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The third virial coefficient of a two-component unitary

Fermi gas across an Efimov-effect threshold

Introduction. -A powerful theory tool in the statistical physics of interacting quantum systems is the socalled cluster or virial expansion, where the thermodynamic potentials are expanded in powers of the small degeneracy parameter [START_REF] Huang | Statistical Mechanics[END_REF]. Whereas the second cluster coefficient b 2 had a known general expression since the 1930s [START_REF] Beth | [END_REF], it has been a long-lasting challenge to determine the third cluster coefficient b 3 explicitly. Starting from the late 1950s, analytical results for b 3 have been obtained for the two-body hard-core model, the archetype of nonresonant interactions where the s-wave scattering length a is at most of the order of the interaction range, in the form of expansions in powers of a small parameter λ/a [3] or a/λ [START_REF] Lee | [END_REF], where λ is the thermal de Broglie wavelength.

Interest in b 3 was reactivated by recent experimental breakthrough with cold atoms: long-lived spin 1/2 Fermi gases can be prepared in the resonantly interacting regime (|a| ≫interaction range) via Feshbach resonances [5]. This motivated numerical calculation of b 3 in maximally interacting, unitary limit 1/a = 0, with the harmonic regulator technique of [6] as done in [7], or with diagrams [8]. Due to scaling invariance in the unitary limit, b 3 is just a number, and via a precise measurement of the gas equation of state [9,10], its predicted value was confirmed [10].

Physics is richer when the Efimov effect [11] sets in: the continuous scaling invariance is broken, there appears a length scale R t characterizing the interaction, the threebody parameter, and there exists an infinite number of trimer states with an asymptotically geometric spectrum. The third cluster coefficient b 3 becomes a function of temperature. In a spinless bosonic gas with zero-range inter-actions, it was determined analytically [12]. Within the three-body hard-core model that fixes R t [13], Quantum Monte Carlo simulations have confirmed this analytical prediction and have shown that the third order cluster expansion can provide a good description of the gas down to the liquid-gas transition [14], exemplifying its usefulness.

The problem is even more intriguing when a system parameter allows to switch on-and-off the Efimov effect, as in the two-component Fermi gas with adjustable mass ratio. For two identical fermions and a distinguishable particle, there is an Efimov effect if the fermion-other particle mass ratio α exceeds α c = 13.6069 . . . [11,15]. Up to now, the calculation of b 3 is numerical and limited to α < α c [16]. Strikingly it predicts that b 3 has an infinite derivative at α = α c . As b 3 is a coefficient in the grand potential Ω, this would imply a singular derivative of Ω as a function of α, i.e. a first order phase transition, subsisting at arbitrarily low phase space density, i.e. at temperatures T arbitrarily higher than the Fermi temperature T F , contrarily to common expectations for phase transitions. The present work determines b 3 analytically and solves this paradox.

The cluster expansion. -We consider a mixture of two fully polarized fermionic species, with single particle masses m 1 and m 2 , with no intraspecies interaction and a purely s-wave interspecies interaction, of negligible range and infinite scattering length (unitary limit). At thermal equilibrium in a cubic box, the total pressure P admits in the thermodynamic limit the cluster expansion

P λ 3 r k B T = (n1,n2)∈N 2 b n1,n2 z n1 1 z n2 2 (1) 
where

z i are fugacities exp(βµ i ), λ r = [2π 2 /(m r k B T )] 1/2
is the thermal de Broglie wavelength associated to the reduced mass m r = m 1 m 2 /(m 1 + m 2 ) and temperature T , β = 1/(k B T ), µ i is the chemical potential of species i, and N is the set of all non-negative integers.

To determine the cluster coefficients b n1,n2 one can use the harmonic regulator trick [6]: one rather assumes that the system is at thermal equilibrium in an isotropic harmonic trap, with the same trap frequency ω for the two species, and one considers the cluster expansion of (-Ω)/(k B T Z 1 ) in powers of z 1 and z 2 , with Ω the grand potential and Z 1 the single particle partition function in the trap. When ω → 0, the corresponding coefficients have a limit B n1,n2 that one can relate to b n1,n2 [6,7,16]:

B n1,n2 = m r n 1 m 1 + n 2 m 2 3/2 b n1,n2 (2) 
We study B 2,1 as a function of the mass ratio α = m 1 /m 2 .

Case α < α c : zero-range model. -The cluster coefficient B 2,1 can be deduced from the partition functions of up to three bodies in the trap, that is from the n-body energy spectra for n ≤ 3. In the unitary limit, the interspecies interaction is described by the Bethe-Peierls binary contact condition on the wavefunction, which leads to a separable three-body Schrödinger equation in internal hyperspherical coordinates [11] even in a harmonic trap [17][18][19]. The hyperangular part of the problem can be solved in position space [11] or in momentum space [20]: the corresponding real eigenvalue s2 (that will serve as a separability constant) obeys the transcendental equation Λ l (s) = 0 of explicit expression [21] 1

Λ l (s) = cos ν + 1 sin ν π 2 +ν π 2 -ν dθ P l cos θ sin ν sin(sθ) sin(sπ) (3) 
with l ∈ N the angular momentum, P l a Legendre polynomial, ν = arcsin α 1+α the mass angle. We call (u l,n ) n∈N the positive roots of Λ l , sorted in increasing order. There is no complex root for α < α c . The hyperradial part of the wavefunction, after multiplication by R 2 , solves an effectively bidimensional Schrödinger equation:

EF = - 2 2M F ′′ + 1 R F ′ + 2 s 2 2M R 2 + 1 2 M ω 2 R 2 F (4)
where s is any of the u l,n , M = 2m 1 + m 2 is the mass of two particles of species 1 and one particle of species 2, and the hyperradius R is the corresponding mass-weighted root-mean-square deviation of the positions of the three particles from their center of mass. Solving Eq.( 4) with the usual boundary conditions that F (R) vanishes at zero and infinity gives

E = (s + 1 + 2q) ω, ∀q ∈ N (5)
1 There exists a less explicit hypergeometric expression for Λ l [22].

The semi-infinite ladder structure of this spectrum, with equidistance 2 ω, reflects the existence of an undamped breathing mode of the trapped non-Efimovian unitary gas [23] related to its SO(2, 1) dynamical symmetry [24]. Finally B 2,1 is the ω → 0 limit of a series [7,12] 2 :

B 2,1 = lim ω→0 (l,n,q)∈N 3 (2l + 1) e -(u l,n +1+2q)β ω -e -(v l,n +1+2q)β ω (6) with v l,n = l + 2n + 1 the positive poles of Λ l (s) [21]. The summation over q can be done, and even over n by inverse application of the residue theorem [12]:

B 2,1 = - l∈N l + 1 2 +∞ 0 dS π ln Λ l (iS) cos ν (7) 
As shown in Fig. 1, the result agrees with the numerical evaluation of the series by [16]. The analytics however directly allows to see why B 2,1 has an infinite derivative with respect to α at α = α - c : it suffices to isolate the contribution of the channel (l, n) = (1, 0) in Eq.( 6), the only one where u l,n vanishes at α = α c , by the splitting

B 2,1 = B (1,0) 2,1 + B =(1,0) 2,1 (8) 
All the other channels have u l,n > 1 over the figure range and give a smooth contribution to B 2,1 . On the contrary

B (1,0) 2,1 = lim ω→0 3 q∈N e -(u1,0+1+2q)β ω -e -(v1,0+1+2q)β ω = - 3 2 (u 1,0 -v 1,0 ) (9) 
and u 1,0 , a decreasing function of α, vanishes as (α c -α) 1/2 since Λ 1 (s) is even, so that d dα B 2,1 diverges as (α c -α) -1/2 . Case α > α c : Efimov zero-range model. -We now assume that the mass ratio obeys α c < α < 75.99449 . . . [25], so that the Efimov effect takes place in the sector l = 1 only. The function Λ l=1 has a pair of complex conjugate purely imaginary roots ±s and we set

u 1,0 = s = i|s| ( 10 
)
|s| vanishes as (α -α c ) 1/2 and increases with α. The 1/R 2 potential in Schrödinger's equation ( 4) for F (R) becomes attractive, which leads to a "fall to the center" [START_REF] Landau | Quantum Mechanics[END_REF] and to an unphysical continuous spectrum of bound states, forcing to modify the boundary condition at R = 0 [START_REF] Morse | Methods of Theoretical Physics[END_REF]: Fig. 1: Reduced third cluster coefficient e βE 0 B2,1 of a trapped two-component three-dimensional unitary Fermi gas in the zero trapping frequency limit, as a function of the mass ratio α = m1/m2 of the two species (lower x-axis) or of the root s = u1,0 of Λ1 (upper x-axis), for various values of the three-body parameter Rt, and hence of the global energy scale E glob of Eqs. (13,24). Here E0 is the ground freespace three-body energy, a smooth function of α: for α ≤ αc, E0 = 0; for α > αc, E0 = -E glob exp(-2π/|s|) is the ground trimer energy and the factor exp(βE0) ensures that the plotted quantity remains bounded. Curves from bottom to top for α 15: βE glob = 10 2 (cyan), 3 × 10 2 (red), 103 (green), 3 × 10 3 (blue), 10 4 (violet), 10 5 (orange), 10 6 (magenta). The curves cross, which shows that e βE 0 B2,1 is not, at all fixed α, an increasing function of βE glob (see inset in Fig. 2). Discontinuous black solid line: limit βE glob → +∞, corresponding for α ≤ αc to the genuine 0-parameter zero-range model studied numerically in [16] (black circles), and being, for α > αc, identically equal to 3, the ground-trimer contribution. Vertical dotted line: critical mass ratio αc where the Efimov effect sets in.

F (R) = R→0 (R/R t ) i|s| -(R/R t ) -i|s| + O(R 2 ) ( 11 
)
To make evident that the third cluster coefficient now depends on one parameter, this length R t called three-body parameter, we write it as B2,1 , that is with one overlining bar. In free space, Eq.( 11) leads to a discrete infinite number of Efimov trimer states, with a purely geometric spectrum extending from -∞ to 0. In any physical system, however, the interaction is not strictly zero range and the spectrum must be bounded from below [11]. One may expect that finite range effects then spoil the geometric nature of the spectrum for the more deeply bound trimers. However, for a narrow Feshbach resonance [21,[START_REF] Pricoupenko | [END_REF], for momentum-space cut-off models of a Feshbach resonance [29,30], and for the three-body hard core model [13], the spectrum is almost entirely geometric, at least when |s| is not too large (|s| 1), and becomes entirely geometric when α → α + c , since the typical particle wavenumber times the interaction range tends to zero [21]. In what follows, we assume the bounded from below geometric free space spectrum:

ǫ q (0 + )≡ lim ω→0 ǫ q (ω) = -E glob e -2π(1+q)/|s| , ∀q ∈ N (12)
The global energy scale E glob can be calculated from a microscopic model for the interaction, as it was done in the above mentioned models. Here we take it as a parameter that solution of Eq.( 4) with ω = 0 and with the boundary condition (11) relates to R t as

E glob = 2 2 M R 2 t e [ln Γ(1+s)-ln Γ(1-s)]/s (13)
with ln Γ the usual branch of the Γ function logarithm. The contribution to B2,1 of the channels (l, n) = (1, 0) is unchanged since no Efimov effect occurs in these channels:

B =(1,0) 2,1 = B =(1,0) 2,1 (14) 
We calculate it as in [12], using Eq.( 7) as it is for l = 1, while substituting Λ l (iS) with

S 2 +v 2 1,0 S 2 +u 2 1,0 Λ l (iS) for l = 1.
In the Efimovian channel (l, n) = (1, 0), the spectrum is no longer given by Eq.( 5), but by the solution of the transcendental equation deduced from [31] and rewritten as in [12,32] to match Eq.( 12) in free space:

Im ln Γ 1 + s -ǫ q /( ω) 2 + |s| 2 ln
2 ω E glob + (q + 1)π = 0 (15) so that the first identity in Eq.( 9) is replaced by

B(1,0) 2,1 = lim ω→0 3 q∈N e -βǫq(ω) -e -(v1,0+1+2q)β ω (16) 
For a small enough non-zero ω, two classes emerge in the three-body spectrum: (i) negative eigenenergies, that are the equivalent of free space trimer energies, and (ii) positive eigenenergies, that are the equivalent of the free space continuum. The second class is a harmonic spectrum except for an energy dependent "quantum defect" ∆(ǫ) [32] ǫ q (ω)

ω = q→+∞ 2q + ∆(ǫ q (ω)) + O(1/q) ( 17 
)
where qω is ≈ fixed. By the reasoning of [12], we get

B(1,0) 2,1 = 3 q∈N [e -βǫq(0 + ) -1] - 3 2 +∞ 0 dǫβ[∆(ǫ) -(1 + v 1,0 )]e -βǫ (18) 
We obtained a new expression of the quantum defect 3 :

∆(ǫ) = 2 + 2 π atan tan( |s| 2 x) th( |s| 2 π) + 2 |s|x 2π (19) 
where x = ln(ǫ/E glob ). The nearest-integer function in the last term exactly compensates the jumps of the atan function when tan(|s|x/2) diverges, so as to render ∆(ǫ) a smooth function of ǫ and of |s|.

The corresponding values of B2,1 for α > α c are shown in Fig. 1, after multiplication by a factor e βE0 , where E 0 = ǫ q=0 (0 + ) is the ground trimer energy, so as to absorb its contribution that becomes rapidly dominant and divergent for k B T < |E 0 | [33]. The result depends on βE glob , a parameter that must be ≫ 1: our theory, being zero range, requires that R t , of order of the interaction range or effective range, as in the three-body hard core and narrow Feshbach resonance models respectively, is ≪ the thermal de Broglie wavelength λ t = [2π 2 /(M k B T )] 1/2 . Clearly, there is a discrepancy of B 2,1 (α) and B2,1 (α) at α ∓ c at non-zero R t . When R t → 0 (E glob → +∞) there is agreement at α c , as seen by first taking the s → 0 limit in Eq.( 19),

∆(ǫ) → α→α + c ∆ 0 (ǫ) = 2 + 2 π atan ln(ǫ/E glob ) π (20) 
then taking the R t → 0 limit in Eq.( 18) 4 :

B(1,0) 2,1 (α + c ) = - 3 2 +∞ 0 dǫβ[∆ 0 (ǫ) -(1 + v 1,0 )]e -βǫ = βE glob →+∞ 3 2 v 1,0 - 3 ln(βE glob ) + O 1 ln(βE glob ) 2 (21)
successfully collated with the u 1,0 → 0 value of Eq.( 9). The key point however is that this R t → 0 limit is in practice inaccessible, due to the very slow logarithmic convergence. We expect this problem to extend to α < α c , which makes the strictly zero-range calculation of [16] not fully realistic. There also remains the puzzle of the diverging derivative of B 2,1 (α) with respect to α at α - c . Both issues are solved in the next section.

Case α < α c revised: 1-parameter zero-range model. -We now see that a three-body parameter R t must be introduced for α < α c , i.e. even in the absence of Efimov effect, when α is close enough to α c . The root s = u 1,0 > 0 then vanishes as (α c -α) 1/2 and the centrifugal barrier in the hyperradial equation ( 4) weakens, so that the function F (R), the eigenenergies E and the third cluster coefficient become increasingly sensitive to short distance physics of the interaction [30,34].

Assume that three-body physics inside the interaction range is described by an extra term V (R)F compared to Eq.( 4), e.g. a three-body hard core of radius b. Knowing that the relevant eigenenergies E are at most a few k B T , and that b ≪ λ t , we can make the following reasonings.

(i) at R ≪ λ t , one can obtain the behavior of F (R) by a zero-energy calculation (neglecting the EF term) in free space (since the harmonic oscillator length is ≫ λ t ). Due to b ≪ λ t there exists a range b ≪ R ≪ λ t where one can also neglect V (R). Then F (R) is a superposition of the two particular solutions R s and R -s , with relative amplitudes fixed by a length R t that depends on microscopic 4 One takes βǫ as integration variable and one expands the integrand in powers of 1/ ln(βE glob ). details of V (R), e.g. R t = b for the three-body hard core 5 :

F (R) ≃ b≪R≪λt (R/R t ) s -(R/R t ) -s (22) 
(ii) one can approach the same range b ≪ R ≪ λ t from large distances. The trapping potential and the EF term must now be kept, and F (R) is the unique solution (up to normalisation) of Eq.( 4) that does not diverge at infinity, a Whittaker function of R 2 divided by R [19]. Then at R ≪ λ t , F (R) is also found to be a linear superposition of R s and R -s , as it must be, but with coefficients A ± (E) that are known functions of E. Matching with Eq.( 22) gives an implicit equation for E, as if Eq.( 4) was subjected to the modified boundary condition at R = 0 [18,35] 6 :

F (R) = R→0 (R/R t ) s -(R/R t ) -s + O(R 2-s ) ( 23 
)
The third term in Eq.( 23 

E glob = 0<s<1 Γ(1 + s) Γ(1 -s) 1/s 2 2 M R 2 t ( 24 
)
where the first factor is a smooth function of α, as its series expansion involves only even powers of s.

The more common boundary condition F (R = 0) = 0, that led to the spectrum (5), is usually justified as follows: at R ≈ λ t , the R -s term in (22) is negligible as compared to the R s term in the zero-range limit b ≪ λ t , that is βE glob ≫ 1 as one expects R t ≈ b 8 :

(λ t /R t ) -s (λ t /R t ) s ≈ (βE glob ) -s ≪ 1 ( 25 
)
However this condition becomes more and more difficult to satisfy when α → α - c , and it will be violated when

s 1 ln(βE glob ) ( 26 
)
This forces us to recalculate the third cluster coefficient with the boundary condition (23). From the implicit equa-

5 If one sets F (R) = R -s φ(r = R 2s ) then F ′′ + F ′ /R -s 2 F/R 2 = 4s 2 R 3s-2 φ ′′ (r) so that R 2s t = a eff
, where a eff is the s-wave scattering "length" of a particle of mass M on the potential v(r) = V (r 1/(2s) )r -2+1/s /(4s 2 ). We suppose here that a eff > 0, e.g. because V (R) is non-negative. 6 For s = 0 this becomes 7 On a narrow resonance of Feshbach length R * one gets from [21] (

F (R) = R→0 ln(R/Rt) + O(R 2 ln R).
mr R 2 * 2 2 E glob ) s = 1-s 1+s Γ(1+2s) Γ(1-2s) f (v 1,0 ) n∈N * f (v 1,n ) f (u 1,n ) with f (z) = Γ(z -s)Γ(1 + z -s)/[Γ(z + s)Γ(1 + z + s)].
8 In peculiar cases, known as three-body resonances, see [18,35], Rt/b can be arbitrarily large and βE glob can remain finite in the zero-range limit. This is improbable here as there is already a twobody resonance.

tion for the energy spectrum (ǫ q (ω)) q∈N [19] 

9 : Γ( 1+s-E/ ω 2 ) Γ( 1-s-E/ ω 2 ) = E glob 2 ω s (27) 
we recalculate the quantum defect as in [32], using the Euler reflection and Stirling formulas:

∆(ǫ) = 2 + 2 π atan th[ s 2 ln(ǫ/E glob )] tan( s 2 π) (28) 
When R t → 0, βE glob → +∞ and this reproduces the value 1 + s of the quantum defect in Eq.( 5). Eq.( 28) only revises the contribution of the channel (1, 0), since the other channels have u l,n > 1 for the values of α in Fig. 1:

B(1,0) 2,1 = 0<s<1 - 3 2 +∞ 0 dǫβ[∆(ǫ) -(1 + v 1,0 )]e -βǫ (29) 
In Fig. 1 we plot for α < α c the corresponding values of B2,1 , for the same values of the parameter βE glob as in the part α > α c of the figure, leading to an apparently smooth connection at α = α c . The continuity of the connection could be expected from the fact that (i) the formal change s → i|s| in Eq.( 28) reproduces the value (19) of the quantum defect on the side α > α c apart from the nearest-integer function which is irrelevant when |s| → 0, and (ii) the Efimovian trimer spectrum has a vanishing contribution to B2,1 when α → α + c . Indeed B(1,0) 2,1 (α) (and B2,1 (α)) are smooth functions of α at α c at fixed βE glob , since ∆(ǫ) is an even function of s and its series expansion only has even powers of s:

∆(ǫ) = s→0 ∆ 0 (ǫ) - x 6 s 2 + x 3 -π 2 x 360 s 4 + O(s 6 ) ( 30 
)
where ∆ 0 (ǫ) is given by Eq.( 20), x = ln(ǫ/E glob ), and s can be real or purely imaginary. Insertion in Eq.( 29) leads to converging integrals over ǫ and to an expansion of B(1,0)

2,1
with only even powers of s:

B(1,0) 2,1 (α) - B(1,0) 2,1 (α c ) = s→0 - 4 s 2 - A(π 2 -2A 2 ) -4ζ(3) 480 s 4 + O(s 6 ) ( 31 
)
where A = ln(e γ βE glob ) and γ ≃ 0.577 is Euler's constant 10 . Since s 2 is a smooth function of α across α c , so is B2,1 . 9 The ground state solution of this equation must be omitted, because it connects when ω → 0 to a bound state of energy -E glob and spatial extension ≈ Rt, which cannot be faithfully described by our zero-range model when Rt ≈ b (i.e. in the absence of three-body resonance) and indeed does not exist in the three-body hard-core or in the narrow Feshbach resonance model [21]. This is equivalent to the assumption in [16] of the absence of non-universal trimer states. 10 Exchange of Taylor expansion and integration is justified by the theorem of derivation under the integral, where x is the integration variable. For α < αc, one sets u(x, s) = th(sx/2)/s and v(x, s) = tan(sπ/2)/s and one fixes some η ∈]0, 1[. Then there exist positive 34) (black solid line), which reproduces the peaked structure seen in Fig. 1. From bottom to top for u < -0.6: values of βE glob listed in the caption of Fig. 1, with the same order and colors. Inset: from Eqs. (9,18,19), Eq.( 34) taken with u = ln(β|E0|) also gives the limit of e βE 0 B2,1 for α → α + c at fixed kBT /|E0|.

Eq.( 31), combined with Λ 1 (s) = 0, predicts how the first order derivative at α c diverges when βE glob → +∞:

d dα B2,1 (α c ) ∼ βE glob →+∞ C ln(βE glob ) with C ≃ 0.0478243 (32) 
It also suggests an interesting scaling law close to α c : keeping in the coefficients of the powers of s in (31) only the leading terms in ln(βE glob ), one uncovers, after multiplication of (31) by ln(βE glob ), the following law when βE glob tends to infinity at fixed t ≡ s ln(βE glob ):

[ B2,1 (α) -B2,1 (α c )] ln(βE glob ) t fixed → βE glob →+∞ 3 - 3t/2 th(t/2) ( 33 
) with no constraint on the side α < α c , and with the constraint that |t| < 2π on the side α > α c due to the occurrence of a pole at t = 2πi in the quantum defect contribution and to a divergence of the ground trimer contribution for |t| > 2π. Eq.( 33) is obtained by neglecting ln(βǫ) as compared to ln(βE glob ) in (19,[START_REF] Pricoupenko | [END_REF], as βǫ is typically unity in the integrals (18,29). In Fig. 2a we replot the data of Fig. 1 after rescaling as in Eq.( 33): the results are indeed almost aligned on a single scaling curve given by Eq.( 33), the better the larger ln(βE glob ) is. The 0-parameter zerorange theory prediction -3t/2, see dashed line, is only asymptotically equivalent to the correct law at t → +∞. The scaling law fully justifies the intuitive condition [START_REF] Landau | Quantum Mechanics[END_REF]: the crossover from the 0-to the 1-parameter zero-range regime indeed occurs for s ≈ 1/ ln(βE glob ).

What happens on the side α > α c close to |t| = 2π? For |t| fixed to a value > 2π, the ground-trimer contribution 3e -βE0 , where E 0 = ǫ 0 (0 + ), rapidly diverges when βE glob → +∞ and dominates all other contributions, so that the reduced cluster coefficient e βE0 B2,1 of Fig. 1 tends to three. However, before that, the reduced cluster coefficient exhibits as a function of α an interesting structure in Fig. 1, a sharp rise with a maximum, that corresponds to a neighbourhood of |t| = 2π with a width 1/ ln(βE glob ). This is revealed by the affine change of variable u ≡ [|t|/(2π) -1](ln βE glob ). When βE glob → +∞ for fixed u, βE 0 → -e u , the ground-trimer contribution remains finite and, from dominated convergence theorem, 

where B 2,1 (α c ) ≃ 1.7153 [16] is the prediction of the 0parameter zero-range theory at α c . As shown in Fig. 2b, the rescaled data of Fig. 1 nicely converge to this law.

Conclusion. -As compared to the usual zero-range theory we have found corrections of order 1/ ln(λ t /R t ) to the third virial coefficient of a two-component unitary Fermi gas, close to and below the threshold for the Efimov effect, at a distance α c -α scaling as 1/[ln(λ t /R t )] 2 , where R t is a three-body parameter and λ t a thermal de Broglie wavelength; these 1/ ln(λ t /R t ) corrections arise from short-range three-body correlations, that is from triplets of close atoms 11 . As a consequence, for a given finite λ t /R t as in all realistic systems, the third virial coefficient reconnects smoothly to its values deduced from the Efimov zero-range model above the threshold, precluding the unphysical first-order phase transition predicted by zero-range theory. Our predictions may be tested by measuring the equation of state of mixtures of fermionic cold atoms with a mass ratio α ≃ 13.6, such as 3 He * and 40 K.

Fig. 2 :

 2 Fig.2: Scaling-law analysis of Fig.1for α close to αc in the limit βE glob → +∞. (a) For a fixed t ≡ s ln(βE glob ): the data approach the law (33) (black solid line), provided that |t| < 2π on the side α > αc. Curves from top to bottom: βE glob = 10 2 (cyan), 10 4 (violet). Dashed line: 0-parameter theory prediction -3t/2. (b) On the side α > αc, for a fixed u ≡ [|t|/(2π) -1] ln(βE glob ): the data approach the law (34) (black solid line), which reproduces the peaked structure seen in Fig.1. From bottom to top for u < -0.6: values of βE glob listed in the caption of Fig.1, with the same order and colors. Inset: from Eqs.(9,18,19), Eq.(34) taken with u = ln(β|E0|) also gives the limit of e βE 0 B2,1 for α → α + c at fixed kBT /|E0|.

  numbers (An, Bn) n∈N and C > 0 such that ∀(x, s) ∈ R × [0, η], ∀n ∈ N:|∂ n s u(x, s)| ≤ An|x| n+1 , |∂ n s v(x, s)| ≤ Bn, u(x, s) 2 +v(x, s) 2 ≥ C. For α > αc one sets u(x, |s|) = [π sin(|s|x) -x sinh(π|s|)]/|s| 2 and v(x, |s|) = [cosh(π|s|) -cos(|s|x)]/|s|2 and one fixes some η > 0. Then there exist positive numbers (An, Bn, Cn, Dn) n∈N and G > 0 such that ∀(x, |s|) ∈ R × [0, η], ∀n ∈ N: |∂ n |s| u(x, |s|)| ≤ An|x| + Bn|x| n+2 , |∂ n |s| v(x, |s|)| ≤ Cn + Dn|x| 2+n , |v(x, |s|)| ≥ G. The u and v functions appear in ∂s∆(ǫ) as (v∂su -u∂sv)/(u 2 + v 2 ) for α < αc, and in ∂ |s| ∆(ǫ) as u/v for α > αc. Then |∂ n s ∆| and |∂ n |s| ∆| are polynomially bounded in |x| uniformly in s or |s| ∀n ∈ N * .

→

  βE glob →+∞e -e u B 2,1 (α c ) + 3 e e uatan u -ln βǫ π

  ), coming from a property of the Whittaker function, is negligible as compared to the first one, and this model makes sense, for s < 1 i.e. α > 8.6185 . . .. Remarkably this reproduces the Efimov zerorange model(11) if one formally replaces s by i|s|. Then it is natural to extend the definition of E glob to α < α c 7 :

Actually one calculates the difference between partition functions of unitary and non-interacting problems; still this directly gives B 2,1 of the unitary gas since B 2,1 is zero for the ideal gases; the contributions of the Laughlinian states (whose wavefunction vanishes when two particles are at the same point) cancel out in the difference; the v l,n appear via the non-Laughlinian spectrum of the non-interacting three-body problem. Similarly, the contributions of the unphysical root s = 2 in the sector l = 0, which exists in both the unitary and non-interacting cases, automatically cancel out.

This expression and the one (C6) of[32] are equal, since their difference is a continuous function of x that vanishes at zero and has an identically zero derivative.
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