defect in Eq.(5). Eq.(28) only revises the contribution of the channel $(1,0)$, since the other channels have $u_{l, n}>1$ for the values of α in Fig. 1:

$$
\begin{equation*}
\bar{B}_{2,1}^{(1,0)} \underset{0<s<1}{=}-\frac{3}{2} \int_{0}^{+\infty} \mathrm{d} \epsilon \beta\left[\Delta(\epsilon)-\left(1+v_{1,0}\right)\right] e^{-\beta \epsilon} \tag{29}
\end{equation*}
$$

In Fig. 1 we plot for $\alpha<\alpha_{c}$ the corresponding values of $\bar{B}_{2,1}$, for the same values of the parameter $\beta E_{\text {glob }}$ as in the part $\alpha>\alpha_{c}$ of the figure, leading to an apparently smooth connection at $\alpha=\alpha_{c}$. The continuity of the connection could be expected from the fact that (i) the formal change $s \rightarrow i|s|$ in Eq.(28) reproduces the value (19) of the quantum defect on the side $\alpha>\alpha_{c}$ apart from the nearest-integer function which is irrelevant when $|s| \rightarrow 0$, and (ii) the Efimovian trimer spectrum has a vanishing contribution to $\bar{B}_{2,1}$ when $\alpha \rightarrow \alpha_{c}^{+}$.

Indeed $\bar{B}_{2,1}^{(1,0)}(\alpha)$ (and $\left.\bar{B}_{2,1}(\alpha)\right)$ are smooth functions of α at α_{c} at fixed $\beta E_{\text {glob }}$, since $\Delta(\epsilon)$ is an even function of s and its series expansion only has even powers of s :

$$
\begin{equation*}
\Delta(\epsilon) \underset{s \rightarrow 0}{=} \Delta_{0}(\epsilon)-\frac{x}{6} s^{2}+\frac{x^{3}-\pi^{2} x}{360} s^{4}+O\left(s^{6}\right) \tag{30}
\end{equation*}
$$

where $\Delta_{0}(\epsilon)$ is given by Eq.(20), $x=\ln \left(\epsilon / E_{\text {glob }}\right)$, and s can be real or purely imaginary. Insertion in Eq.(29) leads to converging integrals over ϵ and to an expansion of $\bar{B}_{2,1}^{(1,0)}$ with only even powers of s :

$$
\begin{align*}
& \bar{B}_{2,1}^{(1,0)}(\alpha)-\bar{B}_{2,1}^{(1,0)}\left(\alpha_{c}\right) \underset{s \rightarrow 0}{=}-\frac{A}{4} s^{2} \\
&-\frac{A\left(\pi^{2}-2 A^{2}\right)-4 \zeta(3)}{480} s^{4}+O\left(s^{6}\right) \tag{31}
\end{align*}
$$

where $A=\ln \left(e^{\gamma} \beta E_{\text {glob }}\right)$ and $\gamma \simeq 0.577$ is Euler's constant ${ }^{10}$. Since s^{2} is a smooth function of α across α_{c}, so is $\bar{B}_{2,1}$.

[^5]

Fig. 2: Scaling-law analysis of Fig. 1 for α close to α_{c} in the limit $\beta E_{\text {glob }} \rightarrow+\infty$. (a) For a fixed $t \equiv s \ln \left(\beta E_{\text {glob }}\right)$: the data approach the law (33) (black solid line), provided that $|t|<2 \pi$ on the side $\alpha>\alpha_{c}$. Curves from top to bottom: $\beta E_{\text {glob }}=10^{2}(\operatorname{cyan}), 10^{4}$ (violet). Dashed line: 0-parameter theory prediction $-3 t / 2$. (b) On the side $\alpha>\alpha_{c}$, for a fixed $u \equiv[|t| /(2 \pi)-1] \ln \left(\beta E_{\text {glob }}\right):$ the data approach the law (34) (black solid line), which reproduces the peaked structure seen in Fig.1. From bottom to top for $u<-0.6$: values of $\beta E_{\text {glob }}$ listed in the caption of Fig.1, with the same order and colors. Inset: from Eqs. $(9,18,19)$, Eq.(34) taken with $u=\ln \left(\beta\left|E_{0}\right|\right)$ also gives the limit of $e^{\beta E_{0}} \bar{B}_{2,1}$ for $\alpha \rightarrow \alpha_{c}^{+}$at fixed $k_{B} T /\left|E_{0}\right|$.

[^6]Eq.(31), combined with $\Lambda_{1}(s)=0$, predicts how the first order derivative at α_{c} diverges when $\beta E_{\text {glob }} \rightarrow+\infty$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \bar{B}_{2,1}\left(\alpha_{c}\right)_{\beta E_{\text {glob }} \rightarrow+\infty}^{\sim} C \ln \left(\beta E_{\text {glob }}\right) \text { with } C \simeq 0.0478243 \tag{32}
\end{equation*}
$$

It also suggests an interesting scaling law close to α_{c} : keeping in the coefficients of the powers of s in (31) only the leading terms in $\ln \left(\beta E_{\text {glob }}\right)$, one uncovers, after multiplication of (31) by $\ln \left(\beta E_{\text {glob }}\right)$, the following law when $\beta E_{\text {glob }}$ tends to infinity at fixed $t \equiv s \ln \left(\beta E_{\text {glob }}\right)$:

$$
\begin{equation*}
\left[\bar{B}_{2,1}(\alpha)-\bar{B}_{2,1}\left(\alpha_{c}\right)\right] \ln \left(\beta E_{\text {glob }}\right) \xrightarrow{t} \underset{\beta E_{\text {glob }} \rightarrow+\infty}{\text { fixed }} 3-\frac{3 t / 2}{\operatorname{th}(t / 2)} \tag{33}
\end{equation*}
$$

with no constraint on the side $\alpha<\alpha_{c}$, and with the constraint that $|t|<2 \pi$ on the side $\alpha>\alpha_{c}$ due to the occurrence of a pole at $t=2 \pi i$ in the quantum defect contribution and to a divergence of the ground trimer contribution for $|t|>2 \pi$. Eq.(33) is obtained by neglecting $\ln (\beta \epsilon)$ as compared to $\ln \left(\beta E_{\text {glob }}\right)$ in $(19,28)$, as $\beta \epsilon$ is typically unity in the integrals $(18,29)$. In Fig. 2a we replot the data of Fig. 1 after rescaling as in Eq.(33): the results are indeed almost aligned on a single scaling curve given by Eq.(33), the better the larger $\ln \left(\beta E_{\text {glob }}\right)$ is. The 0-parameter zerorange theory prediction $-3 t / 2$, see dashed line, is only asymptotically equivalent to the correct law at $t \rightarrow+\infty$. The scaling law fully justifies the intuitive condition (26): the crossover from the 0 - to the 1-parameter zero-range regime indeed occurs for $s \approx 1 / \ln \left(\beta E_{\text {glob }}\right)$.

What happens on the side $\alpha>\alpha_{c}$ close to $|t|=2 \pi$? For $|t|$ fixed to a value $>2 \pi$, the ground-trimer contribution $3 e^{-\beta E_{0}}$, where $E_{0}=\epsilon_{0}\left(0^{+}\right)$, rapidly diverges when $\beta E_{\text {glob }} \rightarrow+\infty$ and dominates all other contributions, so that the reduced cluster coefficient $e^{\beta E_{0}} \bar{B}_{2,1}$ of Fig. 1 tends to three. However, before that, the reduced cluster coefficient exhibits as a function of α an interesting structure in Fig. 1, a sharp rise with a maximum, that corresponds to a neighbourhood of $|t|=2 \pi$ with a width $1 / \ln \left(\beta E_{\text {glob }}\right)$. This is revealed by the affine change of variable $u \equiv[|t| /(2 \pi)-1]\left(\ln \beta E_{\text {glob }}\right)$. When $\beta E_{\text {glob }} \rightarrow+\infty$ for fixed $u, \beta E_{0} \rightarrow-e^{u}$, the ground-trimer contribution remains finite and, from dominated convergence theorem,

$$
\begin{array}{r}
e^{\beta E_{0}} \bar{B}_{2,1} \xrightarrow[\beta E_{\text {glob }} \rightarrow+\infty]{u \text { fixed }} e^{-e^{u}}\left[B_{2,1}\left(\alpha_{c}\right)+3\left(e^{e^{u}}-\frac{1}{2}\right)\right. \\
\left.\quad+\frac{3}{\pi} \int_{0}^{+\infty} \mathrm{d} \epsilon \beta e^{-\beta \epsilon} \operatorname{atan} \frac{u-\ln \beta \epsilon}{\pi}\right] \tag{34}
\end{array}
$$

where $B_{2,1}\left(\alpha_{c}\right) \simeq 1.7153[16]$ is the prediction of the 0 parameter zero-range theory at α_{c}. As shown in Fig. 2b, the rescaled data of Fig. 1 nicely converge to this law.
$B_{n}|x|^{n+2},\left|\partial_{|s|}^{n} v(x,|s|)\right| \leq C_{n}+D_{n}|x|^{2+n},|v(x,|s|)| \geq G$. The u and v functions appear in $\partial_{s} \Delta(\epsilon)$ as $\left(v \partial_{s} u-u \partial_{s} v\right) /\left(u^{2}+v^{2}\right)$ for $\alpha<\alpha_{c}$, and in $\partial_{|s|} \Delta(\epsilon)$ as u / v for $\alpha>\alpha_{c}$. Then $\left|\partial_{s}^{n} \Delta\right|$ and $\left|\partial_{|s|}^{n} \Delta\right|$ are polynomially bounded in $|x|$ uniformly in s or $|s| \forall n \in \mathbf{N}^{*}$.

Conclusion. - As compared to the usual zero-range theory we have found corrections of order $1 / \ln \left(\lambda_{t} / R_{t}\right)$ to the third virial coefficient of a two-component unitary Fermi gas, close to and below the threshold for the Efimov effect, at a distance $\alpha_{c}-\alpha$ scaling as $1 /\left[\ln \left(\lambda_{t} / R_{t}\right)\right]^{2}$, where R_{t} is a three-body parameter and λ_{t} a thermal de Broglie wavelength; these $1 / \ln \left(\lambda_{t} / R_{t}\right)$ corrections arise from short-range three-body correlations, that is from triplets of close atoms ${ }^{11}$. As a consequence, for a given finite λ_{t} / R_{t} as in all realistic systems, the third virial coefficient reconnects smoothly to its values deduced from the Efimov zero-range model above the threshold, precluding the unphysical first-order phase transition predicted by zero-range theory. Our predictions may be tested by measuring the equation of state of mixtures of fermionic cold atoms with a mass ratio $\alpha \simeq 13.6$, such as ${ }^{3} \mathrm{He}^{*}$ and ${ }^{40} \mathrm{~K}$.

Acknowledgments. - S.E. thanks JSPS for support.

REFERENCES

[1] K. Huang, Statistical Mechanics (Wiley, New York, 1963).
[2] E. Beth, G.E. Uhlenbeck, Physica III 8, 729 (1936); Physica IV 10, 915 (1937).
[3] P.C. Hemmer, Phys. Lett. 27A, 377 (1968); B. Jancovici, Phys. Rev. 178, 295 (1969); Phys. Rev. 184, 119 (1969); B. Jancovici, S. Merkuriev, Phys. Rev. A 12, 2610 (1975).
[4] T.D. Lee, C.N. Yang, Phys. Rev. 116, 25 (1959); A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959); S.K. Adhikari, R.D. Amado, Phys. Rev. Lett. 27, 485 (1971); W.G. Gibson, Phys. Rev. A 6, 2469 (1972).
[5] K.M. O'Hara et al., Science 298, 2179 (2002); T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003); C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004); M. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).
[6] A. Comtet, Y. Georgelin, S. Ouvry, J. Phys. A 22, 3917 (1989); J. McCabe, S. Ouvry, Phys. Lett. B 260, 113 (1990).
[7] Xia-Ji Liu, Hui Hu, P. D. Drummond, Phys. Rev. Lett. 102, 160401 (2009); Phys. Rev. A 82, 023619 (2010).
[8] D.K. Kaplan, Sichun Sun, Phys. Rev. Lett. 107, 030601 (2011); X. Leyronas, Phys. Rev. A 84, 053633 (2011).
[9] M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010); N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010); Mark Ku, A. Sommer, L. Cheuk, M. Zwierlein, Science 335, 563 (2012).
[10] S. Nascimbène et al., Nature 463, 1057 (2010).
[11] V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); V. Efimov, Nucl. Phys. A 210, 157 (1973); A. Bulgac, V. Efimov, Sov. J. Nucl. Phys. 22, 296 (1975).
[12] Y. Castin, F. Werner, Rev. can. phys. 91, 382 (2013).
[13] J. von Stecher, J. Phys. B 43, 101002 (2010).
[14] S. Piatecki, W. Krauth, Nature Comm. 5, 3503 (2014).

[^7][15] D.S. Petrov, Phys. Rev. A 67, 010703 (2003); E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[16] K.M. Daily, D. Blume, Phys. Rev. A 85, 013609 (2012).
[17] F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).
[18] F. Werner, Y. Castin, Phys. Rev. A 74, 053604 (2006); Y. Castin, F. Werner, chap. 5, The BCS-BEC Crossover and the Unitary Fermi Gas, LNIP 836, W. Zwerger ed. (Springer, Berlin, 2011).
[19] F. Werner, PhD thesis, Univ. Pierre et Marie Curie (Paris, 2008), tel.archives-ouvertes.fr/tel-00285587.
[20] R. Minlos, L. Faddeev, Sov. Phys. JETP 14, 1315 (1962).
[21] Y. Castin, E. Tignone, Phys. Rev. A 84, 062704 (2011).
[22] G. Gasaneo, J.H. Macek, J. Phys. B 35, 2239 (2002); M. Birse, J. Phys. A 39, L49 (2006).
[23] Y. Castin, Comptes Rendus Physique 5, 407 (2004).
[24] L.P. Pitaevskii, A. Rosch, Phys. Rev. A 55, R853 (1997).
[25] O. Kartavtsev, A. Malykh, Zh. Eksp. Teor. Phys. 86, 713 (2007).
[26] L. Landau, E. Lifshitz, Quantum Mechanics (Elsevier Science, Oxford, 2003).
[27] P. Morse, H. Feshbach, Methods of Theoretical Physics, vol. II, p. 1665 (Mc Graw-Hill, New York, 1953).
[28] L. Pricoupenko, Phys. Rev. A 82, 043633 (2010).
[29] M. Jona-Lasinio, L. Pricoupenko, Phys. Rev. Lett. 104, 023201 (2010).
[30] S. Endo, P. Naidon, M. Ueda, Phys. Rev. A 86, 062703 (2012).
[31] S. Jonsell, H. Heiselberg, C.J. Pethick, Phys. Rev. Lett. 89, 250401 (2002).
[32] F. Werner, Y. Castin, Phys. Rev. A 86, 053633 (2012).
[33] A. Pais, G.E. Uhlenbeck, Phys. Rev. 116, 250 (1959).
[34] A. Safavi-Naini, Seth T. Rittenhouse, D. Blume, H.R. Sadeghpour, Phys. Rev. A 87, 032713 (2013).
[35] Y. Nishida, Dam Thanh Son, Shina Tan, Phys. Rev. Lett. 100, 090405 (2008).
[36] F. Werner, Y. Castin, Phys. Rev. A 86, 013626 (2012).

[^0]: ${ }^{1}$ There exists a less explicit hypergeometric expression for $\Lambda_{l}[22]$.

[^1]: ${ }^{2}$ Actually one calculates the difference between partition functions of unitary and non-interacting problems; still this directly gives $B_{2,1}$ of the unitary gas since $B_{2,1}$ is zero for the ideal gases; the contributions of the Laughlinian states (whose wavefunction vanishes when two particles are at the same point) cancel out in the difference; the $v_{l, n}$ appear via the non-Laughlinian spectrum of the non-interacting three-body problem. Similarly, the contributions of the unphysical root $s=2$ in the sector $l=0$, which exists in both the unitary and non-interacting cases, automatically cancel out.

[^2]: ${ }^{3}$ This expression and the one (C6) of [32] are equal, since their difference is a continuous function of x that vanishes at zero and has an identically zero derivative.

[^3]: ${ }^{4}$ One takes $\beta \epsilon$ as integration variable and one expands the integrand in powers of $1 / \ln \left(\beta E_{\text {glob }}\right)$.

[^4]: ${ }^{5}$ If one sets $F(R)=R^{-s} \phi\left(r=R^{2 s}\right)$ then $F^{\prime \prime}+F^{\prime} / R-s^{2} F / R^{2}=$ $4 s^{2} R^{3 s-2} \phi^{\prime \prime}(r)$ so that $R_{t}^{2 s}=a_{\text {eff }}$, where $a_{\text {eff }}$ is the s-wave scattering "length" of a particle of mass M on the potential $v(r)=$ $V\left(r^{1 /(2 s)}\right) r^{-2+1 / s} /\left(4 s^{2}\right)$. We suppose here that $a_{\text {eff }}>0$, e.g. because $V(R)$ is non-negative.
 ${ }^{6}$ For $s=0$ this becomes $F(R) \underset{R \rightarrow 0}{=} \ln \left(R / R_{t}\right)+O\left(R^{2} \ln R\right)$.
 ${ }^{7}$ On a narrow resonance of Feshbach length R_{*} one gets from [21] $\left(\frac{m_{r} R_{*}^{2}}{2 \hbar^{2}} E_{\text {glob }}\right)^{s}=\frac{1-s}{1+s} \frac{\Gamma(1+2 s)}{\Gamma(1-2 s)} f\left(v_{1,0}\right) \prod_{n \in \mathbb{N}^{*}} \frac{f\left(v_{1, n}\right)}{f\left(u_{1, n}\right)}$ with $f(z)=$ $\Gamma(z-s) \Gamma(1+z-s) /[\Gamma(z+s) \Gamma(1+z+s)]$.
 ${ }^{8}$ In peculiar cases, known as three-body resonances, see [18, 35], R_{t} / b can be arbitrarily large and $\beta E_{\text {glob }}$ can remain finite in the zero-range limit. This is improbable here as there is already a twobody resonance.

[^5]: ${ }^{9}$ The ground state solution of this equation must be omitted, because it connects when $\omega \rightarrow 0$ to a bound state of energy $-E_{\text {glob }}$ and spatial extension $\approx R_{t}$, which cannot be faithfully described by our zero-range model when $R_{t} \approx b$ (i.e. in the absence of three-body resonance) and indeed does not exist in the three-body hard-core or in the narrow Feshbach resonance model [21]. This is equivalent to the assumption in [16] of the absence of non-universal trimer states.
 ${ }^{10}$ Exchange of Taylor expansion and integration is justified by the theorem of derivation under the integral, where x is the integration

[^6]: variable. For $\alpha<\alpha_{c}$, one sets $u(x, s)=\operatorname{th}(s x / 2) / s$ and $v(x, s)=$ $\tan (s \pi / 2) / s$ and one fixes some $\eta \in] 0,1[$. Then there exist positive numbers $\left(A_{n}, B_{n}\right)_{n \in \mathbb{N}}$ and $C>0$ such that $\forall(x, s) \in \mathbb{R} \times[0, \eta], \forall n \in$ $\mathbb{N}:\left|\partial_{s}^{n} u(x, s)\right| \leq A_{n}|x|^{n+1},\left|\partial_{s}^{n} v(x, s)\right| \leq B_{n}, u(x, s)^{2}+v(x, s)^{2} \geq C$. For $\alpha>\alpha_{c}$ one sets $u(x,|s|)=[\pi \sin (|s| x)-x \sinh (\pi|s|)] /|s|^{2}$ and $v(x,|s|)=[\cosh (\pi|s|)-\cos (|s| x)] /|s|^{2}$ and one fixes some $\eta>0$. Then there exist positive numbers $\left(A_{n}, B_{n}, C_{n}, D_{n}\right)_{n \in \mathbb{N}}$ and $G>0$ such that $\forall(x,|s|) \in \mathbb{R} \times[0, \eta], \forall n \in \mathbb{N}:\left|\partial_{|s|}^{n} u(x,|s|)\right| \leq A_{n}|x|+$

[^7]: ${ }^{11}$ For $s<1 / 2$ they dominate over more usual (here neglected) energy corrections, due to the effect of a finite range b of the two-body interaction at the level of short-range two-body correlations (only involving pairs of close atoms), that vanish linearly in b [36]. From Eq.(29) for $R_{t} / \lambda_{t} \rightarrow 0, \bar{B}_{2,1}-B_{2,1} \sim-\frac{3}{\pi} \Gamma(s+1) \sin (s \pi) /\left(\beta E_{\text {glob }}\right)^{s}$ then indeed vanishes more slowly than \hat{b}, assuming that $R_{t} \approx b$.

